The performance and feasibility of a biotrickling filter (BTF) pilot unit for the treatment of exhaust gases from two robotic spray paint booths at a plastic coating facility were investigated. The volatile organic compound (VOC) concentrations in the emissions of the exhaust gases from the paint booths were relatively stable, although the VOC composition depended on the applied solvent-paint formulation in the booths. The pilot plant was operated for one year at empty bed residence times (EBRTs) ranging from 30 to 93s. The performance of the system was affected by the solvent-paint formulations. An EBRT between 30 and 40s was enough to meet legal requirements for products containing more than 60% biodegradable compounds, whereas a minimum EBRT of 80s was required for emissions mainly composed of hydrophobic VOCs. The dynamics of the microbial population was carried out by fluorescence in situ hybridisation (FISH), indicating a high microbial diversity with composition changes associated with the solvent-paint used. The feasibility of the BTF was evaluated, showing that this technology is economically and environmentally competitive in comparison with thermal treatment technology.