Effect of a direct-fed microbial (Primalac) on structure and ultrastructure of small intestine in turkey poults

Department of Poultry Science, College of Agriculture, Tarbiat Modares University, Tehran, Iran.
Poultry Science (Impact Factor: 1.67). 04/2009; 88(3):491-503. DOI: 10.3382/ps.2008-00272
Source: PubMed


The effects of dietary supplementation of the direct-fed microbial (DFM) Primalac in mash or crumbled feed on histological and ultrastructural changes of intestinal mucosa was determined in 2 populations of poults; 1 with and 1 without a Salmonella spp. challenge. Three hundred thirty-six 1-d-old female Large White turkey poults were randomly distributed into 8 treatment groups with 6 replicates of 7 poults in each pen. The poults were placed on 1 of 4 dietary treatments in a 2 x 2 x 2 factorial arrangement (mash or crumble feed, with or without DFM, not-challenged or challenged at 3 d of age). The DFM groups were fed a Primalac-supplemented diet from d 1 until the last day of the experiment (d 21). At 3 d of age, 50% of the poults were challenged with 1 mL of 10(10) cfu/ mL of Salmonella spp. (Salmonella enterica serovar Typhimurium, Salmonella Heidelberg, and Salmonella Kentucky) by oral gavage. The inoculated poults were housed in a separate room from nonchallenged controls. Feed and water were provided ad libitum for all birds. At d 21, 1 poult per pen (total of 6 poults per treatment) was randomly selected and killed humanely by cervical dislocation. After necropsy, the small intestine was removed, and tissue samples from duodenum, jejunum, and ileum were taken for light and electron microscopic evaluation. The DFM birds showed increased goblet cell (GC) numbers, total GC area, GC mean size, mucosal thickness, and a greater number of segmented filamentous bacteria compared with controls. Changes in intestinal morphology as observed in this study support the concept that poultry gut health and function, and ultimately bird performance, can be improved by dietary supplementation with DFM products such as Primalac as used in this study.

Download full-text


Available from: Edgar Oviedo, Dec 21, 2015
  • Source
    • "In a recent publication, Cheled- Shoval et al. (2014) reported that in germ free chicks at 7 d posthatch, the number of goblet cells with both neutral and acidic mucins was reduced with sulfated goblet cells being predominant among the acidic cells. Direct dietary supplementation with probiotics has been reported to positively affect goblet cell numbers and morphology and overall mucosal thickness in poults and broiler chicks (Rahimi et al., 2009; Tsirtsikos et al., 2012). The role of goblet cells and mucous secretion as a first line of enterocyte protection is well established (Lievin- Le Moal and Servin, 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. © 2015 Poultry Science Association Inc.
    Full-text · Article · Apr 2015 · Poultry Science
  • Source
    • "Several other studies have reported beneficial effects of probiotics on intestinal microarchitecture (Awad et al., 2008; Rahimi et al., 2009).The fermentation profile of probiotic bacteria consists of several short-chain fatty acids that are believed to exert trophic effects on the intestinal microarchitecture (Wong et al., 2006). Therefore , the improvement in histology of intestine could possibly be the total effect of probiotics fed to HS broilers . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed at elucidating the effects of supplementing mannan-oligosaccharides (MOS) and probiotic mixture (PM) on growth performance, intestinal histology, and corticosterone concentrations in broilers kept under chronic heat stress (HS). Four hundred fifty 1-d-old chicks were divided into 5 treatment groups and fed a corn-soybean diet ad-libitum. The temperature control (CONT) group was held at the normal ambient temperature. Heat stress broilers were held at 35 ± 2°C from d 1 until the termination of the study at d 42. Heat stress groups consisted of HS-CONT fed the basal diet; HS-MOS fed the basal diet containing 0.5% MOS; HS-PM fed the basal diet containing 0.1% PM; and HS-SYN (synbiotic) fed 0.5% MOS and 0.1% PM in the basal diet. Broilers were examined at d 21 and 42 for BW gain, feed consumption, feed conversion ratio (FCR), serum corticosterone concentrations, and ileal microarchitecture. The results revealed that the CONT group had higher (P < 0.01) feed consumption, BW gain, and lower FCR on d 21 and 42, compared with the HS-CONT group. Among supplemented groups, the HS-MOS had higher (P < 0.05) BW gain and lower FCR compared with the HS-CONT group. On d 21 and 42, the HS-CONT group had higher (P < 0.05) serum corticosterone concentrations compared with the CONT and supplemented groups. The CONT group had higher (P < 0.05) villus height, width, surface area, and crypt depth compared with the HS-CONT group. On d 21, the HS-PM had higher (P < 0.05) villus width and surface area compared with HS-CONT group. On d 42, the HS-SYN had higher (P < 0.05) villus width and crypt depth compared with the HS-CONT group. These results showed that chronic HS reduces broiler production performance, intestinal microarchitecture, and increases adrenal hormone concentrations. Also, supplementation of the MOS prebiotic and the PM can partially lessen these changes.
    Full-text · Article · Sep 2012 · Poultry Science
  • Source
    • "Increases of villus length could cause greater enzyme production and better digestion by increasing the effective absorptive area and improving the nutrient transport system (Awad et al., 2009). Rahimi et al. (2010) and Smirnov et al. (2005) found that addition of lactic acid based probiotics in bird's diets can induce goblet cell density and size. In our experiment, there was a tendency for an increase in goblet cells density (p<0.05) when lactic acid bacteria based probiotic was added. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.
    Full-text · Article · Sep 2012 · Asian Australasian Journal of Animal Sciences
Show more