PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt

Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan.
Cell (Impact Factor: 32.24). 03/2009; 136(3):535-50. DOI: 10.1016/j.cell.2008.12.002
Source: PubMed


p53 And Akt are critical players regulating tumorigenesis with opposite effects: whereas p53 transactivates target genes to exert its function as a tumor suppressor, Akt phosphorylates its substrates and transduces downstream survival signals. In addition, p53 and Akt negatively regulate each other to balance survival and death signals within a cell. We now identify PHLDA3 as a p53 target gene that encodes a PH domain-only protein. We find that PHLDA3 competes with the PH domain of Akt for binding of membrane lipids, thereby inhibiting Akt translocation to the cellular membrane and activation. Ablation of endogenous PHLDA3 results in enhanced Akt activity and decrease of p53-dependent apoptosis. We also demonstrate the suppression of anchorage-independent cell growth by PHLDA3. Loss of the PHLDA3 genomic locus was frequently observed in primary lung cancers, suggesting a role of PHLDA3 in tumor suppression. Our results reveal a new mode of coordination between the p53 and Akt pathways.

Full-text preview

Available from:
  • Source
    • "GST-PH-AKT was generated as previously reported [28]. GST fusion constructs of PHLDA2 were prepared by PCR tagging of PHLDA2 cDNA with NdeI and BamHI sites at the 5′ and 3′ ends respectively, and subcloned into pGEX-2TL(+) vector (provided by Dr. Wenhui Zhao, Columbia University Medical Center, New York, NY). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pleckstrin homology-like domain family A member 2 (PHLDA2) is located within the tumor suppressor region of 11p15, and its expression is suppressed in several malignant tumor types. We recently identified PHLDA2 as a robustly induced, novel downstream target of oncogenic EGFR/ErbB2 signaling. In an immunohistochemical study, we find that PHLDA2 protein expression correlates positively with AKT activation in human lung cancers corroborating our data that PHLDA2 is induced upon oncogenic activation and might serve as a biomarker for AKT pathway activation. We show that PHLDA2 overexpression inhibits AKT phosphorylation while decreased PHLDA2 expression increases AKT activity. We further find that PHLDA2 competes with the PH domain of AKT for binding of membrane lipids, thereby directly inhibiting AKT translocation to the cellular membrane and subsequent activation. Indeed, PHLDA2 overexpression suppresses anchorage-independent cell growth and decreased PHLDA2 expression results in increased cell proliferation and reduced sensitivity to targeted agents of EGFR/ErbB2-driven cancers demonstrating functional relevance for this interaction. In summary, our studies demonstrate that PHLDA2 is strongly regulated by EGFR/ErbB2 signaling and inhibits cell proliferation via repressing AKT activation in lung cancers in a negative feedback loop. We highlight a novel action for PHLDA2 as a potential biomarker for AKT pathway activation.
    Full-text · Article · Apr 2015 · Oncotarget
  • Source
    • "Then, we focused on a strongly regulated novel gene, PHLDA1 as it has not been investigated before as a target of oncogenic pathways. This gene shares a pleckstrin-homology (PH) domain with PHLDA3, which was shown to be a direct target gene of p53 and functions as a unique AKT inhibitor through the depletion of membrane-bound phosphatidyl inositols [29], [30]. The exact functions of PHLDA1 are poorly defined. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We set out to study the key effectors of resistance and sensitivity to ErbB2 tyrosine kinase inhibitors, such as lapatinib in ErbB2-positive breast and lung cancers. A cell-based in vitro site-directed mutagenesis lapatinib resistance model identified several mutations, including the gatekeeper ErbB2 mutation ErbB2-T798I, as mediating resistance. ErbB2-T798I engineered cell models indeed show resistance to lapatinib but remain sensitive to the irreversible EGFR/ErbB2 inhibitor, PD168393, suggestive of potential alternative treatment strategies to overcome resistance. Gene expression profiling studies identified a select group of downstream targets regulated by ErbB2 signaling and define PHLDA1 as an immediately downregulated gene upon oncogenic ErbB2 signaling inhibition. We find significant down-regulation of PHLDA1 in primary breast cancer and PHLDA1 is statistically significantly less expressed in ErbB2 negative compared with ErbB2 positive tumors consistent with its regulation by ErbB2. Lastly, PHLDA1 overexpression blocks AKT signaling, inhibits cell growth and enhances lapatinib sensitivity further supporting an important negative growth regulator function. Our findings suggest that PHLDA1 might have key inhibitory functions in ErbB2 driven lung and breast cancer cells and a better understanding of its functions might point at novel therapeutic options. In summary, our studies define novel ways of modulating sensitivity and resistance to ErbB2 inhibition in ErbB2-dependent cancers.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    • "Conversely, phosphorylation of Akt was increased by knockdown of p53 in human endothelial cells (Figure S4A). We also found that the expression of phosphatase and tensin homolog (PTEN) and pleckstrin homology-like domain, family A, member 3 (PHLDA3) was positively regulated by p53 (Figures 4B, S4A, and S4B), both of which are known to be target genes of p53 that inhibit Akt phosphorylation in cancer cells (Cantley and Neel, 1999; Kawase et al., 2009; Stambolic et al., 2001). Accordingly , we examined the effect of deletion of these genes on eNOS phosphorylation in endothelial cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.
    Full-text · Article · May 2014 · Cell Reports
Show more