Content uploaded by Roberto Isaia
Author content
All content in this area was uploaded by Roberto Isaia
Content may be subject to copyright.
INTRODUCTION AND CONTEXT
The climate of the Last Glacial is known to have been
highly unstable and much more sensitive to feedback mech-
The Campanian Ignimbrite Eruption, Heinrich Event 4, and Palaeolithic Change in
Europe: a High-Resolution Investigation
Francesco G. Fedele
Sezione e Museo di Antropologia, Università di Napoli Federico II, Naples, Italy
Biagio Giaccio
Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, Italy
Roberto Isaia and Giovanni Orsi
Osservatorio Vesuviano, INGV, Naples, Italy
The Campanian Ignimbrite (CI) eruption from the Phlegraean Fields Caldera,
southern Italy, represents one of the largest late Quaternary volcanic event. Its
recent dating at 39,280±110 yr BP draws attention to the occurrence of this vol-
canic catastrophe during a time interval characterized by biocultural modifica-
tions in western Eurasia. These included the Middle to Upper Palaeolithic transi-
tion and the supposed change from Neandertal to “modern” Homo sapiens anato-
my, a subject of continuing investigation and controversy. The paper aims to clar-
ify the position and relevance of the CI event in this context. At several archaeo-
logical sites of southeastern Europe, the CI ash separates the cultural layers con-
taining Middle Palaeolithic and/or “Earliest Upper Palaeolithic” assemblages
from the layers in which Upper Palaeolithic industries occur. At the same sites the
CI tephra coincides with a long interruption of occupation. The palaeclimatic
records containing the CI products show that the eruption occurred just at the
beginning of Heinrich Event 4 (HE4), which was characterized by extreme cli-
matic conditions, compared to the other HEs. From the observation of this con-
currence of factors, we advance the hypothesis of a positive climate-volcanism
feedback triggered by the co-occurrence of the CI eruption and HE4 onset. Both
the environmental and cultural data available for a c.5000-year interval on either
side of the event, suggest that a reappraisal of the identity and destiny of the
archaeological industries representing the so-called Middle to Upper Palaeolithic
transition is in order. This might force a reassessment of the Upper Palaeolithic
notion as traditionally employed.
301
Volcanism and the Earth’s Atmosphere
Geophysical Monograph 139
Copyright 2003 by the American Geophysical Union
10.1029/139GM20
75963_301-328.qxd 10/7/2003 2:37 PM Page 301
anisms than the Holocene one [Ganopolski and Rahmstorf,
2001]. However, our present knowledge of the volcanism-
climate system sensitivity is mostly based on volcanic per-
turbations of modern climate alone, an obviously limited
approach, in that the operation modes and the sensitivity of
the Last Glacial volcanism-climate system could have been
significantly different from those of the present [Zielinski,
2000]. A further limitation is inherent in the moderate mag-
nitude of the Holocene eruptions compared to some very
large Late Pleistocene events. This has led to controversy
about how the volcanism-climate system was operating dur-
ing the Last Glacial, and about its effects on human ecosys-
tems, particularly concerning the largest volcanic events
known, such as the mega-eruption of Toba (Sumatra,
c.74,000–71,000 yr BP [Rampino and Self, 1992; 1993;
Zielinski, 2000; Oppenheimer, 2002]).
Extensive deposits of about 40,000 yr BP formally named
the Campanian Ignimbrite (CI) have been recognized as the
product of the largest volcanic eruption in the Greater
Mediterranean during the past 200,000 years [Barberi et al.,
1978]. This ultra-Plinian event connected with the
Phlegraean Fields Caldera, Campania, southern Italy, eject-
ed no less than 200 km
3
of magma (dense rock equivalent;
DRE), according to a recently revised but still conservative
estimate (see below). An event of this magnitude is second
only to the Toba eruption, admittedly much larger than the
CI in terms of DRE, with a factor-of-fifteen difference, for
which major effects on global climate and living systems
have been advanced [Zielinski et al., 1996b; Rampino and
Ambrose, 2000; Huang et al., 2001].
For the purpose of the present paper, the Greater Medi-
terranean area is taken to cover most of the regions in
Figure 1, including in its eastern sector the Balkans, Ana-
tolia, and the Pontic perimeter (Black Sea). Northeastern
Africa and the Levant might have been affected by the erup-
tion as well. Petrologically identified CI ash layers have
been reported from both inland and marine sediments
throughout most of these regions, from Italy to southern
Russia [e.g. Narcisi and Vezzoli, 1999]. The ubiquitous Y5
tephra layer is the best defined CI deposit in marine
sequences of the eastern Mediterranean Sea.
Detailed mapping of stratigraphic occurrences of the CI
in both archaeological and non-cultural sequences has al-
ready shown that the facts and effects related to the CI are
clearly significant for a number of problems, exceeding the
sheer interest for volcanology and local archaeology
[Fedele et al., 2002]. A major area of significance is human
settlement and ecology. In southern Italy and possibly some
adjoining regions to the east (Greece and the Balkans,
Bulgaria), the CI precisely coincides with a widespread
abandonment of sites and locales, as abrupt as the strati-
graphic resolution of well-excavated sites permits to deter-
mine. The marked hiatus is ended by the appearance of the
first unquestionable Upper Palaeolithic traditions millennia
later. Previously unrecognized evidence even suggests that
a detailed reconstruction of environmental and human
responses to the CI crisis is likely to have implications for
realistically describing and possibly understanding one of
the most conspicuous transformations in Old World prehis-
tory: the Middle to Upper Palaeolithic transition, and the
origin or origins of the Upper Palaeolithic specifically.
Chronology is relevant to the problem. The recent dating
of the CI eruption at 39,490–39,170 yr BP by a series of
40
Ar/
39
Ar measurements, supported by calibration of avail-
able
14
C dates (see below), draws attention to the fact that
this volcanic catastrophe precisely occurred during an inter-
val of several millennia characterized by a series of fast-
paced modifications in human societies. Such modifications
concern both the cultural and the biological spheres,
although with different timing and with no obligatory link
between the two. This general process is apparent in the
Greater Mediterranean and across temperate Europe the
area we are especially dealing with here but can be recog-
nized over several geographic areas of Eurasia, implying
both a degree of complexity and a yet undefined range of
regional circumstances. Any generalization is obviously
premature.
At the basic level, however, the occurrence of a major
volcanic event at such point in time, during a generally gla-
cial interval and within an incipient or ongoing process of
biocultural change, necessarily demands that its potential
implications for humans be closely examined. The
European situation c.40,000–35,000 yr BP probably com-
prised a fairly enlarged human biomass by comparison with
an earlier part of the Late Pleistocene (this term sensu Klein
[1999]), a hominin population more widely based both eco-
logically and geographically, and interacting in more com-
plex ways with resources and landscape. Some discrete
developments in adaptive systems technology, but also ide-
ology and perhaps social organization seem now to have
appeared at various times well before the c.40,000 BP “cul-
tural divide”, as convincingly summarized by Gamble
[1999], among others. An outline is presented below, but it
can be noted here that the data may hint to a rich and fairly
dynamic culture and population scene at the point in time
and space when the CI occurred.
In a positive effort to avoid prejudgmental terminology,
the complicated suite of cultural and biological changes first
apparent between about 45,000 and 35,000 yr BP (or rough-
ly between 40,000–33,000
14
C yr BP, uncalibrated) will be
302 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:37 PM Page 302
neutrally termed the European Late Pleistocene shift
[Fedele et al., 2002]. In the cultural sphere, the Mousterian
tool-making traditions of the so-called Middle Palaeolithic
eventually changed into the industries or cultures of the
Upper Palaeolithic, which many authors regard as charac-
terized by an unprecedented explosion of artifacts reflecting
ideological purposes. In broad temporal concordance, a
widely accepted shift has been noted in biological popula-
tions, where the Neandertal anatomical type appears to have
been substituted by fully “modern” humans, a supposedly
unrelated morphology (formal taxonomic names are avoid-
ed). The interplay of similarities and differences across the
shift is a subject of intense and continuing controversy [e.g.
Carbonell and Vaquero, 1996; Clark and Willermet, 1997;
Fox, 1998; Akazawa et al., 1998; Klein, 1999; Zilhão and
D’Errico, 1999; Bar-Yosef and Pilbeam, 2000; Straus and
Bar-Yosef, 2001]. No consensus yet exists as to whether the
observed changes in both cultural and biological domains
FEDELE ET AL. 303
Figure 1. Geographic distribution of the Campanian Ignimbrite deposits, including archaeological and sampling sites
mentioned in the paper. Solid squares: CI tephra occurrences and related thickness in cm (in italics if reworked) [mod-
ified from Cornell et al., 1983; Amirkhanov et al., 1993; Cini Castagnoli et al., 1995; Narcisi and Vezzoli, 1999; Fedele
et al., 2002; Upton et al., 2002]. Dotted area in central Italy: distribution of the CI-derived paleosol (CI-PS [Frezzotti
and Narcisi, 1996]). Solid triangles: archaeological sites with CI ash layer. Blank triangles: archaeological sites with ash
layer attributed to the CI on the basis of cultural-stratigraphic position and
14
C dating (Fedele et al., 2002; Giaccio and
Isaia, on file). Solid circles: selected European Palaeolithic sites within the area potentially affected by the CI air-fall.
75963_301-328.qxd 10/7/2003 2:37 PM Page 303
should be better described as evolution or replacement, i.e.
continuity or discontinuity.
Although a majority of physical anthropologists and ge-
neticists favours discontinuity, some researchers are con-
sidering the possibility of biological continuity in human
ancestry across the Late Pleistocene shift [cf Fox, 1998;
Omoto and Tobias, 1998; Churchill and Smith, 2000;
Wolpoff et al., 2001]. Some authors would stress that
Neandertal and modern human remains, genetics, and tool
traditions all show intriguing continuities [Gowlett, 2001].
Not only a temporal overlap between Neandertal and mod-
ern anatomies is being demonstrated in several regions from
Portugal to the Near East, but plausible instances of
“hybrid” anatomies hence genetic continuum? demand
explanation. At the moment, one can only point out “the
apparent complexity of population relationships during the
late Pleistocene, especially in the circum-Mediterranean
region” [Quam and Smith, 1998, 418; cf Smith et al., 1995].
Important as it is in human evolution, the biological prob-
lem of the continuity or discontinuity between Neandertals
and “modern” humans is outside the scope of this paper. For
the time being, in fact, it is peripheral to the project: there is
no expectation that a contextual study of the CI will produce
data or insights directly relevant to the solution of the bio-
logical problem; the scale and scope of problem and project
are simply not comparable. On the cultural side, however,
the issues involved will be touched upon briefly, as they
have a more immediate bearing on the archaeological con-
text of the CI. The inherently misleading nature of some
terms and paradigms in Palaeolithic studies needs also to be
addressed. Several aspects of the CI context volcanological,
stratigraphic and environmental are being redefined on the
basis of original evidence as so far provided by a high-res-
olution investigation of the CI and its impact on ecosystems.
Crucial to many fundamental aspects of the interrela-
tionships among CI, climate, and Palaeolithic change is the
precise placement of the eruption within the archaeological
and environmental sequences of the regions concerned. This
subject is extensively treated in the paper, with due attention
for stratigraphic resolution as well as factors at the regional
and super-regional scale. A specific section is devoted to the
identification of the CI signal in the Greenland GISP2 vol-
canogenic record. This finding provides a CI age in ice core
years, the eruption’s precise position within the superb
palaeoclimatic record of the Greenland isotope stratigraphy,
and preliminary information for a quantitative estimate of
the eruption’s stratospheric loading.
An evaluation of the climatic impact of the CI eruption is
advanced through detailed analysis of several palaeo-
climatic records spanning the CI-centred interval. All rec-
ords show that the CI eruption occurred during a sensitive
climatic frame and was followed by an unusually marked
cooling, hypothetically triggered by positive feedback
mechanisms. Furthermore, an appreciation of the anoma-
lous behaviour of radiocarbon in the c.42,000–34,000 cali-
brated yr BP timespan (see also below), in conjunction with
the occurrence of the CI eruption and other environmental
factors, has several obvious implications for the chronology,
hence the rhythms and plausible processes, involved in the
European Late Pleistocene shift. What follows is a survey of
results from the initial phase of the project, partly based on
a critical evaluation of data and literature, and accompanied
by some speculations about its attainable prospects.
AGE OF THE CAMPANIAN IGNIMBRITE
Unless stated otherwise, dates in this paper express real
time in years before present (yr BP), with the exception of
14
C dates, which are explicitly reported as uncalibrated
measurements.
The best current estimate for the CI age is 39,280±110 yr
BP, derived from 36 high-precision single-crystal
40
Ar/
39
Ar
measurements from 18 samples of ignimbritic deposits col-
lected at twelve different outcrops in the dispersal area of
the CI pyroclastic flows [De Vivo et al., 2001]. Three previ-
ous
40
Ar/
39
Ar measurements yielded 37,100±400 yr BP
[Deino et al., 1994].
Two further
40
Ar/
39
Ar dating have been performed on
samples of the CI distal tephra in Tyrrhenian Sea sediments
and in the Monticchio lacustrine sequence, southern Italy. In
the Tyrrhenian Sea, 51 laser-heating analyses of sanidine
crystals from the C-13 (= CI; = Y5) tephra layer gave ages
within the 25,000±70,000–112,000±7000 yr BP range, with
a large subpopulation of measurements (24) defining an
isochrone of 41,000±2100 yr BP [Ton-That et al., 2001]. At
Lago Grande di Monticchio, 17
40
Ar/
39
Ar measurements of
the CI ash layer performed on single feldspar grains yielded
36,000±1000 yr BP [Ramrath et al., 1999, and references
therein]. However, the CI tephra layer was referred to a cal-
endar age of 32,970 yr BP according to the varve-counting
Monticchio age model [Zolitschka and Negendank, 1996].
Current radiocarbon determinations place the CI event at
35,600±150 and 33,200±600
14
C yr BP, both dates obtained
from a single carbonized branch embedded in the CI pyro-
clastic flow [Deino et al., 1994]. Previous measurements on
carbonized wood embedded in the CI gave dates scattered
between c.27,000 and c.42,000
14
C yr BP, with a frequency
peak at c.35,000
14
C yr BP [Scandone et al., 1991, and ref-
erences therein]. The radiocarbon age of the paleosol and
carbonized wood underlying the basal pumice of the CI
304 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:37 PM Page 304
layer is similarly scattered (27,000–39,000
14
C yr BP), with
a modal concentration between 31,000 and 34,000
14
C yr
BP [Scandone et al., 1991].
THE CAMPANIAN IGNIMBRITE ERUPTION
The overall size and extent of the CI eruption have been
recognized long ago [Barberi et al., 1978]. Stratigraphic,
grain size and compositional characteristics of proximal and
distal deposits within the Campanian area, as well as flow
direction detected by means of anisotropy of magnetic sus-
ceptibility studies [Rosi et al., 1987,1996; Barberi et al.,
1991; Fisher et al., 1993; Orsi et al., 1996; Civetta et al.,
1997; Ort et al., 1999; 2003; Pappalardo et al., 2002], show
that this catastrophic eruption occurred in the Phlegraean
area and was accompanied by a caldera collapse. The col-
lapsed area was about 230 km
2
and included the present
Phlegraean Fields, the city of Naples, the bay of Pozzuoli
and the northwestern sector of the bay of Naples [Orsi et al.,
1996].
The CI sequence includes a basal plinian fallout deposit
surmounted by pyroclastic-flow units, which in proximal
areas are intercalated by breccia units. The basal plinian
deposit was recently investigated by Rosi et al. [1999]. It
consists of a well sorted and reversely graded lower portion,
followed by a well to poorly sorted and crudely stratified
upper portion. Although the two portions have slight differ-
ences in dispersal axes, the whole deposit is dispersed
toward the east.
The pyroclastic-flow deposits, which covered an area of
about 30,000 km
2
, show homogeneous sedimentological
characteristics in medial and distal areas, i.e. about 10 to 80
km from the vent locality [Fisher et al., 1993]. From the
base upwards, they include a very thin, discontinuous, fines-
poor layer, above which lies the bulk of the ignimbrite. They
are partially welded to non-welded, although they can be
lithified by zeolites. The partially welded to non-welded
deposits are grayish, while the zeolitised units are yellow-
ish. The pyroclastic-flow deposits underlie much of the
Campanian Plain; they also occur in isolated valleys in the
Apennines, in the area of the Roccamonfina Volcano, and in
the Sorrento Peninsula.
A stratigraphic and compositional study of a core—
drilled north of the city of Naples—which includes four
superposed pyroclastic-flow units, emplaced during the CI
eruption, has given to Pappalardo et al. [2002] a unique
opportunity to define the compositional features of the
magma chamber, the timing of magma extraction, the with-
drawal dynamics and the timing of the caldera collapse. The
CI eruption was fed by a trachytic magma chamber which
included two co-genetic magmatic layers separated by a
compositional gap [Civetta et al., 1997; Pappalardo et al.,
2002]. The upper magma layer was more evolved and
homogeneous, whereas the lower layer was less evolved
and zoned.
The eruption likely began with phreatomagmatic explo-
sions, followed by the formation of a sustained plinian erup-
tion column, fed by simultaneous extraction of both magma
layers (Figure 2a). The column reached a maximum height
of about 44 km [Rosi et al., 1999]. Toward the end of this
phase, due to upward migration of the fragmentation sur-
face, reduced magma eruption rate, and/or activation of
fractures, an unstable pulsating column was formed and fed
only by the most evolved magma. The height of the column
may have reached about 40 km maximum [Rosi et al.,
1999].
This plinian phase was followed by the beginning of the
caldera collapse and the generation of expanding and ini-
tially over-pressurized pyroclastic currents fed by the upper
magma layer (Figure 2b). These currents moved toward the
north and the south. Those moving north, surmounted the
Roccamonfina Volcano (>1000 m a.s.l.) at 50 km from the
vent. The southward currents reached the Sorrento
Peninsula over seawater. During the following major
caldera collapse, the maximum mass discharge rate was
reached and both magma layers were contemporaneously
tapped as an intermediate composition magma, generating
further expanding pyroclastic currents which travelled radi-
ally from the vent and generated ignimbrites at distances
in excess of 80 km. Toward the end of the eruption, only
deeper and less differentiated magma was tapped, produc-
ing less expanded and less mobile pyroclastic currents,
which travelled short distances within the Campanian Plain
without crossing the Apennines or reaching the Sorrento
Peninsula.
Fisher et al. [1993] and Ort et al. [2003] have suggested
that the pyroclastic currents which surmounted high moun-
tain ranges (>1500 m a.s.l.) and travelled over seawater
were characterized by a transport system and a deposition
system similar to those proposed for the blast-surge of
Mount St.Helens [Fisher, 1990; Druitt, 1992]. Initial CI
pyroclastic currents were an expanding gas-particle mixture
that moved over the landscape as a dilute current. As they
travelled away from the vent, they stratified continuously
with respect to density, forming the deposition system in
their lower part. This system was blocked by the morpho-
logical obstacles and decoupled from the transport system.
It drained off ridges and down valleys in directions dictated
by slope direction. The transport system moved outward
from source and was thicker than the highest relief.
FEDELE ET AL. 305
75963_301-328.qxd 10/7/2003 2:37 PM Page 305
Furthermore, it was kept turbulent by the significant surface
roughness resulting from the presence of high ridges
(Figure 2c).
Ash layers related to the CI eruption are known from
cores in the Mediterranean Sea. The Y5 ash layer recog-
nized from the Ionian Sea to the eastern Mediterranean
[Thunnel et al., 1979; Cornell et al., 1983; McCoy and
Cornell, 1990] and correlated with an oxygen isotope date
of c.38,000 yr BP [Thunnel et al., 1979] has the same com-
position of the most-evolved and intermediate CI erupted
magmas. CI ash layers were also recognized in Greece
[Seymour and Christanis, 1995] as well as in northern an
central Italy, Bulgaria, and the former USSR [Narcisi and
Vezzoli, 1999, and references therein] (Figure 1).
In some of the eastern Mediterranean cores, Thunnel et al.
[1979] and Sparks and Huang [1980] recognized two dis-
tinct portions in the Y5 ash layer, the basal portion being
coarser than the upper one. These authors propose that the
basal portion was deposited by the plinian columns, while
the upper portion was laid down by a co-ignimbrite cloud
which should correspond to the transport system in the
sense of Fisher et al. [1993]. In Japan, Kamata et al. [1997]
have recently demonstrated that distal ash layers 900 km
from the vent area, correlated with a compositionally zoned
ignimbrite, indeed comprise both co-ignimbrite ash and
underlying distal plinian ash. Following the model of Woods
and Wohletz [1991] on the dynamics of the co-ignimbrite
clouds, and estimating a mass discharge rate in the order of
10
10
–10
11
kg s
-1
[Legros and Kelfoun, 2000] and an eruptive
temperature of about 1000°C [Signorelli et al., 1999], we
estimate that the co-ignimbrite ash cloud rose in the atmos-
phere at an height not less than 30 km.
The ash layer of the CI eruption could result from particle
deposition within either the umbrella cloud of the plinian
columns or the transport system of the pyroclastic currents.
The latter, likely controlled by wind both at low altitude
(<10 km) and in the stratosphere, laid down particles over a
very large area. If due account is taken of the different trans-
port mechanisms, the widespread ash layer cannot be mod-
eled as a plinian fallout using isopachs.
Many attempts have been made to estimate the volume of
magma extruded during the CI eruption. Fisher et al. [1993]
estimated a rock volume of 500 km
3
for the pyroclastic-
current deposits. Civetta et al. [1997] evaluated in the order
of 150 km
3
the magma emitted to form the ignimbrite. Rosi
et al. [1999] estimated a volume of 15 km
3
(about 6 km
3
DRE) for the coarse proximal fallout deposit generated by
plinian columns. Attempting a reconstruction of the isopach
map for the Y5 ash layer, Thunnel et al. [1979] took into
account the ash within the 1-cm isopach, the lack of occur-
rence in the Adriatic Sea and on land northward (as appar-
ent at the time), and the ash dispersed outside the 1-cm
isopach, and inferred a volume of about 30–40 km
3
(DRE)
for the ash layer.
Considering both the sequence of phenomena during the
course of the eruption (sustained column followed by
expanding gas-particle mixture currents) and the character-
306 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
Figure 2. The Campanian Ignimbrite eruption: main phases (a, b)
and model of the transport and depositional systems of the CI
pyroclastic currents (c). a) Sustained Plinian eruption column; b)
expanding pyroclastic currents; c) block diagram showing the
movement of the pyroclastic currents over land topography. The
large arrow indicates the flow direction of the dilute transport
regime current, smaller arrows the gravity flows of the deposi-
tional system.
75963_301-328.qxd 10/7/2003 2:37 PM Page 306
istics of the pyroclastic currents (deposition system decou-
pled by the transport system), any estimate of the volume of
erupted magma faces severe difficulties at the moment.
However, the volume should be no smaller than the sum of
the conservative estimates for the pyroclastic-current
deposits, the plinian fallout, and the Y5 ash layer, i.e. about
200 km
3
DRE.
THE STRATIGRAPHIC POSITION OF THE
CAMPANIAN IGNIMBRITE
Chronometric and Correlation Problems Concerning Oxygen
Isotope Stage 3
Establishing the precise position of a large eruption with-
in the best environmental and archaeological records is
obviously essential for any further assessment of its effects
on land and biomes. The information-rich, high-resolution
environmental sequences containing the CI tephra—or its
chemical signal—provide the optimal available database,
insofar as they allow an examination of whatever environ-
mental modifications occurred across the CI event.
Environmental-cultural stratigraphies on land may be just
slightly less useful. It must be pointed out that any strati-
graphic placement of the CI on the sheer basis of chrono-
metric dates is flawed at the moment, as it is severely limit-
ed by problems inherent in chronometric methods (radio-
carbon timescale, ice core age models, and the CI age
itself).
The calibration of radiocarbon beyond the present limit of
c.20,000
14
C years BP [Stuiver and Reimer, 1993; Stuiver
et al., 1998] is still affected by substantial uncertainties
[Mazaud et al., 1991; Laj et al., 1996; 2002; Bard, 1998;
Kitagawa and van der Plicht, 1998; Vogel and Kronfeld,
1997; Voelker et al.,1998; 2000; Schramm et al., 2000; Beck
et al., 2001]. Moreover, large variations in
14
C concentra-
tion are evident during Oxygen Isotope Stage 3 (OIS 3),
with a significant excursion at about 40,000 cal yr BP
[Voelker et al., 2000] or 44,000 cal yr BP [Beck et al., 2001].
This acute flux of
14
C affects the radiocarbon timescale pre-
cisely in the chronological interval of the CI, producing
huge ambiguity in chronology.
Even greater are some problems in the
14
C-dated marine
stratigraphy. Uncertainties in marine records are further
compounded by the variation of the temporal and spatial
differences in oceanic
14
C concentration, the so-called
“ocean reservoir effect” [e.g. Voelker et al., 2000; Beck
et al., 2001]. In the Greenland ice core chronology, although
the environmental curves of the GISP2 and GRIP are sig-
nificantly in agreement [e.g. Grootes et al., 1993; Johnsen
et al., 2001], during the OIS 3 their timescales show dis-
crepancies in the order of 3000 years, thus limiting the value
of the superb stratigraphic record contained in these cores.
Establishing the CI stratigraphic position by using its age
is particularly arbitrary. For instance, by employing two dif-
ferent datings of the CI marine tephra at c.34,000 and
c.41,000 yr BP, Zielinski et al. [1996a] and Ton-That et al.
[2001], respectively, indicated as possible putative CI signal
two different large SO
4
2-
peaks in GISP2, located at
c.34,000 and c.40,000 yr BP. Timescale problems apart,
these attempts show that assuming an age-based correlation
between large volcanogenic signals and large volcanic erup-
tions may lead to “floating” results, unless there has been
independent verification. Any age-based correlation of CI
signal and climate would be similarly questionable, due to
the well known, high instability of the Late Pleistocene cli-
mate [e.g. Dansgaard et al., 1993].
The recent study of several southern European sequences
containing the CI tephra [Giaccio and Isaia, 2002; in prepa-
ration), in conjunction with a critical examination of the
Late Pleistocene high-resolution stratigraphy, allows the CI
position in Greenland isotope stratigraphy to be reasonably
defined. The main results are reported in the following
sections.
Palaeolithic Sequences
Universally in the known archaeological sites, the CI
tephra separates the cultural layers containing late
Mousterian (Middle Palaeolithic), Uluzzian, and/or earliest
“Upper Palaeolithic” assemblages (Proto-Aurignacian, Early
Aurignacian etc.; see below), from the layers in which dis-
tinct, unquestionably defined Upper Palaeolithic industries
occur, as represented by the Evolved Aurignacian of Bulgaria
[Kozlowski, 1998], the Gravettian, and other broadly compa-
rable industries. The stratigraphic position of the CI and these
cultural units is summarized in Figures 3 and 7.
Several sites of prime importance for assessing the litho-
and cultural-stratigraphic position of the CI in southern
Italian Palaeolithic sequences have been identified in the
regions of Campania and Apulia [Fedele et al., 2002]
(Figure 1). One such site is Serino, an open-air camp near
Avellino, Campania, where a thick pyroclastic deposit,
unambiguously representing the complete CI sequence
including fall and flow units, immediately overlies a
Palaeolithic occupation surface dated at 31,200±650
14
C yr
BP (Figure 3). The occupation was considered Proto-
Aurignacian by the excavators [Accorsi et al., 1979], an
industry assumed to represent the beginning of the Upper
Palaeolithic in traditional terms.
FEDELE ET AL. 307
75963_301-328.qxd 10/7/2003 2:37 PM Page 307
Notable among the Palaeolithic sequences of peninsular
Italy which span the CI time interval, containing one or
more tephra layers, are Castelcivita Cave [Gambassini,
1997], and Grotta Grande di Scario and Porto Infreschi
[Kieffer et al., 2000], in Campania; Paglicci Cave [Palma di
Cesnola, 1990; 1993], Cavallo Cave [Palma di Cesnola,
1963; 1964], and a cluster of caves at Uluzzo Bay (Uluzzo,
Uluzzo C, Bernardini [Borzatti von Löwenstern, 1963;
1965; 1970]), in Apulia. Shorter but still relevant sequences
include Hyaena Lair Cave [Giaccio and Coppola, 2000]. To
the east, in the Aegean-Pontic region, the CI tephra is known
from important Palaeolithic sequences in Greece (Franchthi
Cave [Farrand, 1977]) and probably Bulgaria (Temnata Cave
[Paterne, 1992]) (Figure 1); an archaeological overview of
the Pontic region is provided by Kozlowski [1998].
The CI tephra is expected to occur elsewhere in south-
eastern Europe. For instance, a significant ash layer is inter-
calated in several Palaeolithic sequences of the Kostenki-
Borshchevo complex, which includes 21 open-air sites
located on the banks of the Don River, southern Russia. The
ash was identified as CI material on the basis of chemical
and petrological analyses (Melekestzev et al. [1984], as
308 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
Figure 3. The Campanian Ignimbrite in Palaeolithic sequences of southern Italy: a) reference map; b) tephrostratigra-
phy and cultural sequences of selected archaeological sites. Partly revised data from Giaccio and Coppola [2000]
(Hyaena Lair Cave); Palma di Cesnola [1963; 1964; 1990; 1993] (Cavallo and Paglicci Caves); Borzatti von
Löwenstern [1963, 1965, 1970] (Uluzzo, Uluzzo C, and Bernardini Caves); Accorsi et al., 1979 (Serino open air site);
Gambassini [1997] (Castelcivita Cave).
75963_301-328.qxd 10/7/2003 2:38 PM Page 308
quoted in Amirkhanov et al. [1993]; it had been previously
attributed to an eruption in the Caucasus [Klein, 1969]).
Hoffecker et al. [2002] describe this tephra as an important
horizon marker, sandwiched between dates of 33,280+650/
–600 and 30,080+590/–550
14
C yr BP from the archaeolog-
ical layers immediately at the base and top, respectively.
The tephra overlies cultural layers belonging to either the
earliest “Upper Palaeolithic” or the Middle Palaeolithic
[Hoffecker et al., 2002; Allsworth-Jones, 2000, and refer-
ences therein; see also Klein, 1973]. Consistency of stratig-
raphy and radiocarbon age suggests that Kostenki should be
numbered among the Palaeolithic locales containing the CI
tephra. This correlation appears to be supported by recent
discoveries of tephra layers in Romania and Ukraine whose
chemical composition is consistent with the CI ash [Upton
et al., 2002].
At Grotta Grande di Scario and Porto Infreschi, the CI
tephra was recognized through chemical analysis [Kieffer et
al., 2000]. As Figure 3 shows, we have identified the CI ash
layer in many southern Italian successions by comparison
with the CI ethnostratigraphic placement at Serino, as well
as on the basis of available
14
C dates [Fedele et al., 2002].
The layers immediately below the CI tephra have dates
ranging from 34,000–29,000
14
C yr BP, with a concentra-
tion in the 33,000–31,000 interval; this age correctly over-
laps with the range of
14
C dates for paleosols and car-
bonized wood underlying the basal pumice of the CI suite
[Scandone et al., 1991]. A critical evaluation of the prob-
lems with radiocarbon dating in this general timespan is
given in section below.
Geoarchaeological and faunal-assemblage evidence from
these Palaeolithic sequences supports the identification. The
environmental proxies show that the landscape conditions
before and after the tephra in question are in excellent
agreement with those inferred from the Monticchio and
Greenland records across the time of the CI eruption. These
data are being prepared for publication elsewhere.
Non-Cultural Sequences
Mediterranean palaeoclimatic records. In addition to the
widespread Y5 marine tephra marker in the eastern
Mediterranean, definitely equated with the CI, Ton-That et
al. [2001] have correlated with the CI an ash layer in the
Tyrrhenian and Adriatic Seas, labeled C-13 [Paterne et al.,
1986; 1999]. By comparing the palaeoclimatic proxies of
two cores from the Tyrrhenian Sea (KET 8003) and the
North Atlantic, Paterne et al. [1999] demonstrated that dur-
ing the Last Glacial the climatic changes in the
Mediterranean were in phase with the North Atlantic. In
particular, six cooling episodes synchronous with the so-
called Heinrich Events were recognized in the Tyrrhenian
palaeotemperature record. According to Ton-That et al.
[2001] the deposition of the C-13 tephra on the Tyrrhenian
seafloor occurred immediately before the cooling episode
corresponding to Heinrich Event 4 (HE4) (Figure 4).
Of particular importance for the present discussion was
the detection of the CI tephra in the Lago Grande di
Monticchio lacustrine sequences [Narcisi, 1996].
Multidisciplinary stratigraphic studies at Monticchio, south-
ern Italy [e.g. Watts et al., 1996; 2000; Zolitschka and
FEDELE ET AL. 309
Figure 4. Correlation between the Mediterranean palaeoclimatic
records containing the tephra of the Campanian Ignimbrite with
the Greenland isotope stratigraphy. Position of the Heinrich
Events in the KET 8003 sea-core and Monticchio pollen diagram
according to Ton-That et al. [2001] and Watts et al. [1996], respec-
tively.
75963_301-328.qxd 10/7/2003 2:38 PM Page 309
Negendank, 1996; Allen et al., 1999, Allen and Huntley,
2000; Ramrath et al., 1999; Brauer et al., 2000] show that
during the last 102,000 years the Mediterranean terrestrial
environment saw rapid changes, similar to the sub-orbital
climatic cycles recognized in Greenland and the North
Atlantic, or Dansgaard-Oeschger (D-O) cycles [e.g.
Dansgaard et al., 1993; Bond et al., 1993]. This allowed a
good correlation between the Monticchio pollen diagram
and Greenland isotope stratigraphy to be proposed (GRIP
correlation from Watts et al. [1996; 2000]) (Figure 4).
According to this correlation the CI tephra coincides with
the beginning of an arid interval equated with HE4 [Watts
et al., 1996]. However, this correlation is tentative because it
reveals an apparent discrepancy of at least 7000 years between
the records of HE4 at Monticchio and in GISP2, which could
potentially conceal time transgression (Figure 4).
The Heinrich Events—sharp cooling episodes associated
with collapses of the boreal ice sheet and discharges of ice-
bergs into the North Atlantic [Heinrich, 1988]—have ini-
tially been regarded as typical of the high-latitude regions of
the Northern Hemisphere [e.g. Bond et al., 1993, Bond and
Lotti, 1995; Mayewski et al., 1994]. For the supposed strati-
graphic relationship between the CI and HE4 to be accept-
ed, the climatic changes in the Mediterranean should be
shown to have occurred in phase with those of the northern
region. This is indeed being demonstrated not only for the
marine environment [e.g. Paterne et al., 1999; Cacho et al.,
1999] but on land as well.
For instance, by comparing the pollen record and the
marine palaeoclimatic proxies from the same sea-cores of
the Portuguese margin and Alborán Sea, Roucoux et al.
[2001] and Sánchez Goñi et al. [2002] found that the vege-
tation of the Iberian mainland responded synchronously to
the millennial-scale climatic oscillations documented in the
ice and sea-cores of the northern region. In particular, they
observed an abrupt decrease in tree pollen abundance at each
stadial stage of the D-O cycles and/or during the Heinrich
Events. These data support the claim by Allen et al. [1999]
that the Last Glacial variations in tree pollen abundance at
Monticchio are related to North Atlantic climatic events.
Mediterranean cosmogenic nuclides and palaeomagnetic
records. Late Pleistocene geomagnetic intensity is known to
have been close to zero around 40,000 yr BP (the Laschamp
geomagnetic excursion [Channell et al., 2000; Voelker et
al., 2000; Stoner et al., 2002]). According to recent studies
[e.g. Baumgartner et al., 1998; Wagner et al.¸ 2000; Voelker
et al., 2000; Beer et al., 2002], the Laschamp Event would
seem to coincide with an exceptional peak in several cos-
mogenic nuclides, including
10
Be,
36
Cl and
14
C. These
simultaneous peaks were recognized in the Arctic and
Antarctic ice cores as well as in marine sediments. As the
Laschamp excursion is considered synchronous on the plan-
etary scale, the palaeomagnetic and the cosmogenic nuclide
records can both be used as a global correlation tool [e.g.
Yiou et al., 1997; Beer et al., 2002; Channell et al., 2000].
In the Mediterranean, palaeomagnetic intensity [Tric et
al., 1992] and
10
Be flux data [Cini Castagnoli et al., 1995]
have been obtained from marine sequences containing the
CI tephra. The lowest, near-zero field value, likely to be
equated with the Laschamp excursion, actually roughly
coincides with the CI tephra [Tric et al., 1992; see also
Paterne et al., 1988]. Also the
10
Be peak, as recorded in
Tyrrhenian sea-core CT 85-5, has a stratigraphic position
closely connected with the CI tephra (Figure 5).
Both the Tyrrhenian Sea and Monticchio Lake records
thus display good stratigraphic relationships between the CI
tephra, HE4, and cosmogenic nuclides. All available data
concur to show that the CI eruption neatly coincided with
the onset of HE4, during a phase of enhanced
10
Be flux cor-
responding to the Laschamp Event.
GISP2 Greenland ice core. The GISP2 ice core preserves
one of the most continuous and complete records of Late
Pleistocene explosive volcanic history [Zielinski et al.,
1996a; Zielinski, 2000], in which eruptions are essentially
indicated by acid sulfate (SO
4
2-
) volcanogenic peaks; visi-
ble ash layers are only occasionally found and commonly
derived from Icelandic eruptions [e.g. Grönvold et al.,
1995; Zielinski et al., 1997]. Due to a lack of required
chronological precision, identifying the volcanic signal of a
given eruption in GISP2 is still a problem. In our case, at
least 25 sulfate peaks appear to be consistent with the avail-
able age of the CI (Figure 6). However, when the above
mentioned stratigraphic position of the CI in the
Mediterranean records is considered (its relations to HE4
and the nuclide peak included), this number of peaks can be
drastically reduced to a few, or possibly just one. Space pre-
vents us here from a thorough discussion of this delicate
topic, but the main points will be summarized.
The position of Heinrich Events in Greenland isotopic
stratigraphy has been unambiguously determined by corre-
lation with the marine records in which they had been
defined [e.g. Bond et al., 1993; Bond and Lotti, 1995], as
well as on the basis of inference from the palaeoatmospher-
ic curves of the GISP2 ice core itself [Mayewski et al., 1994;
1997]. The onset of HE4 coincides with the Greenland
Interstadial 9/Stadial 9 boundary (GI9/GS9 [sensu Walker
et al., 1999]). As for the position of the Laschamp Event and
the related nuclide peak, both direct measurements on ice
310 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 310
cores [Baumgartner et al., 1997; 1998; Yiou et al., 1997;
Wagner et al.¸ 2000; Beer et al., 2002;] and a correlation
with the marine records [Kissel et al., 1999; Voelker et al.,
2000] show that they occurred between GI10 and GS9
(Figure 6).
Going back now to the GISP2 volcanogenic record, at
least three signals occurred during or near the cosmogenic
peak and/or the Laschamp excursion, but only one fulfils
the CI’s stratigraphic constraints, precisely occurring at the
GI9/GS9 transition: the SO
4
2-
peak of 375 ppb at 40,012 yr
BP (Figure 6). This single volcanic signal in GISP2, on one
hand, and the CI tephra in the Mediterranean records, occu-
py the same relative position to HE4, the Laschamp excur-
sion, and the
10
Be peak, thus allowing to correlate this vol-
canogenic signal with the CI eruption. Independently from
the amplitude of the selected signal, we argue that strati-
graphic correlation is consistent enough to support our pro-
posed identification.
Chronometry: The Problem of the Large
14
C Age Shift at the
CI Eruption Time
By employing the calendar age of the CI as derived from
both
40
Ar/
39
Ar and GISP2 annual-layer-counting chronolo-
gy [Meese et al., 1997], the archaeological layer(s) and/or
the paleosol(s) immediately below the CI tephra would be
dated to >39,300 or >40,000 calendar yr BP (Figure 7b).
This fits with the above reported fact that the CI eruption
occurred during the Laschamp geomagnetic excursion and
cosmogenic radionuclide peak of c.40,000 yr BP. As seen
above, on the other hand, radiocarbon gives for the last
pre-CI layer or paleosol(s) an uncalibrated age of only
33,000–31,000
14
C yr BP, or less. This large difference,
which could cast doubt on the actual origin of such a
“young” tephra layer, does on the contrary corroborate the
identification with the CI, when the geophysical basis of the
difference is examined. The discrepancy between
14
C and
calendar ages matches, in fact, what is theoretically expect-
ed from the pronounced radionuclide anomaly at the time of
the CI event (Figure 5).
There is now ample evidence for the occurrence of this
large
14
C age shift at c.40,000 calendar yr BP. In particular,
by correlating the radiocarbon-dated climate curve of a core
from the Iceland Sea with the GISP2 chronology, Voelker et
al. [2000] demonstrated that the GS10 and GI7 stages, with
calendar ages of c.40,500 and c.36,500 yr BP respectively,
have the same marine
14
C age of c.33,000 yr BP, and the
GS11 stage, 1000 years older than the GS10, has a
14
C age
of c.39,000 yr BP. These dates, in addition, only provide
minimum estimates of the atmospheric
14
C age shift,
because the marine radiocarbon measurements were not
corrected for the reservoir effect. According to Voelker et al.
[1998], during the Last Glacial Maximum the reservoir age
amply exceeded the modern value of 400 years, rising up to
2240 years, and a similar increase had likely occurred dur-
ing the Heinrich Events of OIS 3.
In addition to explaining the “young” age of the pre-CI
layer, the aberrant behaviour of the
14
C flux during the
FEDELE ET AL. 311
Figure 5. Stratigraphic position of the Campanin Ignimbrite
tephra in the Mediterranean palaeomagnetic intensity and
10
Be
flux records. a)
10
Be concentration as a function of core depth
[from Cini Castagnoli et al., 1995, redrawn; b) modified
10
Be
record assuming instantaneous the deposition of the CI and Citera
Tuff tephra layers; c) geomagnetic paleointensity record from four
Mediterranean sea-cores [modified from Tric et al., 1992; see also
Paterne et al., 1988]. The close stratigraphic relationship between
the CI tephra, the Laschamp excursion and the
10
Be peak can be
noted.
75963_301-328.qxd 10/7/2003 2:38 PM Page 311
GI11-GI7 interval provides the key to a great number of
apparent chronological anomalies observed in several
archaeological sequences spanning the Middle to Upper
Palaeolithic “transition.” Age inversions (layers older than
those below) and age gaps in this crucial interval of such
sequences have been until now a major source of uncertain-
ty and controversy [e.g. Gambassini, 1997; Zilhão and
D’Errico, 2000]. Moreover, use of the radiocarbon
timescale without such caveats is inappropriate to a tempo-
ral control of the actual processes and rhythms involved in
the Late Pleistocene biocultural shift. The spread of
14
C
determinations over several millennia is entirely mislead-
ing, in the light of the
14
C flux; real, calendar ages in fact
point to a much shorter, almost point-like timespan. Figure 7a
emphasize a
14
C age of c.33,000 yr BP for the already
observed cultural division [Gamble, 1999] involving sever-
al aspects of the European Palaeolithic societies.
These are very brief remarks on a major problem. The
radiocarbon timescale issue is far from an easy resolution,
as the papers by Voelker et al. [2000] and Beck et al. [2001]
painstakingly show, and great caution must be adopted in
evaluating dates beyond 30,000
14
C yr BP. Space and scope
prevent us here from further pursuing the problem of the
complex pattern of radiocarbon age distribution at about
33,000
14
C yr BP, or about 40,000–36,000 BP in calendar
years, a subject we intend to deal with elsewhere.
THE CAMPANIAN IGNIMBRITE
AND ENVIRONMENTAL CHANGE
Background: Last Glacial Climate and Super-Eruptions
To a great extent, the interactions between very large
eruptions and climate instability during the last glacial peri-
od have so far been argued on the basis of the Toba mega-
eruption. Rampino and Self [1992; 1993] suggested that this
catastrophic event, apparently synchronous with the OIS
5a/OIS 4 boundary, triggered a series of positive feedback
312 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
Figure 6. The Campanian Ignimbrite signal within the volcanogenic record of the GISP2 ice-core. The identification
of the putative CI peak is derived from the precise placement of the CI tephra in the Mediterranean palaeoclimatic,
palaeomagnetic and cosmogenic flux records (see text and Figures 4 and 5 for details). Position of HE4, the Laschamp
excursion and the
10
Be peak in GISP2 according to Bond et al. [1993], Voelker et al. [2000] and Yiou et al. [1997],
respectively.
75963_301-328.qxd 10/7/2003 2:38 PM Page 312
mechanisms capable to accelerate climatic processes and
thus favour a rapid shift from an interglacial (OIS 5a) to a
glacial (OIS 4) condition. This hypothesis may have been
partially invalidated by high-resolution palaeoclimate
analysis from both the GISP2 ice core [Zielinski et al.,
1996b; Zielinski, 2000] and some sea-cores [Huang et al.,
2001; Schulz et al., 2002], showing that the Toba event
occurred at the beginning of a 1000-yearlong cooling
episode, GS20, 3000 years at least before the actual onset of
the Last Glacial at the GI19/GS19 transition.
This evidence would indeed limit the Toba impact on
ecosystems as claimed by some authors [Rampino and Self,
1993; see Ambrose, 1998, on human evolution in particu-
lar]. On the other hand, it raises new questions on the rela-
tionship between Toba and the centennial cooling episode
apparently connected to it (GS20). No consensus yet exists
as to whether the GS20 cooling should be related to the
Toba eruption or not [Huang et al., 2001; Rampino and
Ambrose, 2000; Schulz et al., 2002; Zielinski et al., 1996b;
Zielinski, 2000], nor is generally agreed whether a Toba-like
eruption can generate an ecological disaster at the global
scale [Rampino, 2002]. The theory of Toba’s significant
impact on human evolution has been forcefully criticized by
Oppenheimer [2002]. This discussion only emphasizes the
need for high-resolution investigations of the global climat-
ic interference connected with the largest eruptions of the
Last Glacial.
The CI and Heinrich Event 4: A Case of Positive Feedback?
The mass of stratospheric sulfate aerosol produced by the
CI eruption is being re-estimated within the ongoing proj-
ect. The preliminary nature of the relevant data hampers an
estimation of the extent of cooling related to the eruption.
However, a hypothesis on the potential climatic impact of
the CI can be advanced by considering the volcanological
and stratigraphic data already at hand.
As mentioned, the CI eruption begun with an ultra-
Plinian column followed by large-volume pyroclastic flows,
this in turn associated with an immense co-ignimbritic
cloud which likely rose into the stratosphere. We stress this
feature of the eruptive style of the CI because one of most
important factors which determine the climatic impact of an
eruption is the effective amount of sulphuric acid aerosol
injected into the stratosphere, rather than the eruption’s
magnitude [e.g. Rampino and Self, 1984; Robock, 2000].
The hypothesis that the CI eruption produced a significant
stratospheric mass of sulphur aerosol is corroborated by the
large size of its SO
4
2–
signal in Greenland volcanogenic
record (375 ppb), according to the proposed identification.
The magnitude of a volcanic signal in Greenland ice is
directly proportional to the size of the stratospheric loading
by a given eruption [e.g. Hammer et al., 1980; Clausen and
Hammer, 1988; Zielinski, 1995]. Zielinski et al. [1994] have
suggested that SO
4
2–
signals greater than 75 ppb correspond
to midlatitude volcanic eruptions capable of affecting cli-
mate throughout the Northern Hemisphere. The intensity of
the proposed CI peak is only smaller than those related to
FEDELE ET AL. 313
Figure 7. Cultural-stratigraphic position of the Campanian
Ignimbrite (CI). a) Radiocarbon chronology of the European
Interpleniglacial (OIS3) Palaeolithic groups and of the CI erup-
tion. The division at c.33,000
14
C yr BP follows Gamble [1999,
and references therein]. b) Calendar chronology in GISP2 ice-core
age and climatic context of some sequences containing the CI
tephra. The Palaeolithic taxonomic units of the numbered sites fol-
low Gambassini [1997], Palma Di Cesnola [1993]; Palma di
Cesnola [1989], Kozlowski [1998] and Amirkhanov et al. [1993],
respectively.
75963_301-328.qxd 10/7/2003 2:38 PM Page 313
the Z2 ash layer from Iceland (557 ppb) and the Toba mega-
eruption (466 pbb). However, since the large SO
4
2–
signals
of the Icelandic eruptions are amply due to tropospheric
transport of aerosol [Zielinski, 1995], the magnitude of the
CI signal can be said to be second only to Toba.
Perhaps more relevant, in the light of current concepts of
climate-volcanism feedback, are the peculiar climatic con-
ditions at the time of the CI eruption. According to Rampino
and Self [1992; 1993] volcanoes and climate form a sensi-
tive binary system, led by positive feedback during the
interstadial-stadial transitions and by negative feedback
during the stadial-interstadial transitions. The resulting
impact of an eruption would thus depend not only on its
eruptive style and the amount of sulphuric aerosol injected
into the stratosphere, but also on the specific climate trend
at the time of eruption. The coincidence of the CI eruption
with a marked interstadial to stadial change (i.e. the onset of
HE4) therefore deserves attention.
The Heinrich Events are brief but drastic cooling episodes
associated with quasiperiodic discharges of European and
Laurentide ice into the North Atlantic, which affected the
oceanic and atmospheric circulation [Broecker, 1994;
Mayewski et al., 1994; Cortijo et al., 1997; Vidal et al.,
1997; Pailler and Bard, 2002]. They are defined by an abun-
dance of ice-rafted debris [Heinrich, 1988; Bond et al.,
1992] and of Neogloboquadrina pachyderma (sinistral) in
the sediments, δ
18
O depletion [Bond et al., 1993, Bond and
Lotti, 1995], and a sharp decrease in sea surface tempera-
ture, as also recorded in the Mediterranean basin [Paterne
et al., 1999; Cacho et al., 1999]. These events mark the ter-
mination of the long-term cooling cycles known as Bond
cycles [Bond et al., 1993], and recent studies show that they
correspond to climatic changes which significantly affected
the marine and terrestrial ecosystems throughout the
Northern Hemisphere [e.g. Thouveny et al., 1994; Watts
et al., 1996; Chen et al., 1997; Schulz et al., 1998; Li et al.,
2001; Prokopenko et al., 2001; see also Voelker, 2002 for a
global database].
The quasiperiodic rhythm of the Heinrich Events could
render the co-occurrence of the CI and the HE4 onset a case
of simple coincidence. On the other hand, several lines of
evidence suggest that the climatic conditions reflected in
HE4 were extreme compared to the other Heinrich Events.
Some palaeoclimatic records showing a marked and anom-
alous climatic signal for HE4 are shown in Figure 8 and
summarized below.
According to Cortijo et al. [1997], HE4 is the only such
event to be always recognizable in a series of 25 sequences
from North Atlantic coring sites located between 40°–67°N
and 60°–0°W. These cores show that during HE4 the sub-
polar front dropped to about 45°N, with its maximum south-
ward shift of 20° located in the eastern part of the North
Atlantic. The summer sea surface temperature decreased by
c.2–3 °C everywhere, and up to 6 °C along the European
margin. The palaeotemperature record from a sea-core near
the Iberian margin (MD 95-2042) [Pailler and Bard, 2002]
shows that during HE4 the sea surface temperatures were at
least 2–3 °C lower than in the other Heinrich Events, with a
much greater temperature excursion: 4,7 °C (10,1–14,8 °C)
compared to 2–3 °C. The geochemical record from a North
Atlantic core shows that the highest and indeed extreme val-
ues of the Si/Al and Zr/Al ratios, indicating loess input,
coincided with HE4 [Hinrichs et al., 2001] (Figure 8).
The palaeoclimatic proxies from an Alborán Sea core, in
the westernmost Mediterranean, not only show that the
maximum drop in sea-surface temperature occurred in the
HE4 interval (4,8 °C compared to c.3,5 °C during the other
Heinrich Events), but also that HE4 alone was marked by a
significant abundance of Neogloboquadrina pachyderma
(sinistral), with values above 20% (Figure 8). Palynology
from the same core offers a detailed reconstruction of the
terrestrial climatic conditions in southeastern Iberia at the
time [Sánchez Goñi et al., 2002]. During the HE4 the
Iberian Peninsula experienced extremes of aridity and cool-
ing, values of mean temperature of the coldest month
between –8 and –14 °C, or 5–10 °C lower than the temper-
atures associated with the other stadials (Figure 8).
Additional stratigraphic evidence for an unusually large
palaeoclimatic imprint related to HE4 is offered by other
studies [e.g. Chapman and Shackleton, 1998; Labreiro et
al., 1996; Roucoux et al., 2001; Thouveny et al., 2000; Vidal
et al., 1997; Voelker et al., 2000]. No evidence of particu-
larly extreme conditions during HE4 is detectable in
Greenland records at the moment, but work is in progress.
Among the numerous sequences containing the CI tephra,
the Tyrrhenian Sea core studied by Paterne et al. [1999]
records that the lowest temperature of the Last Glacial
immediately occurs after the CI deposition. In the
Monticchio lacustrine sequence [Allen et al., 1999], aridity
and cooling were already in progress during the centuries
before the CI eruption, but indicators display a sudden
acceleration after the CI event (Figure 8); the CI deposition
itself coincides with the largest minerogenic flux peak
(Dray Density in Figure 8). High values of this latter param-
eter indicate sparse vegetation cover and enhanced erosion
in the lake catchment, both consistent with cold and/or
arid conditions [Ramrath et al., 1999; Brauer et al., 2000].
The CI event is immediately followed by a sharp decrease
of arboreal pollen (from c.30% to c.10%) and a concurrent
rise in Arctic-Alpine dwarf shrubs or herbs, as well as
314 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 314
FEDELE ET AL. 315
Artemisia and Chenopodiaceae, with values only compara-
ble whith those of the Last Glacial Maximum (Figure 8);
HE4 is indeed characterized by a significant abundance of
cold steppe and/or cold desert ecotypes [Allen et al., 2000].
Further evidence for markedly arid conditions in the
aftermath of the CI eruption comes from several of the
Italian archaeological stratigraphies mentioned above,
where the CI tephra is buried by aeolian deposits which
include volcanic ash and clastic sands (Figure 3). Similar
aeolian deposits involving CI ash have been recognized in
Central Italian successions [Frezzotti and Narcisi, 1996].
In our opinion, there is growing evidence that HE4 was
characterized by a number of anomalous, even extreme cli-
matic attributes, by comparison with the other similar
episodes of the last Glacial. Taking into account all the fac-
tors above reviewed we suggest that the HE4 “anomaly”
could be interpreted according to a positive feedback model
within the climate-volcanism system, along the lines devel-
oped by Rampino and Self [1993] for the admittedly much
more dramatic Toba’s case. Without claiming for the CI the
role of a triggering factor for HE4, but considering that the
Heinrich Events were themselves the most acute cooling
episodes of the Last Glacial, we contend that even a minor
contribution to cooling afforded by the CI would have shift-
ed the system toward extreme climatic conditions. At least
in Europe, the effects on the environment could have been
particularly severe at higher latitudes, where, as usual, vol-
canic-induced cooling was probably amplified by a factor of
Figure 8. Some palaeoclimatic records displaying an anomalous, large climatic signal associated with HE4. a)
Geochemical from a North Atlantic sea-core; the high values of Si/Al and Zr/Al indicate loess input [Hinrichs et al.,
2001]; b) abundance of Neogloboquadrina pachyderma (sinistral) and c) estimated terrestrial paleoteperature in south-
eastern Iberia from an Alborán Sea core, west Mediterranean [from Cacho et al., 1999 and Sánchez Goñi et al., 2002,
redrawn]; d) marine paleotemperature from an Iberian Margin record [from Pailler and Bard, 2002, redrawn]; e) select-
ed paleoenvironmental records from Lago Grande di Monticchio lacustrine sequence [from Allen et al., 1999 and Allen
et al., 2000, redrawn].
75963_301-328.qxd 10/7/2003 2:38 PM Page 315
4 to 7 [Jacoby et al., 1999; Manabe and Bryan, 1985]. If the
hypothesis is correct, there was ecosystem crisis on a fairly
large scale.
We consider it pertinent to our argument that HE4 differs
from the other Heinrich Events not only in the magnitude of
cooling, but also in the timing of the marine and terrestrial
responses on either side of the Iberian peninsula. By com-
paring the marine and terrestrial climatic proxies of the
cores from the Alborán Sea and the Atlantic margin,
Sánchez Goñi et al. [2002] demonstrate that the maximum
of steppe vegetation in Mediterranean Iberia occurred
immediately at the onset of HE4, earlier than the N. pachy-
derma (sinistral) peak. On the contrary, on the Atlantic mar-
gin the initial phase of HE4, like the other Heinrich Events,
is characterized by relative high values of arboreal pollen;
only later the steppe development occurs, alongside the
maxima of ice-rafted debris and N. pachyderma (sinistral)
[Sánchez Goñi et al., 2000]. No explanation for the timing
discrepancy is given.
If one accepts that the CI precisely matches the onset of
HE4, the unusually sudden response of vegetation to HE4 in
south-eastern Iberia could be explained as a consequence of
a regional-to-continental cooling linked to the CI eruption.
This cooling would have been particularly pronounced and
centred on the European mainland. This hypothesis fits with
the distribution of the magnitudes of cooling associated
with HE4 in the North Atlantic area, which shows a signif-
icant gradient between the eastern and central part of the
basin, with temperatures at least 3–4 °C lower toward the
European margin [Cortijo et al., 1997].
THE CAMPANIAN IGNIMBRITE AND THE
MIDDLE/UPPER PALAEOLITHIC SPECTRUM:
AN INTERIM FRAMEWORK
Both culturally and biologically the European Late
Pleistocene shift, roughly between 45,000 and 35,000 cal-
endar yr BP (or later), is such a focus of research and debate
that the publication output has become substantial. The
growing literature on the broadly similar shift in central and
Northeast Asia [e.g. Brantingham et al., 2001] provides
additional comparative material to be taken into account.
Space thus requires that references for this section are lim-
ited to a selection of relevant papers on particular topics and
broader recent surveys.
As already mentioned, the CI regularly occurs within a
peculiar Palaeolithic phase in Eurasia which directly fol-
lows the Mousterian industries of the Middle Palaeolithic
(Figure 7). This phase is characterized by a mosaic of vari-
ously named stone-tool industries, commonly regarded as
innovative—or else “intermediate”—within the overall
interval which saw the change from the Middle to the Upper
Palaeolithic. In need of a vocabulary as neutral as possible,
we propose to term this industrial mosaic the Middle/Upper
Palaeolithic (MUP) spectrum, with the proviso that the only
aim of this label is clearing the ground of preconceived par-
titions. Any approach to a “transition” problem is inherent-
ly flawed if the naming and taxonomy of archaeological
entities are not kept free of interpretative overtones, admit-
tedly a difficult goal. We feel that this need is especially
vital for a study of the Palaeolithic industries on either side
of the CI event, as well as for a successful assessment of the
Late Pleistocene biocultural shift in general.
A meaningful evaluation of the CI impact implies a reap-
praisal of the MUP spectrum and particularly the archaeo-
logical data which bear on resource exploitation, cultural
transmission and population densities. This predictably is a
two-way explanation process, the MUP spectrum providing
a cultural context for the CI, and the CI contributing a so far
unexpected factor toward understanding the identity and
evolution of the cultural spectrum. Furthermore, if one con-
siders the centrality of the MUP spectrum to the definition
of the Upper Palaeolithic as a new stage in cultural evolu-
tion, a critique of this latter definition might become
unavoidable. By implication, a certain degree of taxonomic
re-examination would encompass the Aurignacian, which
has become commonplace to regard as the earliest, full
Upper Palaeolithic “culture” and a product of anatomically
modern humans. These tasks cannot—obviously—be ful-
filled in this paper or at this early stage of the project; only
an outline of ongoing work is reported in the rest of this
section.
The MUP industrial spectrum includes such stone-tool
based cultural groups of the 43,000-33,000 yr BP interval
(uncalibrated) as the Bohunician and Szeletian of central
Europe, the Olschewian of Croatia, the Bachokirian of the
Pontic region, the Uluzzian and several “Aurignacoid” vari-
ants of Mediterranean Europe (Uluzzo-Aurignacian, Proto-
Aurignacian, Earliest and Early Aurignacian etc.), and the
forerunner of all, the Châtelperronian of France [cf
Hoffecker and Wolff, 1988; Palma Di Cesnola, 1989; 2001;
Farizy, 1990; Knecht et al., 1993; Kuhn, 1995; Mellars,
1996; Karavanic and Smith, 1998; Kozlowski, 1998;
Broglio, 1998; Fox, 1998; Akazawa et al., 1998; Mellars et
al., 1999; Kozlowski and Otte, 2000; Bar-Yosef and
Pilbeam, 2000; Kuhn and Bietti, 2000; Allsworth-Jones,
2000; Mussi, 2001; Bolus and Conard, 2001]. A simplified
synopsis is given in Figure 7. To these groups one has to add
the coeval—and even less understood—leaf point assem-
blages of the northern part of inhabited Europe (Altmühlian
316 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 316
etc.), as well as several “intermediate” industries of
Anatolia and southern Russia. The picture gets more com-
plicated if one considers other parts of Eurasia [e.g.
Brantingham et al., 2001].
Such a proliferation of archaeological entities reflects to
some extent historical fact, i.e. a development of regional
variants or “regionalisation”, already a detectable trend in
the mid-Interpleniglacial Mousterian [Gamble, 1999]. But
inevitably it also stems in some cases from the expectation
to detect Upper Palaeolithic signatures and the emergence
of significant new traits, often combined with a lack of
regional evidence for the evolutionary trends within the
Mousterian.
Our MUP spectrum closely matches as a notion the
“Earliest Upper Palaeolithic” of Gamble [1999, Table 6.5],
or, similarly, the “Initial Upper Palaeolithic” of several cur-
rent workers [cf Bar-Yosef and Pilbeam, 2000]. Such labels
are in our opinion unfortunate in that they imply in advance
the recognition of a Middle/Upper Palaeolithic dichotomy,
which, until about 35,000 yr BP if not 25,000 BP, is not per-
haps as solidly rooted in factual data as it was supposed to
be. After all, the distinction between the Middle and the
Upper Palaeolithic was designed over a century ago to
account for what then appeared to be a clearcut artifact-type
division in France, well before the cultural complexity of
the Late Pleistocene came to be recognized over most of the
Old World. A certain unease about these chronotypological
labels, not altogether new, is perhaps gaining momentum.
The labels have been stereotyped and “reified” beyond dis-
pute and often assumed as unambiguous ethnic designations
[Clark and Willermet, 1997; Riel-Salvatore and Clark,
2001, and L.G. Straus’s comment therein], not unlike the
Aurignacian and other industrial units, instead of being sub-
jected to critical scrutiny. As long as the division between a
Middle and an Upper Palaeolithic is emphasized as an
absolute divide, even a search for revised paradigms is
excluded.
This division has long been taken for granted while at the
same time demanding the insertion of “intermediate”, or
hard to classify, industries, first of all the Châtelperronian.
What needs be stressed in the present discussion is that the
traditional division has survived in face of mounting evi-
dence that the variation within both the Mousterian and the
earliest “Upper Palaeolithic” is much greater than original-
ly thought. For instance, substantial flake-based tools and
Mousterian-like scrapers define most of the Proto/Early
Aurignacian variants as much as the occasional bone tool or
the bladelet component. In the Uluzzian industry of Italy,
one can hardly perceive the advent of a major new division
of the Palaeolithic when 45% to 75% of any assemblage is
made of Mousterian scrapers and/or denticulates [Gioia,
1990].
Discussion about the Aurignacian as a thorough archaeo-
logical entity has just started [e.g. Kozlowski and Otte,
2000; Stringer and Davies, 2001]. The use of the
Aurignacian as a reference-taxon for a growing number of
“intermediate” assemblages may cast doubts on the
Aurignacian being a completely valid taxon as currently
employed—it may lack integrity. Within this archaeological
construct which spans some 10,000 years, half a dozen
groups can at least be noted in Europe alone, some of them
quite different in chronology and artifactual content. If one
takes away formal bone artifacts, ornaments, or “art”—an
arbitrarily overemphasized behavioural component [cf
Dunbar et al., 1999]—it is not obvious why many early
assemblages should be linked to the Aurignacian at all,
rather than classified within a Mousterian-MUP spectrum
continuum. There has been a persistent tendency to stretch
the Aurignacian backwards in time in spite of any data
suggesting a lack of unity, or at least requiring that new
assemblages be examined neutrally in terms of their own
composition.
This potential problem is compounded by a second: play-
ing down the range and scope of temporal and regional vari-
ation within the later Mousterian, i.e. among the industries
of the Interpleniglacial of Europe. Although interpretation
may differ about the agents, dynamics, and timing of the
Middle to Upper Palaeolithic transition, there is general
agreement that a significant change did indeed occur over
time, particularly after about 40,000 cal yr BP. But variation
in tool making around and after the 40,000 BP timeline,
now appears to be the culmination of a much longer phase
of artifactual instability and innovation. Some long-term
trends were perhaps set in motion as early as 55,000–60,000
years BP [Dibble and Mellars, 1992; Stiner, 1994; Kuhn,
1995; Riel-Salvatore and Clark, 2001]. Kozlowski [1990]
has pioneered such a re-evaluation with his multiaspectual
model, akin in principle to a view of Palaeolithic industries
as a polythetic (variously grouped) set of artifact types
[Clarke, 1968]. Gamble [1999, ch. 6], perceptively extract-
ing information from a large body of data, is able to identi-
fy several evolutionary threads in the Interpleniglacial
Mousterian and link them to social dynamics.
Artifactual “instability” is a key notion in the present dis-
cussion, cognitively and socially connected with flexibility
and experiment. Particularly toward the end of the pre-
40,000 cal BP interval, Mousterian technologies display an
oscillating reliance on blade-based technology and/or
miniaturisation of tool-kits, locally supplemented by inno-
vations in hafting and related tool retouch and form (back-
FEDELE ET AL. 317
75963_301-328.qxd 10/7/2003 2:38 PM Page 317
ing or blunting etc. [cf Kuhn, 1995]). Prismatic cores and
blades make up 30% of the lithics at several sites (e.g.
Grotta Breuil, Latium, Italy [Kuhn and Bietti, 2000;
Lemorini, 2000]), just marginally widening the role of lam-
inar technology already successful in Late Mousterian
groups [Bar-Yosef and Kuhn, 1999; Kuhn and Bietti, 2000;
Kuhn and Stiner, 2001]. Such indisputable innovations have
often been termed “Upper Palaeolithic” elements. We con-
tend that these innovations are better explained in a human
ecosystem perspective, and, as a point of historical method,
first of all they should be appreciated against the back-
ground of the preceding traditions (i.e. the Mousterian)
rather than the following ones.
As a hypothesis, these novelties might represent an
expression of adaptive devices to cope with environmental
alteration and stress (cf Gibson [1996] for a boader cogni-
tive perspective, and Van Andel and Tzedakis [1996] for the
Late Pleistocene landscapes of Europe). The appearance
and success of biface technology in the form of leaf-shaped
points is perhaps an additional instance, especially if these
types were developed within the framework of a need for
more efficient composite-tools. A common denominator to
all these devices is standardization of shape, which may
have acted as a cost-efficient, economizing strategy. A con-
current kind of adaptive response is the shift in raw materi-
al procurement and/or exchange networks, often noted at
the Mousterian/Aurignacian interface and sometimes per-
ceived as an abrupt change.
Change must be qualified, and it is expected that an envi-
ronmental modeling of the CI will lead to a better qualifica-
tion of change at least in the area of its primary impact.
Useful insights could be provided by comparisons with sim-
ilar industrial shifts at other times and places in the Late
Pleistocene. Such developments of the advanced Inter-
pleniglacial as those described in Europe lose most of their
novelty if they are compared with similar phenomena which
appeared at the onset of the Last Glacial, most notably in
South Africa (the Howieson’s Poort industry, c.75,000 yr
BP [Volman, 1984; Watts, 1999]). Here blades, miniaturiza-
tion and hafting likely formed a functional package, and
there is a definite possibility that the package was a
response to new demands brought about by rapidly expand-
ing, open, cold-dry habitats. A convincing correlation with
environmental deterioration has been made in that case, in
spite of limited time resolution.
The archaeological pattern outlined above provides the
context in which the CI eruption occurred and needs to be
ecologically and culturally understood. Predictably, the
interferences with human society varied widely according
to the impact gradient of the CI crisis. That implies that the
interference between the CI and the Palaeolithic is better
examined at two different geographic scales: regional, i.e.
central and southern Italy, corresponding to the obvious
range of main impact; and south-eastern European, through-
out the Greater Mediterranean’s core area if not beyond. At
this latter scale, the CI eruption falls precisely in the middle
of the European Late Pleistocene shift’s age bracket: strati-
graphic evidence shows that the volcanic event inserted
itself, more or less dramatically, into the fluctuating spec-
trum of Palaeolithic developments here termed the MUP.
CONCLUSIONS
The identification of the CI volcanic event in many vari-
ous stratigraphic records allows an examination of both
environmental conditions and cultural configurations imme-
diately before and after the CI eruption. The CI is here pro-
posed as an instance of large eruption potentially capable of
inducing a substantial climatic impact. The reconstructed
eruptive dynamics indicate that during both the Plinian and
pyroclastic flow phases a large amount of the erupted mate-
rials was injected into the stratosphere, producing the sec-
ond largest volcanogenic signal recorded in the Greenland
GISP2 ice core. Furthermore, the CI coincided with the
onset of HE4, whose climatic signal is significantly more
pronounced than the other Heinrich Events. From the obser-
vation of this exceptional concurrence of factors we
advance the hypothesis of a positive climate-volcanism
feedback, hence an impact of the CI on the atmosphere and
consequently at the global scale. The environmental impact
of this catastrophe can be explored within the framework of
a human-ecosystem model.
The temporal concurrence of several categories of critical
data—the CI eruption, the beginning of HE4, the abandon-
ment of Palaeolithic sites—suggests that the overlapping of
the volcanic and the climatic impacts may have induced an
ecosystem crisis on a fairly large scale, human systems
included and well beyond the direct-impact zone.
Over a large area in the Greater Mediterranean the CI
tephra coincides with an interruption of occupation several
millennia long. In extended and well-dated stratigraphic
sequences of peninsular Italy, the CI deposits seal the last
documented assemblages of the MUP industrial spectrum; a
distinct tephra layer corresponding to the CI is regularly
interbedded between the Middle Palaeolithic or the MUP
occupations and the earliest appearance of well defined
Upper Palaeolithic assemblages. Quite often, long series of
Mousterian and MUP occupations, implying a certain per-
sistence in regional population and circulation habits, are
capped by overlying CI tephra and immediately followed by
318 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 318
site abandonment and long-duration human absence, partic-
ularly in southern Italy. The hiatus may have a causal rela-
tionship with the CI impact and/or the ecological disruption
it generated. Conceivably, such a volcanic eruption may
have impacted whole ecosystems.
At least in the direct-impact zone (defined by the areal
extent where pyroclastic cover was sufficiently thick to
arrest natural life cycles) the eruption may have conditioned
the resident humans in three principal ways:
1) by disrupting animal populations through the collapse
of the herbivore grade in the trophic chain, from sup-
pression or deterioration of pasture;
2) by altering the species composition, growth rhythm,
and/or visibility, hence the overall availability, of pre-
viously exploited staple plants;
3) by changing the pattern of water availability.
In other words, human groups may have been impacted in
their capacity as upper predators in the trophic chain, not
necessarily as conscious victims of a catastrophic killing or
the lowering of temperature. Psychological factors are hard
to assess archaeologically. However, as far as temperature is
concerned, perhaps even including extreme cases of vol-
canic “winters,” climate variation almost never conditioned
humans directly. Climate only acted through variation in the
land—soils, water, ice, landslides . . . —and the biome [cf
Vrba et al., 1995]. This kind of reaction of sociocultural sys-
tems had been normal before the CI time, and was to remain
such for several millennia afterwards.
Predictably, as stratigraphies show, a result of the envi-
ronmental alteration produced by the CI was the displace-
ment of human groups. Over an area possibly wider than
southern Italy, the CI indirectly forced populations away
from the traditionally inhabited and familiar territories, dis-
rupting not only the ecological but also the cognitive bal-
ance, hence society as a whole. Cognition is a crucial com-
ponent of the social fabric, and at 39,000 BP we are dealing
with hunter-gatherers at a certain level of organization, with
a certain degree of ability to organize culture; that was a
source of both advantages and constraints, social resilience
and social fragility.
Again indirectly and over a certain time interval, the envi-
ronmental alteration may have pushed groups into less
affected regions at the periphery of the CI impact area. This
was in turn coupled with biome displacement, probably on
a mosaic basis. Such processes can have been a factor of
depopulation in certain regions and of crowding in others.
As a hypothesis, regional crowding may have occurred in
areas roughly aligned on a west-to-east, south-central
European fringe. This population shift might explain the
impression of a sudden appearance of MUP spectrum
groups, including the Proto/Early Aurignacian, in northern
Italy [Broglio, 1998] or the Swabian corridor north of the
Alps [Richter et al., 2000; Bolus and Conard, 2001; Conard
and Malina, 2002].
It seems plausible to suggest that the CI interfered with
active, ongoing processes in the western Eurasian
Palaeolithic. The CI acted toward those processes in various
possible ways, arresting, disrupting, or else re-orientating
them as a catalytic agent, according to situations and
regions. It possibly became a selective force, much more so
than the normal environmental factor. Both catalysis and
selection are keywords in this theoretical, still unquantified
model, in which the CI would accelerate change by
catalysing and filtering ongoing trends. As a hypothesis, it
did so through the mechanisms of environmental “forcing”
and population displacement.
In this paper we have presented the initial results of a
detailed assessment of the CI eruption in its overall context.
We have tried to show how the CI, in conjunction with other
factors, already allows to reconsider the processes, rhythms,
and dynamics which took place at the c.40,000 BP timeline
in a comprehensive and probably more realistic way; further
refinements and proper modeling are underway. The proces-
sual interplay at the base of the Middle to Upper
Palaeolithic transition is certainly too complex a problem
for hypotheses to be formulated in the light of the CI event
alone. However, on the available evidence, one is justified
to explore whether to some extent the CI was one of the
contributing factors to the cultural differentiation in Western
Eurasia which is called the Upper Palaeolithic.
Acknowledgments. This article is a contribution of project “The
impact of the large explosive eruptions on environment and cli-
mate: Campanian Ignimbrite the most powerful eruptions of the
last 200,000 years in the Mediterranean area”, supported by the
Italian Ministry of Education, University and Research (grant
FIRB No. RBAU01HTPA; G. Orsi, coordinator). Three anony-
mous reviewers provided thoughtful and detailed critiques of an
earlier draft of the paper.
REFERENCES
Accorsi, C.A., E. Aiello, C. Bartolini, L. Castelletti, G. Rodolfi and
A. Ronchitelli, Il giacimento Paleolitico di Serino (Avellino):
stratigrafia, ambienti e paletnologia, Atti Soc. Tosc. Sci. Nat.,
Memorie, A, 86, 435-487, 1979.
Akazawa, T., K. Aoki and O. Bar-Yosef, Neandertals and modern
humans in Western Asia, New York: Plenum Press, 1998.
FEDELE ET AL. 319
75963_301-328.qxd 10/7/2003 2:38 PM Page 319
Allen, J.R.M., U. Brandt, A. Brauer, A.-W. Hubbertens,
B. Huntley, J. Keller, M. Kraml, A. Mackensen, J. Mingram,
J.F.W. Negendank, N.R. Nowaczyk, H. Oberhänsli, W.A. Watts,
S. Wulf and B. Zolitschka, Rapid environmental changes in
southern Europe during the last glacial period, Nature, 400, 740-
743, 1999.
Allen, J.R.M. and B. Huntley, Weichselian palynological records
from southern Europe: correlation and chronology, Quat. Int.,
73/74, 111-125, 2000.
Allen, J.R.M., W.A. Watts and B. Huntley, Weichselian palynos-
tratigraphy, palaeovegetation and palaeoenvironment; the Lago
Grande di Monticchio, southern Italy, Quat. Int., 73/74, 91-110,
2000.
Allsworth-Jones, P., Dating the transition between Middle and
Upper Palaeolithic in Eastern Europe, in Neanderthals and mod-
ern humans — discussing the transition: Central and Eastern
Europe from 50,000 - 30,000 B.P, edited by J. Orschiedt and
G.-C. Weniger, pp. 20-29, Neanderthal Museum, Mettmann,
Germany, 2000.
Ambrose, S.H., Late Pleistocene human population bottlenecks,
volcanic winter, and differentiation of modern humans, J.
Human Evol., 34, 623-651, 1998.
Amirkhanov, H.A., M.V. Anikovitch and I.A. Borziak, Problème
de la transition du Moustérien au Paléolithique Supérieur sur le
territoire de la Plaine Russe et du Caucase, L’Anthropologie, 97,
311-330, 1993.
Barberi, F., F. Innocenti, L. Lirer, R. Munno, T.S. Pescatore and R.
Santacroce, The Campanian Ignimbrite: a major prehistoric
eruption in the Neapolitan area (Italy), Bull. Volc., 41, 10-22,
1978.
Barberi, F., E. Cassano, P. La Torre and A. Sbrana, Structural evo-
lution of Campi Flegrei Caldera in light of volcanological and
geophysical data, J. Volc. Geotherm. Res., 48 (1/2), 33-49, 1991.
Bard, E., Geochemical and geophysical implications of the radio-
carbon calibration, Geochim. Cosmochim. Acta, 62, 2025-2038,
1998.
Bar-Yosef, O. and S.L. Kuhn, The big deal about blades: laminar
technologies and human evolution, Am. Anthropol., 101, 322-
338, 1999.
Bar-Yosef, O. and D. Pilbeam, The geography of Neandertals and
modern humans in Europe and the Greater Mediterranean,
Peabody Museum of Archaeology and Ethnology, Cambridge,
2000.
Baumgartner, S., J. Beer, M. Suter, B. Dittrich-Hannen, H.-A.
Synal, P.W. Kubik, C. Hammer and S. Johnsen, Chlorine 36 fall-
out in the Summit Greenland Ice Core Project ice core, J.
Geophys. Res., 102, 26,659-26,662, 1997.
Baumgartner, S., J. Beer, J. Masarik, G. Wagner, L. Meynadier and
H.-A. Synal, Geomagnetic modulation of 36Cl flux in the GRIP
ice core, Greenland, Science, 279, 1330-1332, 1998.
Beck, J.W., D.A. Richards, R.L. Edwards, B.W. Silverman, P.L.
Smart, D.J. Donahue, S. Hererra-Osterheld, G.S. Burr, L.
Calsoyas, A.J.T. Jull and D. Biddulph, Extremely large varia-
tions of atmospheric
14
C concentration during the last glacial
period, Science, 292, 2453-2458, 2001.
Beer, J., R. Muscheler, G. Wagner, C. Laj, C. Kissel, P.W. Kubik
and H.-A. Synal, Cosmogenic nuclides during Isotope Stage 2
and 3, Quat. Sci. Revi., 21, 1129-1139, 2002.
Bolus, M. and N.J. Conard, The late Middle Paleolithic and earli-
est Upper Paleolithic in Central Europe and their relevance for
the Out of Africa hypothesis, in Out of Africa in the Pleistocene,
edited by L.G. Straus and O. Bar-Yosef, pp. 29-40, Quat. Int.,
75, 2001.
Bond, G., H. Heinrich, W. Broecker, L. Labeyrie, J. McManus, J.
Andrews, S. Huon, R. Jantschik, S. Clases, C. Simet, K.
Tedesco, M. Klas, G. Bonani and S. Ivy, Evidence for massive
discharges of icebergs into North Atlantic ocean during the last
glacial period, Nature, 360, 245-249, 1992.
Bond, G.C. and R. Lotti, Iceberg discharges into the north Atlantic
on millennial time scales during the last glaciation, Science,
267, 1005-1010, 1995.
Bond, G., B. Wallace, S. Johnsen, J. McManus, L. Labeyrie, J.
Jouzel and G. Bonani, Correlations between climate records
from North Atlantic sediments and Greenland ice, Nature, 365,
143-147, 1993.
Borzatti von Löwenstern, E., La Grotta di Uluzzo. Campagna di
scavi 1963, Riv. Sci. Preis., 18, 75-89, 1963.
Borzatti von Löwenstern, E, La grotta-riparo di Uluzzo C
(Campagna di scavi 1964), Riv. Sci. Preist., 20, 1-31, 1965.
Borzatti von Löwenstern, E., Prima campagna di scavi nella grot-
ta “Mario Bernardini” (Nardò-Lecce), Riv. Sci. Preist., 25, 89-
125, 1970.
Brantingham, P.J., A.I. Krivoshapkin, J. Li and Y. Tserendagva,
The Initial Upper Paleolithic in Northeast Asia, Current
Anthropology, 42, 735-747, 2001.
Brauer, A., J. Mingram, U. Frank, C. Günter, G. Scettler, S. Wulf,
B. Zolitschka and J.F.W. Negendank, Abrupt environmental
oscillation during the Early Weichselian recorded at Lago
Grande di Monticchio, southern Italy, Quat. Int., 73/74, 79-90,
2000.
Broecker, W.S., Massive icebergs discharges as triggers for global
climate change, Nature, 372, 421-424, 1994.
Broglio, A., Introduzione al Paleolitico, Laterza, Bari, 1998.
Cacho, I., J.O. Grimalt, C. Pelejero, M. Canales, F.J. Sierro, J. Abel
Flores and M. Shackleton, Dansgaard-Oeschger and Heinrich
event imprints in Alboran Sea paleotemperatures,
Paleoceanography, 14, 698-705, 1999.
Carbonell, E. and M. Vaquero, The last Neandertals, the first
anatomically modern humans: a tale about the human diversity.
Cultural change and human evolution: the crisis at 40 Ka BP,
Universitat Rovira i Virgili, Tarragona, 1996.
Channell, J.E.T., J.S. Stoner, D.A. Hodell and C.D. Charles,
Geomagnetic paleointensity for the last 100 kyr from sub-
antarctic South Atlantic: a tool for inter-hemispheric correlation,
Earth Planet. Sci. Lett.s, 176, 145-160, 2000.
Chapman, M.R. and N.J. Shackleton, Millennial-scale fluctation in
North Atlantic heat flux during last 150,000 years, Earth Planet.
Sci. Lett., 159, 57-70, 1998.
Chen, F.H., J. Bloemendal, J.M. Wang, J.J. Li and F. Oldfield,
High-resolution multi-proxy climate from Chinese loess: evi-
320 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 320
dence for rapid climatic changes over the last 75 kyr, Palaeo.
Palaeo. Palaeo., 130, 223-235, 1997.
Churchill, S.E. and F.H. Smith, The authors of the early
Aurignacian of Europe, Yearbook Phys. Anthropol., 43, 61-115,
2000.
Cini Castagnoli, G., A. Albrecht, J. Beer, G. Bonino, Ch. Shen, E.
Callegari, C. Taricco, B. Dittrich-Hannen, P. Kubik, M. Suter
and G.M. Zhu, Evidence for
10
Be enhanced deposition in
Mediterranean sediments 35 Kyr BP, Geophys. Res. Lett., 22,
707-710, 1995.
Civetta, L., G. Orsi, L. Pappalardo, R.V. Fisher, G. Heiken and M.
Ort, Geochemical zoning, mingling, eruptive dynamics and
depositional processes — the Campanian Ignimbrite, Campi
Flegrei caldera, Italy. J. Volc. Geotherm. Res., 75, 183-219. 1997.
Clark, G.A. and C. Willermet, Conceptual issues in modern human
origins research, Aldine de Gruyter, New York, 1997.
Clarke, D.L., Analytical archaeology, Methuen, London, 1968.
Clausen, H.B. and C.U. Hammer, The Laki and Tambora eruptions
as revealed in Greenland ice cores from 11 locations, Annal.
Glaciol., 19, 200-203, 1988.
Conard, N.J. and M. Malina, Neue Ausgrabungen in den untersten
Schichten des Aurignacien und des Mittelpaläolithikums im
Geißenklösterle bei Blaubeuren, Alb-Donau-Kreis, in
Archäologische Ausgrabungen in Baden-Württemberg, pp. 16-
21, Konrad Theiss Verlag, Stuttgart, 2002.
Cornell, W., S. Carey and H. Sigurdsson, Computer simulation of
transport and deposition of Campanian Y-5 ash, J. Volc.
Geotherm. Res., 17, 89-109, 1983.
Cortijo, E., L. Labeyrie, L. Vidal, M. Vautravers, M. Chapman, J.-
C. Duplessy, M. Elliot, M. Arnold, J.-L. Turon and M. Auffret,
Changes in sea surface hydrology associated with Heinrich
event 4 in the North Atlantic Ocean between 40° and 60°N,
Earth Planet. Sci. Lett., 146, 29-45, 1997.
Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S.
Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, J.
Jouzel and G. Bond, Evidence for general instability of past
climate from 250-Kyr ice-core record, Nature, 364, 218-220, 1993.
Deino, A.L., J. Southon, F. Terrasi, L. Campatola and G. Orsi,
14
C
and
40
Ar/
39
Ar dating of the Campanian Ignimbrite, Phlegrean
Fields, Italy, in Abstracts, ICOG 1994, CA, Berkeley, 1994.
De Vivo, B., G. Rolandi, P.B. Gans, A. Calvert, W.A. Bohrson, F.J.
Spera and H.E Belkin, New constraints on the pyroclastic erup-
tive history of the Campanian volcanic Plain (Italy), Mineral.
Petrol., 73, 47-65, 2001.
Dibble, H.L. and P. Mellars, The Middle Palaeolithic: adaptation,
behaviour, and variability, University of Pennsylvania Press
(University Museum monographs, 72), Philadelphia, 1992.
Druitt, T.H., Emplacement of the 18 May 1980 lateral blast deposit
ENE of Mount St. Helens, Washington. Bull. Volc., 54, 554-572,
1992.
Dunbar, R., C. Knight and C. Power, The evolution of culture. An
interdisciplinary view, Edinburgh University Press, Edinburgh,
1999.
Farizy, C. Paléolithique Moyen récent et Paléolithique Supérieur
ancien en Europe. Ruptures et transitions: examen critique des
documents archéologiques, Actes du Colloque international de
Nemours, 9-11 Mai 1988, Nemours, APRAIF (Mémoires du
Musée de Préhistoire d’Ile de France, 3), 1990.
Farrand, W.R., Occurrence and age of Ischia Tephra in Franchthi
Cave, Peloponnesos, Greece. Abstracts with Programs,
Geological Society of America, 9, 971, 1977.
Fedele, F.G., B. Giaccio, R. Isaia and G. Orsi, Ecosystem impact of
the Campanian Ignimbrite eruption in Late Pleistocene Europe,
Quat. Res., 57, 420-424, 2002.
Fisher, R.V., Transport and deposition of a pyroclastic surge across
an area of high relief: The 18 May 1980 eruption of Mount St.
Helens, Washington, Geol. Soc. Am. Bull., 102, 1038-1054,
1990.
Fisher, R.V., G. Orsi, M. Ort and G. Heiken, Mobility of a large-
volume pyroclastic flow — emplacement of the Campanian ign-
imbrite, Italy, J. Volc. Geotherm. Res., 56, 205-220, 1993.
Fox, R.G., Current Anthropology 39, Supplement: S1-S190, 1998.
Frezzotti, M. and B. Narcisi, Late Quaternary tephra-derived
paleosols in Central Italy’s carbonate Apennine range: strati-
graphical and paleoclimatological implications, Quat. Int., 34-
36, 147-153, 1996.
Gambassini, P., Il Paleolitico di Castelcivita, culture e ambiente,
Electa Napoli, Naples, 1997.
Gamble, C., The Palaeolithic societies of Europe, Cambridge
University Press, Cambridge, 1999.
Ganopolski, A. and S. Rahmstorf, Rapid changes of glacial climate
simulated in a coupled climate model, Nature, 409, 153-158, 2001.
Giaccio, B. and D. Coppola, Note preliminari sul contesto strati-
grafico e paleoecologico del sito “Tana delle Iene” (Ceglie
Messapica, Brindisi, SE Italia), Il Quaternario — Italian
Journal of Quaternary Science, 13, 5-20, 2000.
Giaccio, B. and R. Isaia, The Campanian Ignimbrite position in
terrestrial and marine Mediterranean successions and Greenland
ice-core: implications for paleoclimatic reconstructions of the
mid to high latitude OIS 3. Geophys. Res. Abs., 4, EGS02-A-
04515, 2002.
Gibson, K.R., The biocultural human brain, seasonal migrations,
and the emergence of the Upper Paleolithic, in Modelling the
early human mind, edited by P. Mellars and K.R. Gibson, pp.
33-46, McDonald Institute for Archaeological Research,
Cambridge, 1996.
Gioia, P., An aspect of the transition between Middle and Upper
Palaeolithic in Italy: the Uluzzian, in Paléolithique Moyen
récent et Paléolithique Supérieur ancien en Europe. Ruptures et
transitions: examen critique des documents archéologiques,
Actes du Colloque international de Nemours, 9-11 Mai 1988,
directed by C. Farizy, pp. 241-250, 1990.
Gowlett, J.A.J., Out in the cold, Nature, 413, 33-34, 2001.
Grönvold, K., N. Oskarsson, S.J. Johnsen, H.B. Clausen, C.U.
Hammer, G. Bond and E. Bard, Ash layer from Icelandic in the
Greenland GRIP ice core correlated with oceanic and land sed-
iments, Earth Planet. Sci. Lett., 135, 149-155, 1995.
Grootes, P.M., M. Stuiver, J.W.C. White, S. Johnsen and J. Jouzel,
Comparison of oxygen isotope records from the GISP2 and
GRIP Greenland ice cores, Nature, 366, 552-554, 1993.
FEDELE ET AL. 321
75963_301-328.qxd 10/7/2003 2:38 PM Page 321
Hammer, C.U., H.B. Clausen and W. Dansgaard, Greenland ice
sheet evidence of post-glacial volcanism and its climatic impact,
Nature, 288, 230-235, 1980.
Heinrich, H., Origin and consequences of cyclic ice rafting in
Northeast Atlantic Ocean during the past 130,000 years, Quat.
Res., 29, 142-152, 1988.
Hinrichs, J., B. Schnetger, H. Schale and H.-J. Brumsack, A high
resolution study of NE Atlantic sediments at station Bengal:
geochemistry and early diagenesis of the Heinrich layers,
Marine Geol., 117, 79-22, 2001.
Hoffecker, J.F. and C.A. Wolff, The early Upper Palaeolithic, evi-
dence from Europe and the Near East, BAR, International
series, 437, Oxford, 1988.
Hoffecker, J.F., M.V. Anikovich, A.A. Sinitsyn, V.T. Holliday and
S.L. Forman, Initial Upper Paleolithic in Eastern Europe: new
research at Kostenki, Abstracts for the Paleoanthropology
Society Meetings, March 19-20, Denver, 2002.
Huang, C.-Y., M. Zhao, C.-C. Wang and G. Wie, Cooling of the
South China Sea by the Toba eruption and correlation with other
climate proxies ~71,000 years ago, Geophys. Res. Lett., 28,
3915-3918, 2001.
Jacoby, G.C., W. Karen and R.D. D’Arrigo, Laki eruption of 1783,
tree rings, and disaster for northwest Alaska Inuit, Quat. Sci.
Rev., 18, 1365-1371, 1999.
Johnsen, S.J., D. Dahl-Jensen, N. Gundestrup, J.P. Steffensen,
H.B. Clausen, H. Miller, V. Masson-Delmotte, A.E.
Sveinbjörnsdottir and J. White, Oxygen isotope and palaeotem-
perature records from six Greenland ice-core stations: Camp
Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J.
Quat. Sci., 16, 299-3017, 2001.
Kamata, H., A. Hayashida and T. Danhara, Identification of a pair
of co-ignimbrite ash and underlying distal plinian ash in the
Early Pleistocene widespread tephra in Japan, J. Volc.
Geotherm. Res., 78, 51-64, 1997.
Karavaniæ, I. and F.H. Smith, The Middle/Upper Paleolithic inter-
face and the relationship of Neanderthals and early modern
humans in the Hrvatsko Zagorje, Croatia. J. Human Evol., 34,
223-248, 1998.
Kieffer, G., G. Vernet and J-P. Raynal, Reconnaissance de l’ign-
imbrite campanienne près du golfe de Policastro (Italie), jusqu’à
150 km de sa zone d’émission. Implications volcanologique et
paléoenvironnementales, Comptes Rendus de l’Academie des
Sciences, Series IIA/Earth and Planetary Science, 330, 105-110,
2000.
Kissel, C., C. Laj, L. Labeyrie, T. Dokken, A. Voelker and D.
Blamart, Rapid climatic variations during marine isotope stage
3: magnetic analysis of sediments from Nordic Seas and North
Atlantic, Earth Planet. Sci. Lett., 171, 489-502,1999.
Kitagawa, H. and J. van der Plicht, Atmospheric radiocarbon cali-
bration to 45,000 yr B.P.: Late Glacial fluctuations and cosmo-
genic isotope production, Science, 279, 1187-1190, 1998.
Klein, R.G., Man and culture in the Late Pleistocene. A case study,
Chandler, San Francisco, 1969.
Klein, R.G., Ice-Age hunters of the Ukraine, The University of
Chicago Press, Chicago, 1973.
Klein, R.G., The human career. Human biological and cultural ori-
gins, University of Chicago Press, Chicago, 1999.
Knecht, H., A. Pike-Tay and R. White, Before Lascaux. The com-
plex record of the early Upper Paleolithic, CRC Press, Boca
Raton, FL, 1993.
Kozlowski, J.K., Excavation in the Bacho Kiro cave, Bulgaria: final
report, Panstwowe Wydawnictwo Naukowe, Warsaw, 1982.
Kozlowski, J.K., A multiaspectual approach to the origins of the
Upper Palaeolithic in Europe, in The emergence of modern
humans. An archaeological perspective, edited by P. Mellars,
pp. 419-438, Edinburgh University Press, Edinburgh, 1990.
Kozlowski, J.K., The Middle and the Early Upper Paleolitic
around the Black Sea, in Neandertals and modern humans in
Western Asia, edited by T. Akazawa, K. Aoki and O. Bar-Yosef
pp. 461-482, Plenum Press, New York, 1998.
Kozlowski, J.K., H. Laville and B. Ginter, Temnata Cave.
Excavations in Karlukovo Karst area, Bulgaria, Jagellonian
University Press, Cracow, 1992.
Kozlowski, J.K. and M. Otte, La formation de l’Aurignacien en
Europe, L’Anthropologie, 104, 3-15, 2000.
Kuhn, S.L., Mousterian lithic technology. An ecological perspec-
tive, Princeton University Press, Princeton, NJ, 1995.
Kuhn, S.L. and A. Bietti, The Late Middle and Early Upper
Paleolithic in Italy, in The geography of Neandertals and mod-
ern humans in Europe and the Greater Mediterranean, edited
by O. Bar-Yosef and D. Pilbeam, pp. 49-76, Peabody Museum
of Archaeology and Ethnology, Cambridge, MA, 2000.
Kuhn, S.L. and M.C. Stiner, The antiquity of hunter-gatherers, in
Hunter-gatherers: an interdisciplinary perspective, edited by C.
Panter-Brick, R.H. Layton and P. Rowley-Conwy, Cambridge
University Press, Cambridge, 99-142, 2001.
Labreiro, S.M., J.C. Moreno, I.N. McCave and P.P.E. Weaver,
Evidence for Heinrich layers off Portugal (Tore Seamont: 39°N,
12°W), Marine Geol., 131, 47-56, 1996.
Laj, C., A. Mazaud and J.-C. Duplessy, Geomagnetic intensity and
14
C abundance in the atmosphere and ocean during the past 50
kyr, Geophys. Res. Lett., 23, 2045-2048, 1996.
Laj, C., C. Kissel, A. Mazaud, E. Michel, R. Muscheler and J.
Beer, Geomagnetic field intensity, North Atlantic Deep Water
circulation and atmospheric
∆
14
C during the last 50 kyr, Earth
Planet. Sci. Lett. 200, 177-190, 2002.
Legros, F. and K. Kelfoun, On the ability of pyroclastic flows to scale
topographic obstacles, J. Volc. Geotherm. Res., 98, 235-241, 2000.
Lemorini, C., Reconnaître des tactiques d’exploitation du milieu
au Paléolithique Moyen: la contribution de l’analyse fonction-
nelle. Étude fonctionnelle des industries lithiques de Grotta
Breuil (Latium, Italie) et de La Combette (Bonnieux, Vaucluse,
France), BAR, International series, 858, Oxford, 2000.
Li, T., Z. Liu, M.A. Hall, S. Berne, Y. Saito, S. Cang and Z. Cheng,
Heinrich event imprints in the Okinawa Trough: evidence from
oxygen isotope and planktonic foraminifera, Palaeo. Palaeo.
Palaeo., 176, 133-146, 2001.
Manabe, S. and K. Bryan, Jr., CO
2
-induced change in a coupled
ocean atmosphere model and its paleoclimatic implications, J.
Geophys. Res., 90, 11,689-11,707, 1985.
322 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 322
Mayewski, P.A., L.D. Meeker, S. Whitlow, M.S. Twickler, M.C.
Morrison, P. Bloomfield, G.C. Bond, A. Alley, A.J. Gow, P.M.
Grootes, D.A. Meese, M. Ram, K.C. Taylor and W. Wumkes,
Changes in atmospheric circulation and ocean ice cover over the
North Atlantic during the last 41,000 years, Science, 263, 1747-
1751, 1994.
Mayewski, Q.A., L.D. Meeker, M.S. Twickler, S. Whitlow, Q.
Yang, W. Berry Lyons and M. Prentice, Major features and forc-
ing of high-latitude northern hemisphere atmospheric circula-
tion using a 110,000-years-long glaciochemical series, J.
Geophys. Res., 102, 26,345-26,366, 1997.
Mazaud, A., C. Laj, E. Bard, M. Arnold and E. Tric, Geomagnetic
field control of
14
C production over the last 80 KY: implications
for the radiocarbon time-scale, Geophys. Res. Lett., 18, 1885-
1888, 1991.
McCoy, F. W. and W. Cornell, Volcaniclastic sediments in the
Tyrrhenian basin, in Proceedings of the ODP, Scientific Results
107, edited by K.A. Kastens, J. Mascle et al., pp. 291-305, 1990.
Meese, D.A., A.J. Gow, R.B. Alley, G.A. Zielinski, P.M. Grotes,
M. Ram, K.C. Taylor, P.A. Mayewsky and J.F. Bolzan, The
Greenland Ice Sheet Core Project 2 depth-age scale: methods
and results, J. Geophys. Res, 102, 26,411-26,423, 1997.
Melekestsev, I.V., V.Yu. Kirianov and N.D. Praslov, Catastrophic
eruption in the Phlegrean Fields region (Italy) — possible
source for a volcanic ash in late Pleistocene sediments of the
Eropean part of the USSR, Vulcanologia i Seismologia, 3, 35-
44, 1984.
Mellars, P., The Neanderthal legacy. An archaeological perspec-
tive from Western Europe, Princeton University Press,
Princeton, NJ, 1996.
Mellars, P., M. Otte, L.G. Straus, J. Zilhão and F. D’Errico, The
Neanderthal problem continued, Current Anthropology, 40, 341-
364, 1999.
Mussi, M., Earliest Italy, An overview of the Italian Paleolithic
and Mesolithic, Kluwer Academic/Plenum, New York, 2001.
Narcisi, B., Tephrochronology of a late Quaternary lacustrine
record from the Monticchio maar (Vulture volcano, southern
Italy), Quat. Sci. Rev., 15, 115-165, 1996.
Narcisi, B. and L. Vezzoli, Quaternary stratigraphy of distal tephra
layers in the Mediterranean — an overview, Global Planet.
Change, 21, 31-50. 1999.
Omoto, K. and P.V. Tobias, The origins and past of modern
humans: toward reconciliation, World Scientific, Singapore,
1998.
Oppenheimer, C., Limited global change due to the largest known
Quaternary eruption, Toba ~74 kyr BP?, Quat. Sci. Rev., 21,
1593-1609, 2002.
Orsi, G., S. De Vita and M. di Vito, The restless, resurgent Campi
Flegrei nested caldera (ltaly): constraints on its evolution and
configuration, J. Volc. Geotherm. Res., 74, 179-214, 1996.
Ort, M., M. Rosi and C.A. Anderson, Correlation of deposits and
vent locations of the proximal Campanian Ignimbrite deposits,
Campi Flegrei, Italy, based on natural remanent magnetization
and anisotropy of magnetic susceptibility characteristics, J.
Volc. Geotherm. Res., 91,167-178, 1999.
Ort, M., G. Orsi, L. Pappalardo and R. V. Fisher, Anisotropy of
magnetic susceptibility studies of depositional processes in the
Campanian Ignimbrite, Italy, Bull. Volc., 65, 55-72, 2003
Pailler, D. and E. Bard, High frequency palaeoceanographic
changes during the past 140000 yr recorded by organic matter in
sediments of the Iberian Margin, Palaeo. Palaeo. Palaeo., 181,
431-452, 2002.
Palma Di Cesnola, A., Prima campagna di scavi nella Grotta del
Cavallo presso Santa Caterina (Lecce), Riv. Sci. Preist., 18, 41-
74, 1963.
Palma Di Cesnola, A., Seconda campagna di scavi nella Grotta del
Cavallo presso Santa Caterina (Lecce), Riv. Sci. Preist., 19, 23-
39, 1964.
Palma Di Cesnola, A., L’Uluzzien: faciès italien du Leptolithique
archaique, L’Anthropologie, 93, 783-811, 1989.
Palma Di Cesnola, A., Gli scavi a Grotta Paglicci durante il 1990,
Atti del 12° Conv. Nazionale “Preistoria-Protostoria-Storia
della Daunia”, San Severo 14-16 dicembre 1990, 23-34, 1990.
Palma Di Cesnola, A., La campagna 1991 a Grotta Pagliacci, Atti
del 13° Conv. Nazionale “Preistoria-Protostoria-Storia della
Daunia”, San Severo 22-24 novembre 1991, 9-13, 1993.
Palma Di Cesnola, A., Le Paléolithique supérieur en Italie,
Editions Jérôme Million, Grenoble, 2001.
Pappalardo, L., L. Civetta, S. De Vita, M.A. Di Vito, G. Orsi, A.
Carandente and R.V. Fisher, Timing of magma extraction during
the Campanian Ignimbrite eruption (Campi Flegrei caldera), J.
Volc. Geotherm. Res., 114, 479-497, 2002.
Paterne, M., Additional remarks on tephra layer from Temnata
Cave, in Temnata Cave. Excavations in Karlukovo Karst area,
Bulgaria, edited by J.K. Kozlowski, H. Laville and B. Ginter,
pp. 99-100, Jagellonian University Press, Cracow, 1992.
Paterne, M., F. Guichard and J. Labeyrie, Explosive activity of the
south Italian volcanoes during the past 80,000 years as deter-
mined by marine tephrochronology, J. Volc. Geotherm. Res., 34,
153-172, 1988.
Paterne, M., N. Kallel, L. Labeyrie, M. Vautravers, J.-C. Duplessy,
M. Rossignol-Strick, E. Cortijo, M. Arnold and M. Fontugne,
Hydrological relationship between the North Atlantic Ocean and
the Mediterranean Sea during the past 15-75 kyr,
Paleoceanography, 14, 626-638, 1999.
Prokopenko, A.A., D.F. Williams, E.B. Karabanov and G.K.
Khursevich, Continental response to Heinrich events and Bond
cycles in sedimentary record of Lake Baikal, Siberia, Global
Planet. Change., 28, 117-126, 2001.
Quam, R.M. and F.H. Smith, A reassessment of the Tabun C2
mandible, in Neandertals and modern humans in Western Asia,
edited by T. Akazawa, K. Aoki and O. Bar-Yosef, pp. 405-421,
Plenum Press, New York, 1998.
Rampino, M.R., Supereruptions as a threat to civilizations on
Earth-like planets, Icarus, 156, 562-569, 2002.
Rampino, M.R. and S. Ambrose, Volcanic winter in the Garden of
Eden: The Toba supereruption and the late Pleistocene human
population crash, in Volcanic hazards and disasters in human
antiquity, edited by F.W. McCoy and G. Heiken, pp. 71-82,
Geological Society of America, Special Paper, 345, 2000.
FEDELE ET AL. 323
75963_301-328.qxd 10/7/2003 2:38 PM Page 323
Rampino, M.R. and S. Self, Sulphur-rich volcanic eruptions and
stratospheric aerosol, Nature, 310, 677-679, 1984.
Rampino, M.R. and S. Self, Volcanic winter and accelerated
glaciation following the Toba super-eruption, Nature, 359, 50-
52, 1992.
Rampino, M.R. and S. Self, Climate-volcanism feedback and the
Toba eruption of ca. 74,000 years ago, Quat. Res., 40, 269-280,
1993.
Ramrath, A., B. Zolitschka, S. Wulf and J.F.W. Negendank, Late
Pleistocene climatic variations as recorded in two Italian maar
lakes (Lago di Mezzano, Lago Grande di Monticchio), Quat.
Sci. Rev., 18, 977-992. 1999
Richter, D., J. Waiblinger, W.J. Rink and G.A. Wagner,
Thermoluminescence, electron spin resonance and
14
C-dating
of the late Middle and early Upper Palaeolithic site of
Geißenklösterle Cave in southern Germany, J. Archaeol. Sci.,
27, 71-89, 2000.
Riel-Salvatore, J. and G.A. Clark, Grave markers. Middle and
Early Upper Paleolithic burials and the use of chronotypology in
contemporary Paleolithic research, Current Anthropology, 42,
449-479, 2001.
Robock, A., Volcanic eruptions and climate, Rev. Geophys., 38,
191-219, 2000.
Rosi, M. and A. Sbrana, The Phlegraean Fields, CNR, Quaderni
de “La ricerca Scientifica”, 114, Rome, 1987.
Rosi, M., L. Vezzoli, A. Castelmenzano and G. Greco, Plinian
pumice fall deposit of the Campanian Ignimbrite eruption
(Phlegraean Fields, Italy), J. Volc. Geotherm. Res., 91, 179-198,
1999.
Roucoux, K.H., N. Shackleton, L. Abreu, J. Schönfled and P.C.
Tzedakis, Combined marine proxy and pollen analyses reveal
rapid vegetation response to North Atlantic millennial-scale cli-
mate oscillations, Quat. Res., 55, 128-132, 2001.
Sánchez Goñi, M.F., I. Cacho, J.-L. Turon, J. Guiot, F.J. Sierro, J.-
P. Peypouquet, J.O. Grimalt and N.J. Shackleton, Synchroneity
between marine and terrestrial responses to millennial scale cli-
matic variability during the last glacial period in the
Mediterranean region, Clim. Dyn., 19, 95-105, 2002.
Sánchez Goñi, M.F., J.-L. Turon, F. Eynaud and S. Gendreau,
European Climatic Response to Millennial-Scale Changes in the
Atmosphere–Ocean System during the Last Glacial Period,
Quat. Res., 54, 394-403, 2000.
Scandone, R., F. Bellucci, L. Lirer and G. Rolandi, The structure of
the Campanian Plain and the activity of the Neapolitan volca-
noes (Italy), J. Volc. Geotherm. Res., 48, 1-31, 1991.
Schramm, A., M. Stein and S.L. Goldstein, Calibration of the
14
C
time scale to >40 ka by
234
U-
230
Th dating of Lake Lisan sedi-
ments (last glacial Dead Sea), Earth Planet. Sci. Lett., 175, 27-
40, 2000.
Schulz, H., U. von Road and H. Erlenkeuser, Correlations between
Arabian sea and Greenland climate oscillations of the past
110,000 years, Nature, 393, 54-57, 1998.
Schulz, H., K.-C. Emeis, H. Erlenkeuser, U. von Rad and C. Rolf,
The Toba Volcanic Event and Interstadial/Stadial Climates at the
Marine Isotopic Stage 5 to 4 Transition in the Northern Indian
Ocean, Quat. Res., 57, 22-31, 2002.
Seymour, K. and K. Christanis, Correlation of tephra layer in west-
ern Greece with a Late Pleistocene eruption in the Campanian
province of Italy, Quat. Res., 43, 46-54. 1995.
Signorelli, S., G. Vaggelli, L. Francalanci and M. Rosi, Origin of
magmas feeding the Plinian phase of the Campanian Ignimbrite
eruption, Phlegrean Fields (Italy): constraints based on matrix-
glass and glass-inclusion compositions, J. Volc. Geotherm. Res.,
91, 199-220, 1999.
Smith, F.H., A.B. Falsetti and T. Simmons, Circum-mediterranean
biological connections and the pattern of late Pleistocene human
evolution, in Man and environment in the Paleolithic, edited by
H. Ullrich, pp. 197-207, Université de Liège (ERAUL, 62),
Liège, 1995.
Sparks, R.S.J., and T.C. Huang, The volcanological significance of
deep-sea ash layers associated with ignimbrites, Geol. Magaz.,
117(5), 425-436, 1980.
Stiner, M.C., Honor among thieves. A zooarchaeological study of
Neandertal ecology, Princeton University Press, Princeton, NJ,
1994.
Stoner, J.S., C. Laj, J.E.T. Channel and C. Kissel, South Atlantic
and North Atlantic geomagnetism paleointensity stacks (0-80
ka): implications for inter-hemispheric correlation, Quat. Sci.
Rev., 21, 1141-1151, 2002.
Straus, L.G. and O. Bar-Yosef, Out of Africa in the Pleistocene,
Quat. Int., 75, 1-124, 2001.
Stringer, C. and W. Davies, Those elusive Neanderthals, Nature,
413, 791-792, 2001.
Stuiver, M. and P.J. Reimer, Extended
14
C data base and revised
CALIB 3.0
14
C age calibration program, Radiocarbon, 35, 215-
230, 1993.
Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, G.S. Burr, K.A.
Hughen, B. Kromer, G. McCormac, J. van der Plicht and M.
Spurk, INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal
BP, Radiocarbon, 40, 1041-1083, 1998.
Thouveny, N., J.-L. de Beaulieu, E. Bonifay, K.M. Creer, J. Guiot,
M. Icole, S. Johnsen, J. Jouzel, M. Reille, T. Williams and D.
Williamson, Climate variations in Europe over the past 140 kyr
deduced from rock magnetism, Nature, 371, 503-506, 1994.
Thouveny, N., E. Moreno, D. Delanghe, L. Candon, Y. Lancelot
and N.J. Shackleton, Rock magnetic detection of distal ice-raft-
ed debris: clue for the identification of Heinrich layers on the
Portuguese margin, Earth Planet. Sci. Lett., 180, 61-75, 2000.
Thunnel, R., A. Federman, S. Sparks and D. Williams, The origin
and volcanological significance of the Y-5 ash layer in the
Mediterranean, Quat. Res., 12, 241-253, 1979.
Ton-That, T., B. Singer and M. Paterne, 40Ar/39Ar dating of latest
Pleistocene (41 ka) marine tephra in the Mediterranean Sea:
implications for global climate records, Earth Planet. Sci. Lett.,
184, 645-658, 2001
Tric, E., J.-P. Valent, P. Tucholka, M. Paterne, L. Labeyrie, F.
Guichard, L. Tauxe and M. Fontugne, Paleointensity of the geo-
magnetic field during the last 80,000 years, J. Geophys. Res.,
97, 9337-9351, 1992.
Upton, J., P. Cole, P. Shaw, A. Szakacs and I. Seghedi, Correlation
of tephra layers found in southern Romania with the Campanian
Ignimbrite (~37ka) eruption, in The Quaternary Research
324 CAMPANIAN IGNIMBRITE ERUPTION AND PALAEOLITHIC CHANGE
75963_301-328.qxd 10/7/2003 2:38 PM Page 324
Association and First Postgraduate Paleo-environmantal
Symposium, Universiteit van Amsterdam, 36, Amsterdam, 2002.
Van Andel, T. and P. Tzedakis, Palaeolithic landscapes of Europe
and environs, 150,000-25,000 years ago: an overview, Quat.
Sci. Rev., 115, 481-500, 1996.
Vidal, L., L. Labeyrie, E. Cortijo, M. Arnold, J.C. Duplessy, E.
Miche, S. Bequé and T.C.E. van Veering, Evidence for changes
in the North Atlantic deep water linked to meltwater surges dur-
ing Heinrich events, Earth Planet. Sci. Lett., 146, 13-27, 1997.
Voelker, A.H.L., M. Sarthein, P.M. Grootes, H. Erlenkeuser, C.
Laj, A. Mazaud, M.-J. Nadeau and M. Schleischer, Correlation
of marine
14
C ages from the Nordic seas with the GISP2 isotope
record: implications for radiocarbon calibration beyond 25 ka,
Radiocarbon, 40, 517-534, 1998.
Voelker, A.H.L., P.M. Grootes, M.-J. Nedeau and M. Sarnthein,
Radiocarbon levels in the Iceland Sea from 25-53 kyr and their
link to the earth’s magnetic field intensity, Radiocarbon, 42,
437-452, 2000.
Voelker, A., Global distribution of centennial-scale records for
Marine Isotope Stage (MIS) 3: a database, Quat. Sci. Rev., 21,
1185-1212, 2002.
Vogel, J.C. and J. Kronfeld, Caibration of radiocarbon dates for the
late Pleistocene using U/Th dates on stalagmites, Radiocarbon,
39, 27-32, 1997.
Volman, T., Early prehistory of Southern Africa, in Southern
African prehistory and paleoenvironments, edited by R.G.
Klein, pp. 169-220, A.A. Balkema, Rotterdam, 1984.
Vrba E.S., G.H. Denton, T.C. Partridge and L.H. Burckle,
Paleoclimate and evolution, with emphasis on human origins,
Yale University Press, New Haven, CT, 1995.
Wagner, G., J. Beer, C. Laj, C. Kissel, J. Masarik, R. Muscheler and
H.-A. Synal, Chlorine-36 evidence for Mono Lake event in the
Summit GRIP ice core, Earth Planet. Sci. Lett., 181, 1-6, 2000.
Walker, M.J.C., S. Björck, J.J. Lowe, L.C. Cwynar, S. Johnsen, K.-
L. Knudsen, B. Wohlfarth and INTIMATE group, Isotopic
‘events’ in the GRIP ice core: a stratotype for the Late
Pleistocene, Quat. Sci. Rev., 18, 1143-1150, 1999.
Watts, I., The origin of symbolic culture, in The evolution of cul-
ture. An interdisciplinary view, edited by R. Dunbar, C. Knight
and C. Power, pp. 113-146, Edinburgh University Press,
Edinburgh, 1999.
Watts, W.A., J.R.M. Allen and B. Huntley, Vegetation history and
palaeoclimate of the last glacial period of Lago Grande di
Monticchio, southern Italy, Quat. Sci. Rev., 15, 133-153, 1996.
Watts, W.A., J.R.M. Allen and B. Huntley, Palaeoecology of three
interstadial events during oxygen-isotope stages 3 and 4: a
lacustrine record from Lago Grande di Monticchio, southern
Italy, Palaeo. Palaeo. Palaeo., 155, 83-93, 2000.
Wolpoff, M.H., J. Hawks, D.W. Frayer and K. Hunley, Modern
human ancestry at the peripheries: a test of the replacement the-
ory, Science, 291, 293-297, 2001.
Woods, A.W. and K. Wohletz, Dimension and dynamics of co-ign-
imbrite eruption columns, Nature, 350, 225-227, 1991.
Yiou, F., G.M. Raisbeck, S. Baumgartner, J. Beer, C. Hammer, S.
Johensen, J. Jouzel, P.W. Kubik, J. Lestringuez, M. Stévenard,
M. Suter and P. Yiou, Beryllium 10 in Greenland Ice Core
Project ice core at Summit, Greenland, J. Geophys. Res., 102,
26,783-26,794, 1997.
Zielinski, G.A., Stratosphric loading and optical depth estimates of
sxplosive volcanism over the last 2100 years derived from the
Greenland Ice Sheet Project 2 ice core, J. Geophys. Res., 100,
20,937-20,955, 1995.
Zielinski, G.A., Use of paleo-records in determining variability
within the volcanism-climate system, Quat. Sci. Rev. 19, 417-
438, 2000.
Zielinski, G.A., P.A. Mayewski, L.D. Meeker, S.I. Whitlow, M.S.
Twickler, M. Morrison, A.J. Gow and R.B. Alley, Record of vol-
canism since 7000 B.C. from the GISP2 Greenland ice core and
implications for volcano-cimate system, Science, 264, 948-951,
1994.
Zielinski, G.A., P.A. Mayewski, L.D. Meeker, K. Grönvold, M.S.
Germani, S.I. Whitlow, M.S. Twickler and K.C. Taylor, Volcanic
aerosol records and tephrochronology of the Summit,
Greenland, ice cores, J. Geophys. Res., 102, 26,625-26,640,
1997.
Zielinski, G.A., P.A. Mayewski, L.D. Meeker, S.I. Whitlow and
M.S. Twickler, A 110,000-yr record of explosive volcanism
from the GISP2 (Greenland) ice core, Quat. Res., 45, 109-118,
1996a.
Zielinski, G.A., P.A. Mayewski, L.D. Meeker, S.I. Whitlow and
M.S. Twickler, Potential atmospheric impact of the Toba mega-
eruption ~71,000 years ago, Geophys. Res. Lett., 23, 837-840,
1996b.
Zilhão, J. and F. D’Errico, The chronology and taphonomy of the
earliest Aurignacian and its implications for the understanding
of Neandertal extinction, J. World Prehist., 13, 1-68, 1999.
Zilhão, J. and F. D’Errico, La nouvelle “bataille aurignacienne.”
Une révision critique de la chronologie du Châtelperronien et de
l’Aurignacien ancien , L’Anthropologie, 104, 17-50, 2000.
Zolitschka, B. and J.F.W. Negendank, Sedimentology, dating and
palaeoclimatic interpretation of a 76.3 ka record from Lago
Grande di Monticchio, southern Italy, Quat. Sci. Rev., 15, 101-
112, 1996.
F. G. Fedele, Sezione e Museo di Antropologia, Università di
Napoli Federico II, via Mezzocannone 8, 80134 Naples, Italy (email:
ffedele01@yahoo.it)
B. Giaccio, Istituto di Geologia Ambientale e Geoingegneria,
Consiglio Nazionale delle Ricerche, via del Fosso del Cavaliere 100,
00133 Rome, Italy (email: giaccio@irtr.rm.cnr.it)
R. Isaia and G. Orsi, Osservatorio Vesuviano, Istituto Nazionale di
Geofisica e Vulcanologia, via Diocleziano 328, 80124 Naples, Italy
(
isaia@ingv.it; orsi@ingv.it).
FEDELE ET AL. 325
75963_301-328.qxd 10/7/2003 2:38 PM Page 325
75963_301-328.qxd 10/7/2003 2:38 PM Page 326
75963_301-328.qxd 10/7/2003 2:38 PM Page 327
75963_301-328.qxd 10/7/2003 2:38 PM Page 328