Highly Efficient Transfection of Rat Cortical Neurons Using Carbosilane Dendrimers Unveils a Neuroprotective Role for HIF-1α in Early Chemical Hypoxia-Mediated Neurotoxicity

Departamento de Ciencias Médicas, Unidad Asociada Neurodeath, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006, Albacete, Spain.
Pharmaceutical Research (Impact Factor: 3.42). 03/2009; 26(5):1181-91. DOI: 10.1007/s11095-009-9839-9
Source: PubMed


To study the effect of a non-viral vector (carbosilane dendrimer) to efficiently deliver small interfering RNA to postmitotic neurons to study the function of hypoxia-inducible factor-1alpha (HIF1-alpha) during chemical hypoxia-mediated neurotoxicity.
Chemical hypoxia was induced in primary rat cortical neurons by exposure to CoCl(2). HIF1-alpha levels were determined by Western Blot and toxicity was evaluated by both MTT and LDH assays. Neurons were incubated with dendriplexes containing anti-HIF1-alpha siRNA and both uptake and HIF1-alpha knockdown efficiency were evaluated.
We report that a non-viral vector (carbosilane dendrimer) can deliver specific siRNA to neurons and selectively block HIF1-alpha synthesis with similar efficiency to that achieved by viral vectors. Using this method, we have found that this transcription factor plays a neuroprotective role during the early phase of chemical hypoxia-mediated neurotoxicity.
This work represents a proof-of-concept for the use of carbosilane dendrimers to deliver specific siRNA to postmitotic neurons to block selected protein synthesis. This indicates that this type of vector is a good alternative to viral vectors to achieve very high transfection levels in neurons. This also suggests that carbosilane dendrimers might be very useful for gene therapy.

Download full-text


Available from: Inmaculada Posadas, Oct 15, 2014
  • Source
    • "Exposing macrophages to this dendrimer or dendrimer/siRNA complex caused multiple gene expression changes, principally affecting immune system, proliferation, and transcription regulation pathways, but no specific action of random siRNA was detected [59]. Posadas et al. reported that carbosilane dendrimer 2G-NN16 delivered specific siRNA to neurons and selectively blocked HIF1-α synthesis with similar efficiency to that achieved by viral vectors [60]. Later Jiménez et al. evaluated the 2G-NN16 as a vector for delivering siRNA to HIV-infected human astrocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term "gene silencing." One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.
    Full-text · Article · Oct 2013 · The Scientific World Journal
  • Source
    • "Next, the culture medium was removed and the insoluble formazan crystals were dissolved in 300 μL DMSO. Aliquots (50 μL) from each well were then transferred to a 96-well microplate, diluted with 150 μL DMSO and measured spectrophotometrically in an ELISA reader (Microplate Reader 2001, Bio-Whittaker) at reference wavelengths of 570 nm and 630 nm as previously described [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-x(L) did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source
    • "Photomicroscopy was performed using a Leica DC500 camera and transfection efficiency was calculated as previously described (Posadas et al. 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: J. Neurochem. (2012) 120, 259–268. Autophagy is an important process which plays a key role in cellular homeostasis by degrading cytoplasmic components in the lysosomes, which facilitates recycling. Alterations to normal autophagy have been linked to excitotoxicity, but the mechanisms governing its signal transduction remain unclear. The aim of this study was to explore the role of autophagy in neuronal excitotoxic death by delivering small interfering RNA (siRNA) to rat cortical neurons, using a dendrimer to silence the autophagy-related gene 6 (beclin 1) and to determine the role of autophagy in excitotoxicity. We have found that the dendrimer is very efficient to deliver siRNA to rat cortical neurons, leading to almost complete removal of the target protein Beclin 1. In addition, NMDA increases autophagy markers, such as the protein levels of Beclin 1, the microtubule-associated light chain 3 (LC3) B-II/LC3B-I ratio, and monodansylcadaverine (MDC) labeling in rat cortical neurons. Moreover, NMDA also increases the formation of autophagosomes observed under a transmission electron microscope. Silencing beclin 1 expression blocked NMDA-induced autophagy. Moreover, Beclin 1 removal potentiated NMDA-induced neuronal death indicating that autophagy plays a protective role during excitotoxicity and suggesting that targeting autophagy might be a helpful therapeutic strategy in neurodegenerative diseases.
    Full-text · Article · Jan 2012 · Journal of Neurochemistry
Show more