Human sperm quality and lipid content after migration into normal ovulatory human cervical mucus containing low numbers of leukocytes

Laboratory of Reproductive Biology/CECOS (Center of Study and Conservation of human Eggs and Sperm), Cochin Hospital, René Descartes University, Paris 75014, France.
Asian Journal of Andrology (Impact Factor: 2.6). 02/2009; 11(3):308-16. DOI: 10.1038/aja.2008.25
Source: PubMed


The aim of this study was to investigate whether a relationship exists between the presence of low numbers of leukocytes in normal ovulatory cervical mucus and sperm quality and lipid content after migration. The percentages of live, motile and morphologically normal spermatozoa, movement parameters assessed by computer-aided sperm analysis (CASA), and ionophore-induced acrosome reaction measured by flow cytometry were determined before and after migration. High-performance liquid chromatography with ultraviolet detection was used to measure the sperm lipid content, including the various diacyl subspecies. The number of leukocytes found in solubilized mucus samples was counted using a haemocytometric method. Overall, the presence of leukocytes in the cervical mucus samples did not significantly influence sperm motility and morphology, sperm kinematic parameters, or the sperm content in sphingomyelin or cholesterol. In contrast, after migration, the decrease in various sperm diacyls and the level of induced acrosome reaction was significantly less pronounced in mucus samples containing>or=10(4) leukocytes than in mucus samples with no or rare leukocytes whereas the level of induced acrosome reaction was higher. The present data suggest that the low level of leukocytes found in normal ovulatory cervical mucus could influence the process of sperm lipid remodelling/capacitation.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatozoa are constantly exposed to the interphase between oxidation through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions as being the only cells with such high polarization and exerting their functions outside the body, even in a different individual, the female genital tract, the membranes of these cells are chemically composed of an extraordinary high amount of polyunsaturated fatty acids. This in turn, renders them very susceptible to oxidative stress, which is defined as an imbalance between oxidation and reduction towards the oxidative status. As a result, ROS deriving from both leukocytes and the male germ cells themselves cause a process called 'lipid peroxidation' and other damages to the sperm cell. On the other hand, a certain limited amount of ROS is essential in order to trigger vital physiological reactions in cells, including capacitation or the acrosome reaction in sperm. The treatment of patients with antioxidants to compensate the oxidative status caused by oxidative stress is highly debated as uncontrolled antioxidative treatment might derail the system towards the reduced status, which is also unphysiological and can even induce cancer. This paradox is called the 'antioxidant paradox'. Therefore, a proper andrological diagnostic work-up, including the evaluation of ROS levels and the antioxidant capacity of the semen, has to be carried out beforehand, aimed at keeping the fine balance between oxidation and scavenging of vital amounts of ROS.
    Full-text · Article · Nov 2010 · Asian Journal of Andrology