DLG3/SAP102 protein expression in malformations of cortical development: A study of human epileptic cortex by tissue microarray

Department of Neuroscience, Neurology, Uppsala University Hospital, Sweden.
Epilepsy research (Impact Factor: 2.02). 02/2009; 84(1):33-41. DOI: 10.1016/j.eplepsyres.2008.12.004
Source: PubMed


The human DLG3 gene encodes the synapse-associated protein 102 (SAP102), which is concentrated in the postsynaptic densities of excitatory synapses and involved in receptor-mediated synaptic transmission via binding to the NR2B subunit of the NMDA receptor. In this study, we investigated the expression and cellular distribution of the DLG3/SAP102 protein in human epileptic cortex. Tissue microarrays of a large number of specimens from patients operated for medically intractable epilepsy were used for immunohistochemical screening with anti-DLG3 antibody. The cellular distribution of the protein was further investigated in samples of malformations of cortical development, and the amount of DLG3 protein in the total homogenate and in the postsynaptic membrane fraction of these samples was quantified by Western blot. We found a strictly neuronal expression of DLG3/SAP102 in epileptogenic cortex as well as in non-epileptic human cortex used for control. In focal cortical dysplasia and tuberous sclerosis complex, the protein was expressed in most neurons including dysplastic neurons, but not in giant cells. Increased expression of DLG3 protein was observed in the postsynaptic membrane fraction of patients with focal cortical dysplasia. Double-labeling experiments confirmed the exclusive neuronal character of the DLG3 expressing cells and the co-localization of the DLG3 protein with the NR2B subunit. Our results suggest a putative role for DLG3/SAP102 in cortical hyperexcitability and epileptogenicity of malformations of cortical development.

Download full-text


Available from: Karin Boer, May 11, 2015
  • Source
    • "Although these posttranslational changes need to be further investigated, our results clearly highlight the NMDA receptor complex as a key component of the synaptic remodelling in MAM–PILO rat brains. NMDA up-regulation was previously described in the dysplastic neurons of epileptic patients with focal cortical dysplasia (Mikuni et al., 1999; Najm et al., 2000; Moddel et al., 2005; Finardi et al., 2006), thus indicating that the association of malformed neurons and NMDA abnormalities is a biological marker of the epileptic malformed brain in both experimental settings and humans (Qu et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
    Full-text · Article · Apr 2011 · Brain
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-methyl-D-aspartate (NMDA) receptor-evoked excitotoxicity contributes to region-specific loss of glutamatergic synapses responsible for cognitive decline in Alzheimer's disease (AD). Here, the post-synaptic scaffold proteins PSD-95 and SAP-102, which regulate NMDA receptor synaptic activity and expression, were investigated in human AD autopsy brain tissue. Using absolute quantification real-time PCR, we detected reduced expression of synaptophysin in both the pathologically susceptible inferior temporal cortex and hippocampus, consistent with previous reports. PSD-95 and SAP-102 mRNA was reduced, albeit not significantly. Proteins were precisely quantified against recombinant truncated protein standards. No differences were observed for proteins in AD spared occipital cortex between AD cases and controls. PSD-95 and SAP-102 protein expression was markedly reduced in the AD inferior temporal cortex. Both mRNA and protein levels were reduced according to disease severity. SAP102 protein levels were significantly reduced in AD subjects carrying a copy of the APOEε4 allele. This is the first study to investigate SAP-102 in the aging human brain and suggest a possible mechanism for NMDA receptor expression aberrations in AD.
    Full-text · Article · Jan 2010 · Journal of Alzheimer's disease: JAD
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized clinically by an insidious decline in cognition. Much attention has been focused on proposed pathogenic mechanisms that relate Aβ plaque and neurofibrillary tangle pathology to cognitive symptoms, but compelling evidence now identifies early synaptic loss and dysfunction, which precede plaque and tangle formation, as the more probable initiators of cognitive impairment. Glutamate-mediated transmission is severely altered in AD. Glutamate receptor expression is most markedly altered in regions of the AD brain that show the greatest pathological changes. Signaling via glutamate receptors controls synaptic strength and plasticity, and changes in these parameters are likely to contribute to memory and cognitive deficits in AD. Glutamate receptor expression and activity are modulated by interactions with post-synaptic scaffolding proteins that augment the strength and direction of signal cascades initiated by glutamate receptor activity. Scaffold proteins offer promising targets for more focused and effective drug therapy. In consequence, interest is developing into the roles these proteins play in neurological disease. In this review we discuss disruptions to excitatory neurotransmission at the level of glutamate receptor-post-synaptic scaffolding protein interactions that may contribute to synaptic dysfunction in AD.
    Full-text · Article · Mar 2011 · Progress in Neurobiology
Show more