Identification of Human CYP2C8 as a Retinoid-Related Orphan Nuclear Receptor Target Gene

Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 02/2009; 329(1):192-201. DOI: 10.1124/jpet.108.148916
Source: PubMed


Retinoid-related orphan nuclear receptors (RORs) alpha and gamma (NR1F1, -3) are highly expressed in liver, adipose tissue, thymus, and brain and are involved in many physiological processes, such as circadian rhythm and immune function. Enzymes in the cytochrome P450 2C subfamily metabolize many clinically important drugs and endogenous compounds, such as the anticancer drug paclitaxel and arachidonic acid, and are highly expressed in liver. Here, we present the first evidence that RORs regulate the transcription of human CYP2C8. Overexpression of RORalpha and RORgamma in HepG2 cells significantly enhanced the activity of the CYP2C8 promoter but not that of the CYP2C9 or CYP2C19 promoters. Computer analyses, promoter deletion studies, gel shift assays, and mutational analysis identified an essential ROR-responsive element at -2045 base pairs in the CYP2C8 promoter that mediates ROR transactivation. Adenoviral overexpression of RORalpha and -gamma significantly induced endogenous CYP2C8 transcripts in both HepG2 cells and human primary hepatocytes. Knockdown of endogenous RORalpha and -gamma expression in HepG2 cells by RNA interference decreased the expression of endogenous CYP2C8 mRNA by approximately 50%. These data indicate that RORs transcriptionally up-regulate CYP2C8 in human liver and, therefore, may be important modulators of the metabolism of drugs and physiologically active endogenous compounds by this enzyme in liver and possibly extrahepatic tissues where RORs are expressed.

Download full-text


Available from: Anton M Jetten
  • Source
    • "However, RORα also plays an important role in regulation of metabolism [10]. Several studies have identified genes important in regulation of lipid and glucose metabolism as RORα target genes including apolipoprotein A1 [11], Cyp2C8 [12], Cyp7b1 [13] and glucose 6-phosphatase [14]. Staggerer (sg/sg) mice that have an inactivating mutation in the Rora gene display metabolic abnormalities including decreased serum cholesterol [15] and plasma triglycerides [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinoic acid receptor-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.
    Full-text · Article · Apr 2012 · PLoS ONE
  • Source
    • "To date, there was not published any paper dealing with the role of TR or RAR in CYP2C genes expression. Recently, it was demonstrated that CYP2C8 is a target gene for retinoidrelated orphan nuclear receptor (ROR) [302]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid receptors (RARs), retinoid X receptors (RXRs) and thyroid hormone receptors (TRs) are nuclear receptors that are crucial transcriptional regulators of many cellular processes such as differentiation, development, apoptosis, carbohydrate and lipid metabolism, homeostasis etc. In addition, RXRs are common heterodimerization partners for several receptors including vitamin D receptor, pregnane X receptor (PXR), constitutive androstane receptor (CAR) etc. In the course of 90s', PXR and CAR were discovered as key xenosensors regulating drug-metabolizing enzymes. Since there exist various cross-talks between cell signaling pathways, this was not surprising that RXRs, RARs and TRs were identified as regulators of human drug-metabolizing cytochromes P450 and cytochromes P450 involved in metabolism of endogenous compounds. Hence, a link between regulation of xenobiotic metabolizing enzymes and regulatory pathways of intermediary metabolism was established. Additionally, several drug-metabolizing enzymes are involved in metabolism of retinoids, rexinoids and thyroid hormones. In the current paper, we summarize the knowledge on the role of RARs, RXRs and TRs in the regulation of drug metabolizing cytochromes P450, and vice versa on the role of P450s in homeostasis of retinoids, rexinoids and thyroid hormone.
    Full-text · Article · Mar 2011 · Current Drug Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORalpha, -beta, and -gamma (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORalpha plays a critical role in the development of the cerebellum, that both RORalpha and RORbeta are required for the maturation of photoreceptors in the retina, and that RORgamma is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORgamma in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
    Full-text · Article · Feb 2009 · Nuclear Receptor Signaling
Show more