Article

Student Solutions Manual to accompany Fundamentals of Physics,7th Edition

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Work more effectively and check solutions as you go along with the text! This Student Solutions Manual that accompanies Fundamentals of Physics, 7th Edition, provides readers with complete, worked-out solutions to 30% of the end-of-chapter problems. These problems are indicated in the text by an ssm icon. No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style this Seventh Edition offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving. This book offers a unique combination of authoritative content and stimulating applications.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
The global demand for energy is significantly impacted by the consumption patterns within the building sector. As such, the importance of energy simulation and prediction is growing exponentially. This research leverages Building Information Modelling (BIM) methodologies, creating a synergy between traditional software methods and algorithm-driven approaches for comprehensive energy analysis. The study also proposes a method for monitoring select energy management factors, a step that could potentially pave the way for the integration of digital twins in energy management systems. The research is grounded in a case study of a newly constructed educational building in New South Wales, Australia. The digital physical model of the building was created using Autodesk Revit, a conventional software for BIM methodology. EnergyPlus, facilitated by OpenStudio, was employed for the traditional software-based energy analysis. The energy analysis output was then used to develop preliminary algorithm models using regression strategies in Python. In this regression analysis, the temperature and relative humidity of each energy unit were used as independent variables, with their energy consumption being the dependent variable. The sigmoid algorithm model, known for its accuracy and interpretability, was employed for advanced energy simulation. This was combined with sensor data for real-time energy prediction. A basic digital twin (DT) example was created to simulate the dynamic control of air conditioning and lighting, showcasing the adaptability and effectiveness of the system. The study also explores the potential of machine learning, specifically reinforcement learning, in optimizing energy management in response to environmental changes and usage conditions. Despite the current limitations, the study identifies potential future research directions. These include enhancing model accuracy and developing complex algorithms to boost energy efficiency and reduce costs.
Article
We consider the motion of a charged ring in the presence of the electric field produced by an infinite line of charge. We first introduce a clock based on small oscillations of the ring which oscillates with a period in the range of seconds. The same system is next considered beyond the small angle approximation, an integrable problem in classical mechanics. The partition function for an ensemble of these oscillators is also obtained, making the system a fruitful playground for courses in thermodynamics and statistical mechanics. Finally, we consider purely spinning motion of the ring to gain insight into the effective mass, a concept useful in condensed matter physics.
Article
Full-text available
The temperature dependence of the dielectric permittivity is taken into account to study the energy change in a capacitor that follows a cycle between a cold and a hot thermal reservoirs. There is a net energy gain in the process that, in principle, can be transformed into usable work. The article is simple enough as to be used with keen undergraduates that have taken a university general physics or thermodynamics course. Further experimental work and a possible technological application are suggested.
Article
Full-text available
In a series of letters we present teaching videos on topics where the learners of physics used to have problems. The first video presents an experimental set-up by which the absorption lines (D 1 , D 2) of sodium can be resolved simultaneous with the emission lines. The second video allows us to determine their wavelengths in comparison with calibrated spectral lines of mercury. This type of multimedia should not replace the real demonstration experiment, but is of good support for a long distant learner or for simply reading a textbook.
Article
Full-text available
We use the arithmetic-geometric mean to derive approximate solutions for the period of the simple pendulum. The fast convergence of the arithmetic-geometric mean yields accurate solutions. We also discuss the invention of the pendulum clock by Christiaan Huygens in 1656–1657.
ResearchGate has not been able to resolve any references for this publication.