The Internally Truncated LRP5 Receptor Presents a Therapeutic Target in Breast Cancer

Department of Surgical Sciences, Endocrine Unit, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
PLoS ONE (Impact Factor: 3.23). 02/2009; 4(1):e4243. DOI: 10.1371/journal.pone.0004243
Source: PubMed


Breast cancer is a common malignant disease, which may be caused by a number of genes deregulated by genomic or epigenomic events. Deregulated WNT/beta-catenin signaling with accumulation of beta-catenin is common in breast tumors, but mutations in WNT signaling pathway components have been rare. An aberrantly spliced internally truncated LRP5 receptor (LRP5Delta666-809, LRP5Delta) was shown recently to be resistant to DKK1 inhibition, and was required for beta-catenin accumulation in hyperparathyroid tumors and parathyroid tumor growth.
Here we show, by reverse transcription PCR and Western blot analysis, that LRP5Delta is frequently expressed in breast tumors of different cancer stage (58-100%), including carcinoma in situ and metastatic carcinoma. LRP5Delta was required in MCF7 breast cancer cells for the non-phosphorylated active beta-catenin level, transcription activity of beta-catenin, cell growth in vitro, and breast tumor growth in a xenograft SCID mouse model. WNT3 ligand, but not WNT1 and WNT3A augmented the endogenous beta-catenin activity of MCF7 cells in a DKK1-insensitive manner. Furthermore, an anti-LRP5 antibody attenuated beta-catenin activity, inhibited cell growth, and induced apoptosis in LRP5Delta-positive MCF7 and T-47D breast cancer cells, but not in control cells.
Our results suggest that the LRP5Delta receptor is strongly implicated in mammary gland tumorigenesis and that its aberrant expression present an early event during disease progression. LRP5 antibody therapy may have a significant role in the treatment of breast cancer.

Download full-text


Available from: Anna-Karin Olsson
  • Source
    • "Three cell lines (CMT1, CMT-U27 and CMT9) showed high TCF-reporter activity. Four cell lines (P114, CHMp, CNMp and CNMm) showed moderate reporter activity comparable to previously reported activity in human mammary cell lines [24], [25]. The remaining five cell lines (CMT-U229, CMT-U335, CHMm, CIPp and CIPm) with the TOP/FOP ratio around 1, lacked canonical Wnt activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    • "Others, termed oncomiRs, function in a cancer-supportive or inductive manner by down-regulating tumor-suppressors such as p53 [12],[13] and inducing proliferation and/or metastasis. The canonical Wnt/β-catenin pathway is often found to be elevated in gastrointestinal, breast and colon cancers among others and there is strong evidence for a role of hyper-activated Wnt signaling in cancer initiation and progression [14],[15],[16],[17],[18]. The key element of Wnt signaling is the transcriptional co-activator role of β-catenin, whose level is tightly controlled by a destruction complex including a scaffold protein, Axin-1, APC, and GSK-3β, a kinase that phosphorylates β-catenin, which results in its ubiquitination and subsequent proteasomal degradation [18],[19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRs) and the canonical Wnt pathway are known to be dysregulated in human cancers and play key roles during cancer initiation and progression. To identify miRs that can modulate the activity of the Wnt pathway we performed a cell-based overexpression screen of 470 miRs in human HEK293 cells. We identified 38 candidate miRs that either activate or repress the canonical Wnt pathway. A literature survey of all verified candidate miRs revealed that the Wnt-repressing miRs tend to be anti-oncomiRs and down-regulated in cancers while Wnt-activating miRs tend to be oncomiRs and upregulated during tumorigenesis. Epistasis-based functional validation of three candidate miRs, miR-1, miR-25 and miR-613, confirmed their inhibitory role in repressing the Wnt pathway and suggest that while miR-25 may function at the level of â-catenin (β-cat), miR-1 and miR-613 act upstream of β-cat. Both miR-25 and miR-1 inhibit cell proliferation and viability during selection of human colon cancer cell lines that exhibit dysregulated Wnt signaling. Finally, transduction of miR-1 expressing lentiviruses into primary mammary organoids derived from Conductin-lacZ mice significantly reduced the expression of the Wnt-sensitive β-gal reporter. In summary, these findings suggest the potential use of Wnt-modulating miRs as diagnostic and therapeutic tools in Wnt-dependent diseases, such as cancer.
    Full-text · Article · Oct 2011 · PLoS ONE
  • Source
    • "Wnt5a, which negatively regulates β-catenin activity during mammary development, is lost in a proportion of human infiltrating (or invasive) ductal carcinoma and is a powerful predictor of recurrence [135]. FRZ1 and FRZ2 upregulation occurs and a splicing mutation in LRP5 that induced β-catenin activity was found in 85% of tumors [136,137]. Two studies have reported increased LRP6 expression in human breast cancer, particularly in triple-negative basal-like subtypes [40,102]. One study showed that Mesd, an inhibitor of Lrp5/6 folding, suppressed growth of MMTV-Wnt1 tumors despite the presence of excess ligand and without adverse effects on normal Wnt-driven processes, suggesting that Lrp6 may have potential as a therapeutic target [102]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer.
    Preview · Article · Nov 2010 · Breast cancer research: BCR
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.