Mood Influences Supraspinal Pain Processing Separately from Attention

Alan Edwards Centre for Research on Pain, McGill University, Montréal, Québec, Canada.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 02/2009; 29(3):705-15. DOI: 10.1523/JNEUROSCI.3822-08.2009
Source: PubMed


Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.

Full-text preview

Available from:
  • Source
    • "In human imaging studies, activity in the anterior cingulate cortex (ACC) has consistently been reported following acute noxious stimulation (Apkarian et al., 2005) and the magnitude of the ACC activation correlates with subjective unpleasantness (Rainville et al., 1997). The ACC activity is also known to correlate with pain experience during emotional and cognitive tasks (Villemure and Bushnell, 2009, Bushnell et al.,Wager et al., 2004). Positron emission tomography (PET) imaging with opioid radiotracers suggest a major role for endogenous opioids in the ACC in reducing affective aspects of pain (Zubieta et al., 2001, Wager et al., 2007, Zubieta and Stohler, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pain is an important public health problem that negatively impacts quality of life of affected individuals and exacts enormous socio-economic costs. Chronic pain is often accompanied by comorbid emotional disorders including anxiety, depression and possibly anhedonia. The neural circuits underlying the intersection of pain and pleasure are not well understood. We summarize recent human and animal investigations demonstrating that aversive aspects of pain are encoded in brain regions overlapping with areas processing reward and motivation. We highlight findings revealing anatomical and functional alterations of reward/motivation circuits in chronic pain. Finally, we review supporting evidence for the concept that pain relief is rewarding and activates brain reward/motivation circuits. Adaptations in brain reward circuits may be fundamental to the pathology of chronic pain. Knowledge of brain reward processing in the context of pain could lead to the development of new therapeutics for the treatment of emotional aspects of pain and comorbid conditions. This article is protected by copyright. All rights reserved.
    Full-text · Article · Jan 2016 · The Journal of Comparative Neurology
  • Source
    • "Several studies have suggested that the analgesic effect of music (or musicinduced analgesia) may be secondary to cognitive and emotional effects that arise from listening to music: distraction from the pain, pleasantness, and pleasure, memory evoked emotions and relaxation (Mitchell et al., 2006; Juslin and Västfjäll, 2008; Roy et al., 2008, 2009; Wiech and Tracey, 2009; Bernatzky et al., 2011; Salimpoor et al., 2011). Distraction is a well-known cognitive analgesic mechanism (Tracey et al., 2002; Villemure and Bushnell, 2009) that is present when listening to music. Also, listening to music has been related to dopamine release from the caudate and the nucleus accumbens (Salimpoor et al., 2011), and dopamine itself is know to have a role in central analgesia (Wood, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The pain in Fibromyalgia (FM) is difficult to treat and functional mobility seems to be an important comorbidity in these patients that could evolve into a disability. In this study we wanted to investigate the analgesic effects of music in FM pain. Twenty-two FM patients were passively exposed to (1) self-chosen, relaxing, pleasant music, and to (2) a control auditory condition (pink noise). They rated pain and performed the "timed-up & go task (TUG)" to measure functional mobility after each auditory condition. Listening to relaxing, pleasant, self-chosen music reduced pain and increased functional mobility significantly in our FM patients. The music-induced analgesia was significantly correlated with the TUG scores; thereby suggesting that the reduction in pain unpleasantness increased functional mobility. Notably, this mobility improvement was obtained with music played prior to the motor task (not during), therefore the effect cannot be explained merely by motor entrainment to a fast rhythm. Cognitive and emotional mechanisms seem to be central to music-induced analgesia. Our findings encourage the use of music as a treatment adjuvant to reduce chronic pain in FM and increase functional mobility thereby reducing the risk of disability.
    Full-text · Article · Feb 2014 · Frontiers in Psychology
  • Source
    • "The largely independent encoding, modulation [51], and brain networks for [52] sensory (pain intensity) and affective (pain unpleasantness) dimensions of pain suggest that it is a multidimensional response system that differentially encodes both qualities. Furthermore, psychological interventions involving emotions (such as cognitive behavioural therapy) modulate perceived pain unpleasantness more than perceived intensity of pain [53], whereas therapies involving distraction seem to modulate more directly perceived intensity of pain and not mood [54,55]. If we transfer this analogy to tinnitus, this means that sensory (percept) and affective (distress) dimensions of tinnitus would be separable. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of tinnitus relies on self-report. Psychoacoustic measurements of tinnitus pitch and loudness are essential for assessing claims and discriminating true from false ones. For this reason, the quantification of tinnitus remains a challenging research goal. We aimed to: (1) assess the precision of a new tinnitus likeness rating procedure with a continuous-pitch presentation method, controlling for music training, and (2) test whether tinnitus psychoacoustic measurements have the sensitivity and specificity required to detect people faking tinnitus. Musicians and non-musicians with tinnitus, as well as simulated malingerers without tinnitus, were tested. Most were retested several weeks later. Tinnitus pitch matching was first assessed using the likeness rating method: pure tones from 0.25 to 16 kHz were presented randomly to participants, who had to rate the likeness of each tone to their tinnitus, and to adjust its level from 0 to 100 dB SPL. Tinnitus pitch matching was then assessed with a continuous-pitch method: participants had to match the pitch of their tinnitus to an external tone by moving their finger across a touch-sensitive strip, which generated a continuous pure tone from 0.5 to 20 kHz in 1-Hz steps. The predominant tinnitus pitch was consistent across both methods for both musicians and non-musicians, although musicians displayed better external tone pitch matching abilities. Simulated malingerers rated loudness much higher than did the other groups with a high degree of specificity (94.4%) and were unreliable in loudness (not pitch) matching from one session to the other. Retest data showed similar pitch matching responses for both methods for all participants. In conclusion, tinnitus pitch and loudness reliably correspond to the tinnitus percept, and psychoacoustic loudness matches are sensitive and specific to the presence of tinnitus.
    Full-text · Article · Dec 2013 · PLoS ONE
Show more