ArticlePDF Available

The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity

Authors:

Abstract

Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity
A preview of the PDF is not available
... Total antioxidant capacity (TAC) was determined by the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (Molyneux, 2004). Tissues (20 mg FW) in 3 replications were homogenized in 0.5 ml of 100% (v/v) methanol. ...
Article
Full-text available
Willows produce fast germinating and short-lived seeds, difficult to store in the long-term under controlled conditions. The aim of this study was to examine the feasibility of storage of three Salix spp. at controlled temperatures (3°, −10°, −196 °C). We also analyzed the effect of spermidine (Spd) as an antioxidant factor in desiccated seeds. Collected seeds were either desiccated or hydrated to obtain 10 levels of moisture content (between app. 4% and 2%) and subjected to storage at temperatures 3°, −10°, or −196 °C (liquid nitrogen; LN). After two months, seeds were germinated on the light at 20 °C. Seeds desiccated below a safe range of moisture content were further tested and germinated on filter paper with additions of 0.25 mM Spd solution. After 7 days seedlings were examined for hydrogen peroxide content (H2O2) and total antioxidant capacity (TAC). Fresh seeds of three Salix species: Persian willow (S. aegyptiaca L.), heartleaf willow (S. cordata Michx.) and crack willow (S. ×fragilis L.) were successfully stored at temperature −10° and −196 °C for two months. After cryopreservation seed of S. aegyptiaca, S. cordata, and S. ×fragilis germinated without viability loss in moisture content ranging from 4.4–15.9%, 6.4–18.5%, and 7.1–11.5% respectively. The addition of Spd during germination of desiccated seed did not affect germination capacity. However, seedlings of S. aegyptiaca had lower hydrogen peroxide content in comparison with control (germination on water). Seedlings of S. cordata showed an increase in hydrogen peroxide content in control after storing in LN. In seedlings of Crack willow Spd increased hydrogen peroxide content. Seeds of tested species differ in response to storage conditions. Salix seeds can be stored successfully for two months at −10° or −196 °C without losing viability in the safe range of moisture content. Storing at 3 °C can be used for storage in the narrower range of seeds’ moisture content, however, seedlings stored at this temperature produce a higher level of reactive oxygen species. Germinating seeds in Spd did not increase their germination, however in S. aegyptiaca and S. cordata decreased hydrogen peroxide content
... , where A 0 was the control absorbance (containing all non-sample reactive components) and A s was the sample absorbance. The results were then expressed as IC5 0 (the amount of antioxidant required to reach 50% of the initial DPPH concentration) (Molyneux 2004). ...
Article
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are increasingly being used to enhance crop abiotic stress resistance. Common myrtle is an economically important essential oil-producing plant but knowledge about its drought resistance mechanisms and the drought mitigation potential of AMF and PGPR is scant. Here, we investigated the effects of single and dual AMF (Funneliformis mosseae, Rhizophagus irregularis) and PGPR (Pseudomonas fluorescens, P. putida) inoculation on seedling survival, growth, physiology, and biochemical traits under soil water deficit (100%, 60%, and 30% of field capacity). Under severe drought, all inoculations increased survival compared to non-inoculated seedlings. Drought-related growth impairment was more strongly compensated belowground than aboveground, especially in dual-inoculated plants, indicating prioritized resource allocation to roots probably linked to AMF- and PGPR-induced phytohormone changes. Particularly dual inoculation significantly improved leaf physiology, reduced electrolyte leakage, malondialdehyde, and proline concentrations and mitigated oxidative pigment losses under drought through upregulation of the antioxidant defense as evidenced by (non-)enzymatic antioxidant accumulation, including essential oils. Our findings indicate similarly significant AMF- and PGPR-mediated boosts in myrtle drought resistance through enhanced water and nutrient supply and stimulation of the antioxidant defense. Dual inoculations proved most effective and provide a low-cost approach to optimizing myrtle cultivation and restoration programs.
Article
Katuk leaf ( Sauropus androgynus (L.) Merr.) is believed to have medicinal properties, one of which is as an antioxidant. Its efficacy as an antioxidant cannot be separated from the phenolic and flavonoid compounds contained in katuk leaves. This study aims to determine the total phenolic and flavonoid levels as well as the antioxidant activity of graded extracts, namely n -hexane, ethyl acetate, and 70% ethanol extract of katuk leaves. The results showed that the total phenolic content and total flavonoid content of each extract were significantly different. Antioxidant activity by the DPPH method was calculated at IC 50 using quercetin as a comparison. The highest antioxidant potential was shown in the ethanol extract. Each extract has the potential as a sunscreen and ethanol extract provides the highest SPF value.
Article
Mango fruits have a high nutritional value and are beneficial to health. However, losses frequently occur after harvest, because they are perishable. Salicylic acid (SA) can be used to preserve fruit quality and maintain their nutritional contents. Therefore, this study was conducted to investigate the effects of applications of 2 mM SA on the physicochemical properties, bioactive compounds, and antioxidant and anti-inflammatory activities of mango fruit. For this purpose, mango fruits received preharvest (Pre SA) or postharvest applications of SA (Post SA), or their combination (Pre + Post SA); the fruits were stored at 13 °C for 20 days. Weight loss, decay, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity were maintained in SA-treated fruit. The Pre + Post SA treatment was superior in delaying fruit ripening, and maintaining lower soluble solids contents and higher total acidity. In addition, total phenolic compounds, ferric reducing antioxidant power, and free radical scavenging activity of anti-inflammatory substances (such as nitric oxide), as well as hyaluronidase inhibition, were higher in the Pre + Post SA treatment throughout storage. Therefore, both pre- and postharvest SA treatments are recommended for preserving the quality of mango fruit, such as Nam Dok Mai Si Thong, and for maintaining their nutritional properties for human health.
Article
The aim of this work was to study the chemical composition and antioxidant activity of essential oils of Thymus ciliatus (Desf.) Benth from middle Algeria obtained from the aerial parts by hydrodistillation using a Clevenger-type apparatus. The oil was analyzed by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS). The antioxidant capacity values of T ciliatus extracts were determined using 2 different and complementary assays: free radical scavenging (2,2-diphenyl-1-picrylhydrazyl [DPPH]) and ferric reducing antioxidant power (FRAP) assays. Six samples of T ciliatus collected in 2019 were used in the study. GC and GC-MS were used to determine the chemical composition of the essential oils. Twenty-five compounds were identified with a percentage of 89.3%-97.7%. The essential oils of T ciliatus were characterized by the presence of myrcene (9.6%-26.9%), p-cymene (7.6%-17.0%), and borneol (13.4%-30.2%) as principal components.
Article
A reduced form of glutathione (GSH) is an essential metabolite that participates in the control of reactive oxygen species (ROS) levels in cells. GSH plays a pivotal role in seed biology as a modulator of seed viability and germination. The GSH:GSSG ratio and half-cell reduction potential (EGSSG/2GSH) serve as indicators of the oxidative status in seeds. Apple (Malus domestica Borkh.) seeds are deeply dormant, and this state is removed by long-term cold stratification. The aim of our work was to examine the modification of GSH and GSSG content, GSH:GSSG ratio and EGSSG/2GSH in the embryonic axes isolated from apple seeds subjected to cold stratification for 7, 14, 21 and 40 d. Our data indicated that cold stratification increased the generation of free radicals in the embryonic axes, which correlated with an alteration in the expression of genes encoding Rboh, particularly RbohC. GSH and GSSG levels increased during prolonged cold stratification of apple seeds. This was accompanied by the modification of glutathione reductase and glutathione peroxidase-like activities, which did not match their transcript levels. The steady-state GSH:GSSG ratio and EGSSG/2GSH in the axes of embryos subjected to cold stratification indicated no impact of the dormancy removal treatment on apple seed viability. We suggest that the glutathione system is an important component of the redox network and is involved in the management of the seed transition from dormant to nondormant states.
Article
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is the most common cause of dementia. This disease commonly occurs in elderly people. The increase in life expectancy means that that the number of people suffering from AD is expected to rise each year if there is no effective treatment found. The relation of cholinesterase and oxidative stress to Alzheimer’s disease has been reported. In our previous study, we have investigated the potency of the ethanolic extract of Cassia moschata leaves as an anticholinesterase. The current study aimed to investigate the antioxidant and anticholinesterase properties of the ethanolic and aqueous extracts of C. moschata as well as to determine the total phenolic content (TPC). Two different methods were used to evaluate the antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The anticholinesterase assay was carried out against acetylcholinesterase (AChE) according to the modified Ellman’s method. The TPC was determined by a colorimetric method using Folin-Ciocalteu’s phenol reagent, and employing gallic acid as a reference. The ethanolic and aqueous extracts of C. moschata demonstrated antioxidant activity in both DPPH and ABTS assays. There were statistically significant differences in the IC50 values of the ethanolic and aqueous extracts in both DPPH and ABTS assays. The aqueous extract exhibited a lower IC50 value compared to the ethanolic extract. The IC50 value for the aqueous extract was 36.46 µg/mL in the DPPH assay, and 10.61 µg/mL in the ABTS method compared to IC50 38.74 µg/mL and 17.17 µg/mL for the ethanolic extract, respectively. Meanwhile, the ethanolic extract showed higher potency as anticholinesterase with the IC50 value of 44.43 µg/mL compared to the aqueous extract with an IC50 value of 114.60 µg/mL. The TPC measurement revealed that the aqueous extract has a higher amount of phenolic than the ethanolic extract. These data suggest that the aqueous extract from the leaves of C. moschata has a higher ability to scavenge free radicals compared to the ethanolic extract, which also contains a higher amount of phenolic compounds. However, the high content of phenolic compounds in the aqueous extract did not correspond to the anticholinesterase activity. The presence of non-phenolic compounds may also contribute to the anticholinesterase activity in the ethanolic extract.
Article
The versatility of ZnO quantum dots (QDs) exhibiting size-tunable visible photoluminescence has propelled them to the forefront of leading-edge innovations in healthcare. At the nano-bio interface, enhancing the singly-ionized oxygen vacancy defects (VO•) through holistic, sustainable synthesis protocols driven by the synergistic influence of QDs’ nucleation-growth kinetics has implications on their bioactivity, physiochemical, and optical performance. Recently, robust continuous flow platforms have transcended the conventional batch reactors by alleviating the concerns of “hot-spot” formation due to inhomogeneous heat distribution, acute energy consumption, poor quality, and yield. However, complexities exist in translating batch chemistries into flow processes. Here, a unique, rationally designed continuous flow synthesis of luminescent defect-engineered ZnO QDs (E-QDs) via helical-reactor assembly that can adequately synthesize on a large scale is reported. The crux of this lies in the amalgamation of “green chemistry” and flow synthesis, which results in Lamer-mechanism mediated monodispersed E-QDs demonstrating high photoluminescence quantum yield (PLQY) of 89% under an accurately regulated synthesis environment. Process intensification corroborated that the bio-stable E-QDs manifested admirable photostability, broad-spectrum UV-shielding (400-250 nm), colloidal stability, in vitro biocompatibility against L929 and HaCaT cells, and antioxidant activity. These attributes were better compared to the commercial ZnO nanoparticles (ZnOC-NPs) used for skin UV protection. Delving deeper, the main drivers for the high density of intrinsic VO• formation (Iv/Io∼42.5) were revealed to be the reactor's hydrodynamic performance and the improvised heating rate (2.5°C/sec). Hence, these E-QDs have potential as a new, safe, and economical multifunctional active ingredient for skin UV protection and antioxidants for treating ROS-mediated disorders. Statement of significance : UV filters exhibiting questionable UV-attenuation efficacy and phototoxicity are significant impediments to the healthcare industry emphasizing skin cancer prevention. Although least explored, VO•-governed aberrant photoactive, biological, and surface-reactive qualities of engineered ZnO QDs (E-QDs) have created ample room to investigate these hallmarks for skin UV protection. However, the bottlenecks in stereotypical ZnO QDs production confined by inefficient process control are annihilated by continuous flow strategies. Herein, the high-throughput continuous flow helical reactor assembly was designed and fabricated to successfully showcase optimized transport properties, reproducibility, yield, and quality E-QDs. Anticipating a skyrocketing demand for E-QDs as bioactive-sunscreen components, the comprehensive investigation has demonstrated unprecedented biofunctionality and ROS-scavenging behaviour, even upon UVR exposure, contrary to the traditional nanoparticulate ZnO UV filters.
Article
The flowers, stems, and leaves of broccoli (Brassica oleracea L var italica Plenca) cultivated in Taiwan were freeze-dried and extracted with methanol, water, or acetone. The antioxidant properties, including reducing power, ferrous ion chelating ability, and α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, were tested in this study. The above antioxidant properties of broccoli extracts along with alpha-tocopherol and butylated hydroxyanisole (BHA) were compared. Results showed that the methanol and water extracts exhibited a higher reducing power in all three parts; while the acetone extract was the least. The stem extracts showed the highest reducing power, which was 1.3 times those alpha-tocopherol and BHA extracts, followed by the leaf extracts, which exhibited similar reducing power to alpha-tocopherol and BHA. The lowest reducing power was observed on flower extracts, which was only three fourth of the reducing power as compared to alpha-tocopherol and BHA. The methanol and water extracts of broccoli also exhibited high chelating ability; while the acetone extracts showed the lowest. The broccoli stem exhibited the highest chelating ability among three parts of broccoli. The acetone extracts from stems hardly showed any chelating ability as compared to alpha-tocopherol and BHA. The methanol extracts of broccoli showed the highest DPPH radical scavenging activity (>90%) among three different solvent extracts. Its DPPH radical scavenging activity was close to BHA and alpha-tocopherol. The water extracts showed only 43% DPPH radical scavenging activity; while the acetone extracts barely showed any DPPH radical scavenging activity.
Article
METHODS for measuring antioxidants and appraising antioxidant activity appear to be of two general types. If the chemical nature of the antioxidant is known, one may strive for a test specific for the compound or group of interest; for example, the nitroprusside test for sulphydryl groups. Alternatively one may observe the inhibition of some natural oxidative process such as the β-oxidation of fats, as a function of the added antioxidant.
Article
The antiradical activities of various antioxidants were determined using the free radical, 2,2-Diphenyl-1-picrylhydrazyl (DPPH*). In its radical form. DPPH* has an absorption band at 515 nm which dissappears upon reduction by an antiradical compound. Twenty compounds were reacted with the DPPH* and shown to follow one of three possible reaction kinetic types. Ascorbic acid, isoascorbic acid and isoeugenol reacted quickly with the DPPH* reaching a steady state immediately. Rosmarinic acid and δ-tocopherol reacted a little slower and reached a steady state within 30 min. The remaining compounds reacted more progressively with the DPPH* reaching a steady state from 1 to 6 h. Caffeic acid, gentisic acid and gallic acid showed the highest antiradical activities with a stoichiometry of 4 to 6 reduced DPPH* molecules per molecule of antioxidant. Vanillin, phenol, γ-resorcylic acid and vanillic acid were found to be poor antiradical compounds. The stoichiometry for the other 13 phenolic compounds varied from one to three reduced DPPH* molecules per molecule of antioxidant. Possible mechanisms are proposed to explain the experimental results.
Article
The antioxidative activities of six plant extracts (catnip, hyssop, lemon balm, oregano, sage and thyme) were evaluated in sunflower oil and its 20% oil-in-water emulsion in the dark at 60°C. The oxidation process was followed by measuring the formation of primary (conjugated diene hydroperoxides) and secondary (volatile compounds) oxidation products. Sage extracts (600 and 1200 ppm) effectively inhibited the formation of conjugated dienes and volatile compounds (hexanal and pentanal) in oil and emulsion and showed the highest antioxidative activity compared with 300 ppm BHT. Thyme and lemon balm extracts inhibited hexanal generation more than formation of conjugated dienes in both oil and emulsion. Oregano extract was more active in oil than in emulsion. Catnip and hyssop extracts (600 ppm) showed prooxidative action to sunflower oil at 60°C. These two extracts increased the formation of conjugated dienes compared with the control oil. In emulsions, catnip extract (600 ppm) was active and significantly inhibited the formation of conjugated dienes more than BHT (300 ppm) during additional incubation.
Article
The antioxidant properties of apple polyphenols were evaluated using the β-carotene/linoleic acid system, DPPH radical and superoxide scavenging activities. The polyphenols examined were epicatechin, its dimer (procyanidin B2), trimer, tetramer and oligomer, quercetin glycosides, chlorogenic acid, phloridzin and 3-hydroxy-phloridzin. All the compounds showed strong antioxidant activities, and their DPPH-scavenging activities were 2–3 times and superoxide anion radical-scavenging activities were 10–30 times better than those of the antioxidant vitamins C and E.
Article
The antioxidant activity of grape juices, wines made from the same lot as juices and their major polyphenolic constituents was measured by the inhibition of lipid oxidation (ferric-thiocyanate) and free radical scavenging (2,2-diphenyl-1-picrylhydrazyl) methods. dl-α-Tocopherol and 3-tertiary-butyl-4-hydroxyanisole (BHA) were used as references. The inhibition of lipid oxidation of the standards followed the order: rutin = ferulic acid > tannic acid = gallic acid = resveratrol > BHA = quercetin > dl-α-tocopherol > caffeic acid. Meanwhile, the free radical scavenging activity of gallic acid was the highest, tannic acid, caffeic acid, quercetin, BHA and rutin activities were intermediate and that for ferulic acid, dl-α-tocopherol and resveratrol were the lowest. Wines had higher activity than the corresponding grape juices and red wine showed the strongest activity among the grape products tested. The antioxidant activity of the samples seems to be based on their free radical scavenging capacity.