ArticlePDF Available

Green Exercise: Complementary Roles of Nature, Exercise and Diet in Physical and Emotional Well-Being and Implications for Public Health Policy

Green Exercise:
Complementary Roles of Nature,
Exercise and Diet in Physical and
Emotional Well-Being
Implications for Public Health Policy
Jules Pretty1, Murray Griffin2, Martin Sellens2, Chris Pretty3
1 Centre for Environment and Society, Department of Biological Sciences, University of Essex
2 Centre for Sports and Exercise Science, Department of Biological Sciences, University of
3 Suffolk College, Ipswich
CES Occasional Paper 2003-1, University of Essex
March 2003
Executive Summary
Page 5
1. Primary Determinants of Well-Being and Health
1.1 Framework of Interactions
1.2 The Role of Diet
1.3 The Role of Physical Activity
1.4 The Public Health Costs
Page 7
2. Connections to Nature as a Secondary Determinant of Emotional
2.1 Shaping and Self-Shaping
2.2 Nature and Community Deprivation and Self-Identity
2.3 The Psychological and Healing Benefits of Nature
2.4 The Benefits of Wildernesses and Nearby Nature
Page 16
3. Physical Activity as a Determinant of Emotional Well-Being
3.1 Self-Esteem, Sport and Exercise
3.2 Physical Activity and Body Image
3.3 The Relationship Between Body Image and Self-Esteem
3.4 Using Sport, Exercise and Physical Activity to Reduce
Page 26
4. Synergies from Green Exercise and Policy Implications
Page 31
Page 33
Author Contacts
The authors can be contacted via:
Centre for Environment and Society and Centre for Sports and Exercise Science, Department
of Biological Sciences
University of Essex, Wivenhoe Park,
Colchester CO4 3SQ, UK
See also
Executive Summary
Two of the primary determinants of physical and mental health, leading to increases in life
expectancy, are now acknowledged to be diet and physical activity. Ironically, just as food
shortages have been largely conquered in industrialised countries, so diets have become a
major public health cost. On average, people now consume more food calories than they
burn, and consume types of food constituents that are making them ill. The costs of diet-
related illness (coronary heart disease, strokes, obesity, maturity onset diabetes mellitus,
gall-stones, osteoporosis and several cancers) now exceed those of tobacco use.
Physical activity is now known to be a cofactorial determinant of health. In Europe, there
has been a dramatic fall in physical activity over the past 50 years with on average 2 MJ (500
kcal) less energy output per day in adults aged 20-60 years. This is equivalent to the running
of a marathon each week. Although similar trends have occurred across Europe and North
America, the UK compares badly with many countries. Jobs have become less physical,
people are more likely to take the lift than walk the stairs, and adults and children are more
likely to travel to work or school by car than to walk or bicycle. Only 32% of adults take 30
minutes of moderate exercise five times a week, and only 47% participate in sport more than
12 times a year.
Physical activity greatly reduces the risk of dying from coronary heart disease, and also
reduces the risk of developing diabetes, hypertension and colon cancer. It enhances mental
health, fosters healthy muscles and bones, and helps maintain health and independence in
older adults. We use the term `activity transition‟ to describe the changes in modern
societies in the past 2-3 generations, with people no longer active in the workplace nor in
travelling to and from work, nor during leisure time.
The primary role played by diet and physical activity in emotional and physical well-being
is complemented by secondary roles played by connections to nature and social
communities. An innate connectedness to nature is the core principle in the `biophilia
hypothesis‟, which suggests that closeness to nature increases well-being as well as the
likelihood of understanding of and care for nature, and its rediscovery can lead to
transformations in people and nature. It also suggests that disconnections are harmful both
to individuals and to societies and cultures at large.
There is a well-established literature that shows that the physical and social features of the
environment affect behaviour, interpersonal relationships and actual mental states, as well
as shape relations with nature. People seem to prefer natural environments to other settings,
and the benefits go beyond just enjoyment. A growing number of researchers from many
disciplines are now showing that contacts with the natural world can benefit mental and
physical health. The contexts include the effectiveness of wildernesses in contributing to
spiritually beneficial recreation and leisure experiences; the healing value of hospital
gardens or of nature views from hospital or gaol windows; the benefits of community
gardens and nature areas in urban settlements; and the psychological benefits of companion
animals and pets; and the benefits of consuming distinctive local foods coming from systems
with known positive effects on nature and rural communities.
Yet an important challenge remains. Intuition, experience and some evidence support that
notion that nature contact should be seen as a positive health intervention, yet health
professionals have not widely adopted horticulture, wilderness, nature or animal therapy.
Regular physical activity positively affects mental well-being and self-esteem. High self-
esteem is important as it is seen as a key indicator of emotional stability, and adjustment to
life demands is one of the strongest predictors of subjective well-being. The symptoms of
low self-esteem include depression, anxiety, neuroses, suicidal ideation, sense of
hopelessness, lack of assertiveness, and low perceived personal control. Evidence suggests
that aerobic exercise can improve self-esteem as well as have an antidepressant effect,
though like the research on the benefits of nature, much of the evidence is correlational
rather than causal.
There is good evidence to support the idea that physical activity has a positive effect on self-
esteem and depression. We conclude that exercise programmes can reduce clinically-defined
depression, and that this can happen as quickly as 4-6 weeks. Most studies had good
internal and external validity, though larger sample sizes, controlling for the effects of
positive characteristics of an exercise leader, conducting long-term follow-ups, and
managing the non-treatment group were all required in future analyses.
We believe, therefore, there is a synergistic benefit in adopting physical activities whilst at
the same time being directly exposed to nature. We call this `green exercise‟.
Many people already appreciate the benefits of protecting the environment, undertaking
physical activity, and combining the two. Despite the daily disconnections between a
predominantly urban population and nature, and the increase in sedentary lifestyles
imposed or adopted by the majority of the population, people still express their values in a
variety of direct and indirect ways, through i) membership of environmental and wildlife
organisations; ii) visits to the countryside and the growth in national and international eco-
tourism; and iii) membership of gymnasiums and of sports and outdoor organisations.
Green exercise is likely to have important public and environmental health consequences. A
fitter and emotionally more content population costs the economy less. Increasing the
support for and access to a wide range of green exercise activities for all sectors of society
will produce substantial public health benefits. There are many policy options, including
gyms at GP surgeries, healthy walks projects, exercise on prescription, healthy school
environments and travel to school projects, green views in hospitals, protection and support
for city farms and community gardens, less anonymous food (with substantial health
benefits if there are increases in fruit and vegetable consumption), and more support for
ecotourism, outdoor leisure activities, and visits to the countryside. These, though, still
remain on the margins of public health, environmental and agricultural policy.
If everyone ate five pieces of fruit and vegetable per day, and engaged in 30 minutes of
moderate physical activity five times per week, and ensured that calorie burning matched
consumption in food and drink, then a significant proportion of the annual £10 billion costs
of obesity, coronary heart disease and physical inactivity could be avoided. The emotional
benefits and mental well-being would be additional, and could indeed outweigh them.
If these benefits are also achieved through activities that provoke long-term changes in
attitudes to nature and the environment across society, then the possibilities for
transformations and actions to support sustainability outcomes will be all the more likely to
1. Primary Determinants of Well-Being and Health
1.1 Framework of Interactions
Diet and physical activity are widely acknowledged to be two of the primary determinants
of physical and mental health. A balanced diet and appropriate levels of physical activity are
associated with substantial increases in life expectancy (CDC, 1996; Ferro-Luzzi and James,
2000; DCMS, 2002). Ironically, just as food shortages have been largely conquered in
industrialised countries, so has come a recognition that ill-health arising from over-
consumption of certain constituents of diets is now a major public health cost.
At the same time, the nature of `work‟ has changed and people have adopted increasingly
sedentary lifestyles, which have further contributed to ill-health. Both these trends are
extremely costly, both to individuals and to the public health budget.
The framework in Figure 1 shows the primary role played by diet and physical activity in
emotional and physical well-being, and illustrates the secondary roles played by connections
to nature and social communities. An appropriate balanced diet containing sufficient, but
not excessive, calories, together with physical activity associated with work, commuting and
leisure activities, contribute to the physical and emotional health of individuals.
Well-being is further enhanced through close connections to both nature and communities.
These connections can involve direct interaction but are also made indirectly through
consumption of food and membership of environmental organisations, and by contact with
others through social institutions and cultural mechanisms (Jacobs, 1961; Freeman, 1984;
Coleman, 1988; Kellert and Wilson, 1993; Pretty, 2002). Furthermore, connectedness with the
environment and with environmental organisations might have direct and indirect effects on
the level and quality of physical activity. An emotionally and physically healthy population
imposes few public health costs, and is also likely to improve the stocks of natural and social
capital through investments of time, effort and resources. Emotional and physical health and
well-being is therefore an asset in itself a capital that can be built up over time or expended
as income.
Recent years have seen sharp declines in some of these important connections (A, B, C, D),
with resulting falls in emotional and physical well-being and increases in public health costs.
At the same time, as environmental resources (natural capital) and social and cultural
aspects of communities (social capital) are degraded and diminished, so there is a further
negative effect on well-being (human capital) (Pretty, 2002; Lang and Heasman, 2003).
In this paper, we set out the contributions made by diet and physical activity to physical and
mental health, and explore in particular the role one secondary determinant of well-being
people‟s direct and indirect connections to nature has in shaping well-being. We suggest
that increased connections to nature, directly through experience and observation, and
indirectly through consumption of food and membership of wildlife, sports and leisure
organisations, increases well-being, and will thus have an impact upon the growing public
health costs associated with obesity and mental health. We further explore the possible
synergy that may come from `green exercise‟ physical activity in green places that may
bring both physical and mental health benefits.
1.2 The Role of Diet
Since hominids diverged from the apes, we have passed some 350,000 generations as hunter-
gatherers, the last 600 of which have seen us come to rely mainly on agricultural systems for
our food (Pretty, 2002). In the last two generations (a mere 3.4 seconds if all human history
were squeezed into a single week), the diets of most people in industrialised countries, and
of an increasing number of those in developing countries, have undergone enormous
changes (Popkin, 1998, 1999). On average, people now consume more food calories than
they burn, and increasingly they consume types of food, such as those containing simple
sugars and an excess of salt, that are making them ill.
The average UK diet has changed greatly in the past fifty years (Table 1). According to the
National Food Survey (DEFRA, 2002), which has been collecting data on weekly
Physical Activity
(gentle to extreme) through daily
exercise, outdoor leisure, activity
during & to/from work
Emotional and physical
health and well-being of
individuals improved
Connections with social
groups and communities
(collective action,
relations of trust and
Connections to nature
(direct through experience
and observation; and
indirect through food
consumed and membership
of organisations)
Figure 1. Framework describing interactions between diet, physical activity, connections
to nature and communities and the effects on emotional and physical health and well-
Avoided public health costs for
treatment of physical ill-health (eg
obesity) and mental ill-health
Appropriate Diet
(mix and quality of foodstuffs and
sourced with minimum damage to
consumption of foods since 1942, the average Briton now consumes less milk/cream, eggs,
vegetables, bread, direct sugar, fish and fats, and more cheese, fresh fruit, cereals and meat
than in the 1940s. Consumption of sugar, meat, eggs, milk/cream and fats rose until the
1970s, and has since fallen. Of particular concern for public health is the 34% fall in
vegetable consumption over 50 years, and the 59% decline in fish consumption. On the other
hand, the consumption of fresh fruit has increased by 129% since the 1940s though this still
leaves UK consumption the third lowest in the EU (fruit consumption ranges from 400
gday-1 in Greece to 100 gday-1 in Ireland). Vegetable consumption in Europe ranges from
440 gday-1 in Greece, to 60 gday-1 in Iceland, with a value of 280 gday-1 in the UK.
Table 1. Changes in per capita weekly diet for UK, 1942-2000
1942-1949 average
(g per person per
average g per
person per
(g per person
per week)
Change from
1940s to 1998-
2000 (%)
Milk/cream products
Eggs (number)
Fresh fruit
Cereals (not bread)
Sugar (direct)
All fats and oils
All meats
Source: National Food Survey (DEFRA, 2002)
These changes in diet have occurred far too quickly for human physiology to adapt through
the process of evolution, and diet-related illness now has severe and costly public health
consequences (Ferro-Luzzi and James, 2000; Eurodiet, 2001). According to the
comprehensive Eurodiet study, in the second half of the 20th century “most of Europe has seen
a very substantial increase in a number of chronic diseases in adult life. These become worse with age
and are multifactorial. The principal factors, however, are diet and inactivity in coronary heart
disease, strokes, obesity, maturity onset diabetes mellitus, gall-stones, osteoporosis and several
Worse still, the Eurodiet (2001) study concludes that “disabilities associated with high intakes of
saturated fat and inadequate intakes of vegetable and fruit, together with a sedentary lifestyle, exceed
the cost of tobacco use”. Some problems arise from nutritional deficiencies of iron, iodide, folic
acid, vitamin D and omega-3 polyunsaturated fatty acids, but most are due to excess
consumption of energy and fat (causing obesity), sodium as salt (high blood pressure),
saturated and trans fats (heart disease) and refined sugars (diabetes and dental caries).
Highly energy-dense diets rich in sugars are nearly as conducive to over-consumption of
energy as are diets containing excessive amounts of fatty foods. Consequently, many low fat
alternatives provide an illusion of `healthfulness‟ as they are in sugar. Diet is thought to be a
factor in 30% of cases of cancer in developed countries (Key et al., 2002). The strongest
association between diet and cancer is provided by the positive relationship between the
consumption of vegetables and fruit and a reduction in the risk of cancers of the digestive
and respiratory tracts, with some epidemiological evidence of an association between intake
of salt and gastric cancer (Riboli and Norat, 2001). Low fibre content, vitamin and mineral
insufficiency, high meat consumption and excessive alcohol intake have also been
implicated as risk factors for cancer (Key et al., 2002).
The most serious
consequence of poor diet
is the emerging obesity
epidemic. Obesity (BMI1
> 30 kgm-2) now affects
10-20% of the adult
population of Europe,
and excess weight (> 25
kgm-2 BMI) affects a
majority of middle-aged
adults. In the UK, the
proportion of the
population that is
overweight has remained
stable since the early
1990s, but the numbers progressing into the obese class are rapidly increasing (Figure 2). In
the USA, the situation is much worse, with nearly 97 million adults overweight (51% of
women, 50% of men) and 40 million obese (25% of women, 20% of men)2 (Table 2). In some
developing countries, including Brazil, Colombia, Costa Rica, Cuba, Chile, Ghana, Mexico,
Peru and Tunisia, overweight people now outnumber the hungry (WHO, 1998).
Table 2. Incidence of overweight and obese adults in the USA
59.4% (50.2 million)
50.7% (46.9 million)
19.5% (16.8 million)
25.0% (23 million)
Source: NIH (2002)
Obesity is a risk factor for type II diabetes, cardiovascular disease, certain cancers and
reduced life expectancy. The risk of diabetes, for example, is increased by 100 fold if a child
enters adulthood obese and continues to gain weight (Ferro-Luzzi and James, 2000). The
rapid growth in obesity is making type II diabetes (non-insulin-dependent diabetes) so
common that is becoming one of the major non-communicable diseases in the EU (Astrup,
2001). In 2001, there were 12.24 million people in the EU with type II diabetes, and this is
predicted to increase to 15.4 million by 2020. The worst affected countries by proportion of
population are Spain (7.3%), Italy (7.8%), Denmark (8.4%), Norway (8.6%) and Sweden
(9.4%), with the incidence in the UK currently 2.1%.
1 Body Mass Index is weight in kg divided by height in metres squared (kg m-2). A value of >25 indicates an adult is
overweight, and one of >30 indicates obesity.
2 The average American diet provides 3800 kcal day-1, up by 500 kcal since 1970. This is approximately double the energy
requirement for inactive women and 130% of the energy requirement for inactive men (Nestle, 1999).
Figure 2. Proportion of UK men and women
overweight and obese (1993-2000)
% of population
Overweight men
(BMI 25-30)
women (BMI 25-
Obese men (BMI
> 30)
Obese women
(BMI > 30)
According to the UK National Food Survey (DEFRA, 2002), energy intake in the home
increased to a peak in the 1970s. Paradoxically, since then it has fallen during a period in
which obesity has substantially increased from 7% in 1980 to 19% in 1998. It appears that
increases in energy intake outside the home have played a critical role, particularly the
consumption of fast food, soft drinks and alcohol. At the same time as diets and eating
habits have shifted, physical activity has declined and this also has an impact on energy
balance. Furthermore, Astrup et al. (2002) have shown that a dose-response relationship
exists between the proportion of energy consumed as fat and weight gain or loss. Thus,
although diets have shown some improvements over the past 25 years, people are still
consuming too many fats and sugars, and too many calories from all sources, for physical
1.3 The Role of Physical Activity
Along with diet, physical activity is now known to be an important determinant of health
and well-being. Again, human metabolism and genetic make-up have been unable to adapt
to the rate of change and magnitude of changes in lifestyle that have taken place over recent
decades. People in both industrialised countries and urban settlements in developing
countries have become increasingly sedentary in all aspects of daily life, including during
leisure time, in travelling to and from work, and during work itself.
In Europe, there is evidence for a dramatic fall in physical activity over the past 50 years
with on average 2 MJ (500 kcal) less energy output per day in adults aged 20-60 years
(Eurodiet, 2001). According to the NAO (2001), changes in life style over this period have led
to reduced physical activity equivalent to the running of a marathon each week. Yet the
public health consequences of these changes have not been widely discussed or accepted,
until very recently (DCMS, 2002). The recent Eurodiet (2001) study states “the importance of
physical activity has been underestimated for many years by both doctors and policy-makers”.
Although similar trends have occurred across Europe and North America, the UK compares
badly with many countries. Jobs themselves have become less physical, people are more
likely to take the lift than walk the stairs, and adults and children are more likely to travel to
work or school by car than to walk or bicycle. In the 1970s, 90% of primary school children
in the UK walked to school; today 10% walk and 90% travel by car (DEFRA, 2001). In the
UK, the distance walked per year by each individual has fallen from 410 kmyr-1 in 1975-76
to 298 km1 in 1998-2000 (DLTR, 2002). Though walking has declined across the whole of the
EU since 1970, only people in Greece walk less than Britons. Cycling varies from a low of 70
kmyr-1 in Greece to a high of 850-900 kmyr-1 in Denmark and the Netherlands, with Britons
well below the average for all 15 EU countries (Table 3).
Our dependence on the car is further illustrated by the fact that the UK is one of only four
EU countries in which bus and coach travel per person has declined since 1980 (the others
are Germany, Finland and the Netherlands). The 20% fall in the UK compares badly with a
40-80% increases in bus travel in Denmark, Italy, Spain and Portugal. Over the same period,
car travel per person in the UK increased by 51%, and the road system has grown by 34,000
km since the early 1960s (DLTR, 2002).
Table 3. Distances cycled and walked by people in Europe (for 1995)
Km per person
Km per person
EU average
Source: Commission on Integrated Transport (2002)
Home life has also become more sedentary, and though gym and fitness club membership
has risen in the past 20 years there are some indications that people are becoming less likely
to engage in organised sports. There have been falls in the provision of opportunities for
physical exercise in schools, linked not least to sales of playing fields in the 1980s and 1990s.
The proportion of young people spending two hours or more per week on physical exercise
fell from 46% in 1994 to 37% in 1999 (Sport England, 2000). The average young person also
spent 26 hours per week watching television in the 1990s compared with 13 hours in the
1960s (NAO, 2001).
Physically inactive children become physically inactive adults, and in the UK only 32% of
adults take 30 minutes of moderate exercise five time a week, the minimum recommended
to maintain optimal health. This figure compares unfavourably with the 57% of Australians
and 70% of Finns who achieve these recommendations. Furthermore, only 47% of adults in
the UK participate in sport more than 12 times a year, compared with the highs of 70% in
Sweden and 80% in Finland, and lows of 18% in Italy and 25% in Spain (DCMS, 2002).
Consequently, some 63% of men and 75% of women in the UK do not take enough physical
activity to benefit their health (DoH, 1998; Sport England, 2002; DCMS, 2002). In almost all
activities (except swimming and yoga), female participation is lower than male. In the group
aged 16-24 years, 42% of men and 68% of women are inactive, and these proportions rise
steadily as people age. Again, this trend is not the same everywhere in Sweden and
Finland, in particular, participation in organised sport increases amongst older people. One
of the major problems is that although 80% of people in the UK correctly believe that regular
exercise is good for their health, a majority wrongly believe that they take enough exercise to
stay fit (Allied Dunbar, 1992).
Sport England (2002) indicates that physical activity should now be considered “one of the
best buys in public health, providing physical, social and mental health benefits.” Moderate regular
exercise reduces morbidity rates by 30-50%, having a particularly protective effect against
maturity onset diabetes, coronary artery diseases, strokes and colon cancer, as well as
reducing blood pressure and improving blood lipid and glucose profiles. Appropriate
volumes of moderate exercise also induce physical fitness which has a substantial influence
on people‟s sense of well-being. The Physical Activity Level (PAL) is the ratio of total daily
energy expenditure to estimated metabolic rate. The PAL target for health is 1.75, which can
be achieved by 60-80 minutes of walking per day. This volume of exercise is sufficient to
avoid weight gain on high fat diets, and comfortably exceeds the 30 min per day that is
necessary to reduce significantly the risk of CVD and diabetes (Schoeller et al., 1997; NIH,
1996; Astrup, 2001). The UK Health Education Authority (1995) thus recommends that
“individuals accumulate 30 minutes of moderate intensity physical activity at least 5 days of the
week”, and suggests that appropriate activities include brisk walking, cycling, and certain
garden activities, as well as more formal structured sports and leisure activities.
In the USA, the comprehensive and ground-breaking report of the Surgeon General (CDC,
1996) documented similar alarming declines in physical activity and consequent increases in
ill-health3. It found that 60% of Americans are not regularly active, and 25% are not active at
all. Just 15% of adults exercise vigorously at least three times per week for 20 minutes, and
22% engage five times per week for 30 minutes or more in sustained physical activity of any
type (Table 4). In young people, physical activity declines dramatically during adolescence.
Of those reporting regular physical activity, 44% engaged in walking for exercise, 25-30%
engaged in gardening, yard work or stretching exercises, 10-15% stair climbing, riding a
bicycle or exercise bike, and weight lifting, 5-10% ran, swum or engaged in aerobic dance or
played basketball, and less than 5% played tennis, bowling, golf, baseball, squash, football or
skied or water-skied.
Table 4. Levels of physical inactivity by adults in the USA (average of 3 different surveys by
Centers for Disease Control and Prevention)
Proportion of adults (>18
years) reporting no
participation in physical
Proportion of adults (>18 years)
reporting regular sustained
physical activity (5 or more
occasions per week for 30 minutes)
By education
< 12 years at school
>16 years (college)
By income group
<$10,000 per year
>$50,000 per year
Source: CDC, 1996
Although there is no systematic data to establish long-term trends, it is clear that lifestyles
have changed: “most Americans today are spared the burden of excessive physical labour. Indeed
few occupations today require significant physical activity, and most people use motorised
transportation to get to work and to perform routine errands and tasks. Even leisure time is
increasingly filled with sedentary behaviour” (CDC, 1996). Barry Popkin (1998, 1999) coined the
phrase the nutrition transition to describe how modern and urbanising societies adopt
different types and amounts of foods, with severe health consequences. Echoing Popkin‟s
phrase, we believe that modern societies have also gone through an `activity transition‟ in
the past 2-3 generations, with people no longer active in the workplace nor in travelling to
and from work, nor during leisure time. This too has very significant health consequences
for whole populations.
Physical activity greatly reduces the risk of dying from coronary heart disease, the leading
cause of death in the USA, and also reduces the risk of developing diabetes, hypertension
3 In the USA, 13.5 million people have CHD, and 1.5 million suffer the effects in any year; 8 million people have adult onset
diabetes; 95,000 people are newly diagnosed with colon cancer each year; 250,000 people suffer hip fractures each year; 50
million people have high blood pressure; 59 million adults are obese with a BMI > 30 kg m-2; 9 million young people (15% of all
those aged 6-19 years) are overweight; and 77% of adults do not eat the recommended 5 or more servings of fruit and vegetable
per day.
and colon cancer. It enhances mental health, fosters healthy muscles and bones, and helps
maintain health and independence in older adults (CDC, 1996).
Compared with active people, those who are sedentary have a 1.2-2 fold increased risk of
dying (Slattery and Jacobs, 1988; Paffenbarger et al., 1993), with levels of cardiovascular
fitness strongly associated with overall mortality (Berlin and Colditz, 1990; Blair et al., 1993).
Paffenbarger et al. (1994) found that men reduced their risk of death by 33% if they walked
15 or more km per week, by 25% if they climbed 55 or more flights of stairs a week, and by
53% with 3 or more hours per week of moderate sports activity. There also appears to be a
protective effect in later life, with Linstead et al. (1991) finding that the effects of activity
early in life persists into the 70s and 80s. Nonetheless, taking up activity later in life can also
be protective, with men aged 45-84, who take up moderately intense sports, adding on
average 0.72 years to lifespan (Paffenbarger et al., 1993).
Audrey Manning, the Surgeon General (in CDC, 1996), stated that “because physical activity is
so directly related to preventing disease and premature death and to maintaining a high quality of life,
we must accord it the same level of attention as we give other important public health practices that
affect the entire nation. Physical activity thus joins the front rank of essential health objectives, such
as sound nutrition, the use of seat belts, and the prevention of adverse health effects of tobacco.” The
Surgeon General‟s report also concluded that “regular physical activity and higher
cardiovascular fitness decrease overall mortality rates in a dose-response fashion” thus, the more
exercise, the better for personal and public health (Box 1).
Box 1. Conclusions from US Surgeon General’s report on physical activity
1. People of all ages, both men and women, benefit from regular physical activity.
2. Significant health benefits can be obtained by including inactivity on most, if not all, days of the
3. Additional health benefits can be gained from greater amounts of activity.
4. Physical activity reduces the risk of premature mortality in general, and of coronary heart disease,
hypertension, colon cancer and diabetes mellitus in particular.
5. More than 60% of American studies are not regularly active.
6. Nearly half of young people aged 12-21 are not vigorously active on a daily basis (daily enrolment
in PE classes in schools fell from 42% in 1991 to 25% in 1995).
Source: CDC (1996)
1.4 The Public Health Costs
Changing diets and lifestyles have led to an epidemic of obesity in industrialised countries.
More people are overweight, more are clinically obese, and the public health costs are large
and growing. The direct costs of obesity in the UK have been estimated by the National
Audit Office (2001) to be £480 million per year, with indirect costs an additional £2 billion, of
which £1.3 billion is due to sickness and £0.8 billion due to premature mortality, equivalent
to £44 per person per year. The annual personal costs include 18 million sick days, 30,000
deaths, resulting in 40,000 lost years of working life. Deaths linked to obesity shorten life by
9 years on average. The British Heart Foundation estimates the indirect costs to be a further
£8 billion per year (Rayner, 2001).
The UK government has recently estimated the costs of physical inactivity in England, and
these are of the same order as the costs of obesity (DCMS, 2002). Assuming a full range of
effects of physical inactivity, including depression, the total cost is £8.2 billion per year
(comprising £1.7 bn direct health care costs for the NHS, £5.4 bn of earnings lost due to
sickness absence, and £1 bn in earnings lost to premature mortality). This comprises some
5% of the NHS budget, 72,000 days lost and 86,000 lives lost prematurely. Each day, 235
people die prematurely due to the effects of physical inactivity. Clearly, any increase in
physical activity coupled with better diets could bring substantial public benefits through
avoided costs, plus personal benefits for the people involved.
For the USA, Kenkel and Manning (1999) estimate direct medical expenditure and indirect
costs through losses of productivity, and differentiate between internal costs (for individual
patients) and external costs (those imposed by an individual‟s illness on others). They
indicate that the economic cost of diet and exercise related illness in the USA amount to $137
billion per year (which already includes $107 billion costs of obesity), and compares with
costs of alcohol abuse at $118 billion and of smoking at $90 billion (Table 5). Diet and
inactivity account for 300,000 deaths per year, second only to tobacco (Kenkel and Manning,
1999; NIH, 2002)4.
Individuals suffer from sedentary lifestyles, but also impose costs on others, as public
money spent must be spent to care for them when ill. For policy makers, the ironic
contradiction is that if public money were to be spent to reduce ill-health and thus people
live longer, then this may well increase direct health care costs. However, only a perverse
accounting approach would suggest that this was a cost rather than a benefit arising from
longer and better quality lives.
Table 5. The annual costs of diet and exercise-related ill health in the USA
Condition or disease
Direct costs
($ billion yr-1)
Indirect costs
($ billion yr-1)
Total costs
($ billion yr-1)
Proportion of
disease caused by
dietary factors and
physical inactivity
Heart disease
Breast cancer
Colon cancer
Prostrate cancer
Gall bladder disease
Note: obesity cannot be summed from all the other values as some of the problems are interrelated factors
Sources: Kenkel and Manning (1999); Wolf and Colditz (1998)
4 Each year, Americans spend $110 billion on fast food (up form $6 billion in 1970) almost the same amount as they also have
to pay as public health costs associated with obesity, and more than that spent on higher education, computers or cars
(Schlosser, 2001).
2. Connections to Nature as a Secondary Determinant of Emotional
In Figure 1, we suggest a secondary role for connections to nature and communities in
influencing well-being. It is interesting to note that the now convincing case for the primary
role of both diet and physical activity is primarily made with respect to physical well-being
expressed through measures such as body mass index, disability life adjusted years, or
lifespan. But a longer life does not necessarily mean a better quality of life. Indeed, the
Eurodiet (2001) study states that the expanding elderly population sadly “seems to be adding
years of ill-health rather than well-being to their extended lives”. Mental health or emotional well-
being is rarely included in the list of benefits of activity and diet, or of the costs if these
lifestyle factors are missing. We now explore the evidence for a role that connections to
nature play in affecting well-being and mental health.
2.1 Shaping and Self-Shaping
For most of human history, humans have been intimately connected to nature on a daily
basis. We have shaped nature, and it has shaped us, and we are an emergent property of this
relationship (Pretty, 2002). Today, though, some may argue that there is little value in
connections to land and nature. Is it not just something for indigenous people or remote
tribes? Yet if we look carefuuly, even in predominantly urban-based societies, people never
seem to get enough of nature. People in cities and towns are wistful about lost rural idylls.
They visit for afternoons or occasional weekends, but on returning home, often feel that they
should have stayed. Membership of environmental organisations in industrialised countries
has never been higher, and is growing. We should ask: what makes people care about
nature, and why are so many distressed about its loss? Why too does nature seem to have a
positive effect on people (Milton, 2002)?
An innate connectedness to nature is the core principle in the `biophilia hypothesis‟,
originally developed by biologist E.O. Wilson (Wilson, 1984; Kellert and Wilson, 1993). This
suggests that closeness to nature increases well-being as well as increases likelihood of
understanding of and care for nature, and its rediscovery can lead to transformations in
people and nature. According to Wilson (1993), “humans have an innate sensitivity to and need
for other living things as we have co-existed for thousands of generations.” Thus biophilia
represents the connections that human beings subconsciously seek with the rest of life”. Kellert
(1993) further suggests that “the human need for nature is linked not just to the material
exploitation of the environment but also to the influence of the natural world on our emotional,
cognitive, aesthetic and even spiritual development”.
The biophilia hypothesis holds that multiple strands of emotional responses are woven into
symbols comprising a large part of human culture. Despite removing ourselves from nature
in recent generations, many (or even most) people still have these responses. Humans
evolved in a biocentric world, not a machine world, and so there are links between
emotional feelings and dreams, stories and myths about the natural world. These stories
bind together culture, and are passed on from generation to generation through language.
The fundamental connection to nature has also been emphasised by what Wilson calls
`biophobia‟ – why humans still seem to have innate negative emotional responses to spiders
and snakes, whilst few modern artefacts (such as cars and guns) evoke similar emotional
responses, even though they are potentially more dangerous. Some may say tsuch phiobia
are irrational, but Wilson (1993) asserts this is because of the “constant exposure through
evolutionary time to the malign influence of snakes, the experience encoded by natural selection as a
hereditary aversion and fascination, which in turn is manifested in the dreams and stories of evolving
We may thus ask, is nature part of us, or are we, as humans, somehow separate? These are
questions that have exercised philosophers, scientists and theologists through the ages, and
particularly since the enlightenment period, when Newton‟s mechanics and Descartes‟
`nature as machine‟ helped to set out a new way of thinking for Europeans. The result has
been the gradual erosion of connections to nature, and the emergence in many people‟s
minds of two separate entities people and nature (Naess, 1989; Benton, 1994).
The greater vision, and the more difficult to define, involves looking at the whole, and
seeking ways to redesign it. The Cartesian either/or between humans and nature remains a
strange concept to many human cultures. It is only modernist thinking that has separated
humans from nature in the first place, putting people up as distant controllers. Most people
and cultures do not externalise nature in this way. From the Ashéninha of Peru to the forest
dwellers of former Zaire, people commonly see themselves as just one part of a larger whole.
Their relationships with nature are dialectical and holistic, based on `both/with‟ rather than
`either/or‟ (Benton, 1994; Posey, 1999). For the Arakmbut of the Peruvian rainforest, Gray
(1999) says: “no species is isolated, each is part of a living collectivity binding human, animal and
spirit”. Mythologies and rituals express and embed these inter-relationships, both at the
practical level, such as through the number of animals a hunter may kill, and how the meat
should be shared, and at the spiritual, in which “the distinction between animal, human and
spirit becomes blurred”.
One of the best known of these visible and invisible connections is the Australian Aboriginal
peoples‟ Dreamtimes. Aboriginal people have inhabited Australia for 30,000 years or more,
during which time some 250 different language groups developed intimate relations with
their own landscapes. Bennett (1999) says “Aboriginal peoples hold that there is a direct
connection between themselves and their ancestral beings, and because they hold that their country
and their ancestral beings are inseparable, they hold that there is a direct connection between
themselves and their country”. Each Aboriginal group has its own stories, or Dreamtimes,
about the creation of their land by their ancestors, and these stories connect people with
today‟s land. Such land is non-transferable, and so is not a commodity. Events took place
there, and people invested their lives and built enduring connections - so no one owns it, or
rather, everyone does. As Bennett (1999) also says, “those who use the land have a collective
responsibility to protect, sustainably manage and maintain their `country’.”
If these connections do have fundamental importance, then this suggests that disconnections
could be harmful or costly both to individuals and to societies and cultures at large. René
Dubos (1969) says “we are shaped by the Earth. The characteristics of the environment in which we
develop condition our biological and mental being and the quality of our life. Were it only for selfish
reasons, therefore, we must maintain variety and harmony in nature”.
2.2 Nature and Community Deprivation and Self-Identity
If nature is important to humans, then deprivation is likely to create problems. Kellert (1993)
suggests that “a degraded relationship to nature increases the likelihood of diminished material,
social and psychological existence”. Thus increasing disconnections between people and nature
will have an impact on individuals, on their communities and cultures, and ultimately on
how they treat and care for nature. These disconnections are now a common part of many
lifestyles in modern industrialised societies with increasing numbers of people living in
urban areas, and fewer people having daily or routine contact with nature. Wilson (1993)
asks: “what will happen to the human psyche when such a defining part of the human evolutionary
experience is diminished or erased?”
There is a well-established literature that shows that the physical and social features of the
environment affect behaviour, interpersonal relationships and actual mental states
(Newman, 1980; Freeman, 1984, 1998), as well as shape relations with nature (Pretty and
Ward, 2001). The design of the built and natural environment thus matters for mental health
(Kaplan et al., 1998; Freeman, 1984; Halpern, 1995). People seem to prefer natural
environments to other settings, and the benefits go beyond just enjoyment. Kaplan et al.
(1998) indicate that such natural settings need not be remote wildlands, and emphasise the
value of “the everyday, often unspectacular natural environment that is, or ideally would be,
nearby parks and open spaces, street trees, vacant lots and backyard gardens, as well as
fields and forests. Equally, a dysfunctional built environment can often be a source of stress,
and a malign influence over social networks and support mechanisms. Despite this, we seem
not to care. Halpern asserts “almost no reference is made by planners to psychological literatures”.
Physical features of the built environment leading to problems include sick building
syndrome arising from materials used in some buildings and air conditioning systems, long
distance commutes to work, and suburban communities with self-contained homes
encouraging little contact with neighbours (Garreau, 1992). Social features might include
access to an immediate family environment or extended networks of friends and
neighbours, as well as access to green spaces, meeting places, and opportunities for
reciprocity, all of which lead to improvements in mental and spiritual health (Newman,
1980; Pretty and Ward, 2001).
Some of the most obvious effects occur when environments are transformed. After slum
clearances, for example, people gain from improvements in physical assets and services, but
lose in social networks. Like nature deprivation, this is a process of culture deprivation. As
Freeman (1998) puts it, such clearances often involved “the demolition of a neighbourhood and
not just the destruction of buildings, but also that of a functioning social system, with a characteristic
culture of its own and important social networks that could never be reproduced artificially”.
Willmott‟s (1963) study of social change in Dagenham found that people in small streets and
cul-de-sacs had more social connections and reciprocal arrangements than those in large,
busy streets. When these were replaced by large modern estates, these social support
networks based on geographic proximity can entirely break down, leading to an atomised
One study of a housing project in St Louis, Minnesota, with 43 eleven storey blocks housing
12,000 people, found that although people had a similar number of friends as non-project
dwellers, these “bore little or no relation to the physical proximity of families to each other”
(Yancey, 1971, in Halpern, 1995). Neighbours were generally now hostile, and the quality of
life much lower, even though individuals were generally satisfied with their own
apartments. The problem was that the project offered no natural or defensible space
(Newman, 1972) and common facilities around which neighbouring relationships could
develop. The space between the blocks was called `wasted space‟ by residents. In 1972, only
18 years after the project had been opened, all the blocks were demolished after years of
vacancy rates exceeding 70% (Halpern, 1995). Ironically, the design won architectural praise
before the people lived in it.
Another important determinant of mental well-being is people‟s perceived ability to control
their own environment. Halpern (1995) says “the negative impact of environmental stresses is
greatly reduced when people feel they have control over them. Similarly, the impact and quality of
people’s relationships with their neighbours is critically mediated by the extent to which they are able
to regulate their interactions with them”. Acute forms of deprivation related to lack of control
have been noted after environmental disasters. Lee (1999) uses the term Chronic
Environmental Stress Disorder (CESD) to describe the effect of stress arising from
environmental harm either directly experienced or arising over the long-term from simply
knowing that a problem may be having an effect. Such stress is manifested through
headaches, demoralisation, upset, perceived threats, declining quality of life and distrust of
authorities. It is known that stress causes psychological effects, especially on autonomous
nervous system, which becomes dysfunctional, and on endocrinological system. Thus stress
has a negative feedback on health and well-being of individuals. Stress can be alleviated if
the stressor is removed, if people are provided with a sense of control, and if the ways in
which they perceive the source of the stress can be changed.
In the case of the Chernobyl accident, detailed empirical studies show that much greater
mental and physical health problems have occurred from people‟s worries about the
accident than have occurred from radiation itself. Some 45% of people in contaminated areas
believe they have an illness due to radiation exposure, yet 30% of people in the unpolluted
areas feel the same. Lee (1999) suggests, “the widespread public anxiety and pessimism about the
Chernobyl accident appears to be out of all proportion to the radiation-induced health effects”.
Moreover, UNESCO concluded “there has been no increase in leukaemia, congenital
abnormalities, adverse pregnancy outcomes or any other radiation induced effects”. Yet there are
clearly high levels of anxiety and pessimism. Researchers concluded that social support is
needed to recover from this stress, and though the original stressor cannot be changed, it is
possible to amend the way it is perceived.
The built and natural environment can, therefore, be therapeutic or harmful (Carter and
Carter, 1979; Freeman, 1984). As Freeman puts it “there is a need to restore human settlements
the benefits of a social matrix in which a worthwhile quality of life and work can grow.” This
sense of place is important, and many people have acknowledged positive `affective
sentiment‟ for specific places (Relph, 1976; Langenbach, 1984; Tall, 1996). Fredrickson and
Anderson (1999) contend that “place is not just the `where’ of something, but that the landscape
itself embodies meaning.” Landscapes are full of stories and meaning (Nabhan and St Antoine,
1993; Okri, 1996; Schama, 1996). Metzner (2000) uses the term reinhabitation to describe the
need to dwell in a place in a balanced way, with respect for the stories of the other
inhabitants, and quotes Wallace Stegner, “no place is a place until things that have happened in it
are remembered in history, ballards, yarns, legends or monuments”. Some argue that an important
part of personal identity is created through interactions with specific places, and the
attachments we then develop (Milton, 2002).
What do we know about these attachments? As Fredrickson and Anderson (1999) indicate
“past research on place and place attachment has typically focused in a one-way direction, that of
individual to place; often overlooking the relationship of place to individual, that is, the affective
appeal that place impresses upon the individual.” Thus we are partly shaped by the environment,
by our attachments developed during specific experiences and interactions. The personal
benefits include psychological well-being, self-image, and self-esteem, and the social ones
include family stability, community pride and cultural identity (Pretty, 2002). So, is contact
with nature and place a fundamental part of the way we establish self-identity? Identity is a
relationship in which something is shared, and linkage with nature and communities
partially helps to do this (Fox, 1995; Milton, 2002). To a certain extent, who and what we are
is constructed through relationships with people and with nature. Thus, if we lack these
relationships and connections, we must lose a sense of personal identity and self-esteem.
People need nature or the otherness of nature yet it has drained away through unwise
management (Adams, 1996). A sense of identity emerges out of daily, or at least regular,
personal contacts, whereby self is formed in relation to the other (Ingold, 1986; Naess, 1989).
Some so further to argue that the rest of nature is therefore an extension of personhood
(Milton, 2002). Naess (1989) indicates “the identity of the individual `that I am something’ is
developed through interaction with a broad manifold, organic and inorganic.” If we break the
connections, the sense of identity is broken, so increasing the likelihood of ill-health. Deep
ecologists suggest that separation from nature leads to greater alienation of people from
each other, and increased likelihood of self-abuse (Seed et al., 1988; Naess, 1989).
2.3 The Psychological and Healing Benefits of Nature
A growing number of researchers from a wide variety of disciplines have shown that
contacts with the natural world can benefit mental and physical health. The contexts include
the effectiveness of wildernesses in contributing to spiritually beneficial recreation and
leisure experiences (Kaplan and Kaplan, 1989; Ulrich et al., 1991; Fredrickson and Anderson,
1999; Whitehouse et al., 2001; Williams and Harvey, 2001); the healing value of hospital
gardens or of nature views from hospital or gaol windows (Moore, 1982; Ulrich, 1984); the
benefits of community gardens and nature areas in urban settlements (Ulrich et al., 1991;
Weissman, 1995a, b; Armstrong, 2000); and the psychological benefits of companion animals
and pets (Anderson et al., 1984; Katcher and Beck, 1993; Katcher and Wilkins, 1993); and the
benefits of consuming distinctive local foods coming from systems with known positive
effects on nature and rural communities (Pretty, 2002).
Frumkin‟s (2001, 2002) comprehensive reviews of the evidence that the natural world can
benefit health concludes that contacts with animals, plants, landscapes and wildnesses can
improve well-being. However, much of the evidence is somewhat anecdotal, and convincing
empirical medical evidence is still needed. Some of the most convincing studies include:
A comparison of prisoners in Michigan whose cells faced either farmland and trees or
the prison yard, in which it was found that those with a view of nature had a 24% lower
frequency of sick cell visits (Moore, 1982);
A 10-year comparison of post-operative patients in Pennsylvania whose rooms looked
out on trees or a brick wall, in which it was found that patients with tree views stayed in
hospital for significantly less time, needed less strong or moderate medication and had
fewer negative comments in the nurses‟ notes5 (Ulrich, 1984);
A comparison of pain experienced by bronchoscopy patients (during which a fibre-optic
tube is inserted into the lungs), in which the group viewing a nature scene before the
5 Ulrich (1984) also notes that “a built view such as a lively street might be more stimulating and be more therapeutic than many nature
treatment and listening to sounds of a bubbling brook during the proceedings had a 50%
increase in the level of self-reported `very good‟ or `excellent‟ pain control (Lechtzein et
al., 2001, in Frumpkin, 2002);
Studies of pet owners, who were found to have lower blood pressure and cholesterol
levels than non-pet owners in Australia (Anderson et al., 1992) and to make fewer visits
to doctors in the USA (Siegel, 1990); and of dog-owners suffering from myocardial
infarction, who were six times more likely to survive a year after the trauma then those
with no dogs (Friedmann and Thomas, 1995) (though curiously there was no effect for
cat owners);
Positive effects of animals on depressed and asocial patients, in which usually
unresponsive patients interacted with animals by holding, stroking and hugging,
smiling and laughing, and also talking to the animals and their carers (Katcher and
Wilkins, 1993);
A study of dental patients, in which those observing a live aquarium before treatment
were more relaxed than control patients (Katcher et al., 1984).
Some of this evidence should not be a surprise. Frumkin (2001) points out that “hospitals have
traditionally had gardens as an adjunct to recuperation and healing”, and 95% of people living in
retirement communities say windows facing green landscapes are essential to well-being.
Ulrich (1984) states this aesthetic preference for nature may be universally expressed across
human cultures: “one of the most clear cut findings in the literature is the consistent tendency to
prefer natural scenes over built views, especially when the latter lack vegetation and water”. Beck
and Meyers‟ (1996) study of pets and companion animals further concluded that “preserving
the bond between people and their animals, like enhancing good nutrition and exercise, appears to be
in the best interest of those concerned with public health”. Of course, there may already be a
substantial positive effects, as 56% of US households already have pets.
Frumkin (2002) also poses an important challenge. Intuition and experience seem to support
that notion that nature contact should be seen as a positive health intervention, yet health
professionals have not widely adopted horticulture, wilderness, nature or animal therapy.
He suggests that “much of the available research on the health benefits of nature do not meet
prevailing standards of medical excellence”. It is, in other words, insufficiently evidence-based.
Research is often non-randomised in its design, with inappropriate or no controls;
interventions and health outcomes are often poorly designed; statistical power is rarely
sufficiently strong to strong conclusions; and selection bias can undermine findings or
relationships between cause and effect (Frumkin, 2002).
2.4 The Benefits of Wildernesses and Nearby Nature
There is also a large body of research to investigate the benefits of wilderness experiences,
dating back to the testimony of 19th century writers such as John Muir and Henry David
Thoreau (Muir, 1911, 1992; Thoreau, 1837-53, 1902). Muir‟s writing on the Sierra Nevada,
and the importance of such `wild‟ areas for well-being was instrumental in the
establishment of the world‟s first national park at Yellowstone in 1872 (Pretty, 2002).
A number of studies have shown that people both seek and derive a variety of values when
they visit wildernesses, in particular a desire for tranquillity and natural beauty, escape from
the stresses of urban life (Rossman and Ulehla, 1977), and the potential for dramatic `peak
experiences‟ (Scott, 1974) or transcendent moments (Williams and Harvey, 2001). Herzog et
al. (2002) conclude that “the restorative potential of natural settings is probably underappreciated”,
as many people do not appreciate the full benefits of such settings particularly in the face
of competition for multiple other leisure and entertainment opportunities of modern life.
Frumkin (2001) reviews wilderness therapy studies for their potential benefits for
psychiatric patients, emotionally disturbed children, bereaved people and patients with
cancer and others suffering various stresses and ailments. Positive effects on both physical
and mental health are found in many studies, but it was not clear the extent to which
benefits are also accruing from participation in organised programmes and trips, nor
whether people‟s exposure to other forms of non-wilderness natures was having a distorting
Fredrickson and Anderson (1999) explored the effects of a wilderness experience on two
groups of women in two wild areas of Minnesota and Arizona. Participants stated that
benefits arose from both individual contact with nature, and from connections with their
social group sharing the experiences. Personal testimony showed that the experience left a
lasting impression on most participants, particularly as these experiences were so different
to those of their daily lives at home. Many spoke of showed renewed hope, a reawakening
of emotions and a new sense of identity (Box 2). The authors found that person-person
interactions were just as important as person-place connections: “the affective appeal of a
particular place setting has as much to do with the social interactions that occur there, as with the
overall visual appeal of the landscape itself”. The researchers concluded that these wildernesses
contributed substantially to participants‟ well-being.
Box 2. Selection of comments from female participants of wilderness experiences in USA
“It was so incredible being able to hear the birds…. Just the crunching of animals all around us… The sounds of
the forest, the snapping of twigs, hearing the tiny sigh of the wind through the treetops at night.”
“I noticed more, I felt more. I felt more connected to myself and even to other people on the trip.”
“I can’t even fully capture in words what happened to me when I was out there… It’s like the spirit is burning
deep inside me again, and I’m looking at my life a little differently.”
“Instead of sitting back and observing it [the landscape], it’s like I was moving into it… some way, or rather it
was moving into me. I couldn’t deny its effect on me.”
Source: Fredrickson and Anderson (1999)
Similar experiences to those recorded by Fredrickson and Anderson (1999) have been noted
by Williams and Harvey (2001) in the forests of Australia, where so-called `transcendent‟
experiences were found to provoke a sense of harmony, freedom and well-being that were
sufficiently long-lasting to change long-term attitudes to the environment. Several other
studies have noted the value of natural and wildness experiences and their therapeutic
potential (Kaplan, 1995; Herzog et al., 2002), and the additional role that physical hardship
can play in triggering more profound experiences (Mitchell, 1983; Fredrickson and
Anderson, 1999).
Young and Crandall (1984) used Abraham Maslow‟s (1968) concept of self-actualisation a
term to describe well-being, self-esteem and an enriched life (cf Rogers, 1951) to test
whether wilderness users were more `self-actualised‟ than non-users. They found that users
were significantly more self-actualised, though the differences were not great, and that
regular use did not increase self-actualisation over infrequent use. However, they only
tested for people‟s connections to a legally-defined type of nature a specific wilderness in
Minnesota. As indicated by other studies, non-users of the wilderness could have been
deriving benefits from access to other types of local and companion nature, such as in
community or back gardens or churchyards (McBey, 1985; Cooper, 2000; Armstrong, 2000)
or from companion animals (Katcher and Wilkins, 1993). Moreover, it may be that self-
actualised people were more likely to use wildernesses, and so causation may have been
Wildernesses are not the only natural settings or places that can confer benefits. Healing
gardens are acknowledged to be beneficial for patients of hospitals (Cooper-Marcus and
Barnes, 1999; Whitehouse et al., 2001). Such benefits appear to have been recognised as early
as the Middle Ages, with garden cloisters and vegetable gardens used as part of the healing
process. In the Victorian period, gardens were routinely located in hospitals for the benefit
of patients, and hospitals themselves located in pleasant surroundings. Some argue that
modern health systems, with a focus on treatment of diseases rather than patient comfort
and care, have abandoned useful principles regarding connections with nature and place
(Lindheim and Syme, 1983). Empirical studies have shown that patients and staff with
windows overlooking gardens have reduced stress (Ulrich, 1984; Verderber, 1986), and
patients regularly report positive changes in mood when visiting gardens (Cooper-Marcus
and Barnes, 1995).
Whitehouse et al. (2001) found that a healing garden at a children‟s hospital in California had
positive effects on users, with 54% reporting they were more relaxed and less stressed, 12%
refreshed and rejuvenated, 18% more positive and able to cope, and only 10% having no
difference in mood. Even very short visits were beneficial, as nearly half of all observed
visitors spent less than five minutes at a time in the garden. However, a majority of adults
and children in the hospital did not know of the garden nor knew of its potential.
Such principles are being applied in the Eden Alternative nursing homes (EA, 2002), healing
gardens, greenhouses, atriums and plants have been deployed in five homes in Texas. After
conversion, there were 57% fewer bedsores, an 18% reduction in patients restrained, a 60%
reduction in behavioural incidents, and a 48% reduction in staff absenteeism. The costs of
such nature-based treatments are expected to be much less than expenditure for drugs and
surgery to achieve the same outcomes.
Private and community gardens provide anther direct link to nature for many people, and
are particularly valuable in urban settings. In the UK, there are now some 300,000 occupied
allotments on 12,000 hectares of land down from 120,000 hectares in the 1940s. These
allotments yield some 215,000 tonnes of fresh food each year. But more importantly, they
provide an opportunity for regular contact with nature. There are now several hundred city
farms or community gardens in the UK (Garnett, 1996; Pretty, 1998). They provide of food,
especially vegetables and fruit, for poorer urban groups, and a range of other natural products
such as wood, flowers and herbs. They add some local value to produce before sale. They
sometimes mean that derelict or vacant land is transformed into desirable areas for local
people to visit and enjoy, resulting in the creation of quiet tranquil places for the community
that can increase wildlife. The involvement of schoolchildren can mean a reduction in
vandalism, as well providing local children with an educational opportunity to learn about
farming and animals. They also provide the opportunity for mental health patients to engage
in work that builds self-esteem and confidence, and for unemployed people to use their time
productively in their own community.
A good example of what they tiny patches of nature can do is provided by the 1.6 ha Elder
Stubbs garden in Oxford (Pretty, 1998). It was started in 1989 on derelict allotments, and
links food production with developing the self-esteem and confidence of 24 mental health
patients working at the gardens. It grows vegetables, flowers, fruit and willow coppice.
Produce is sold to loyal buyers in the local community through regular deliveries by horse
and cart. Value is added by making baskets from the willow, and jams and chutneys. There
are positive links with the local community, and it shows what people with mental problems
can do. Local school children come to the site regularly to help with work, and vegetables
are sold to local people. But perhaps the greatest benefits have been in the rebuilding of
social capital. Keith Birnie says “it is not just about work here, it is about socialising, and learning
to get on with each other”.
The American National Gardeners Association estimates that some 35 million people are
engaged in growing their own food in back gardens and allotments. Their contribution to
the informal economy is estimated to be about $12-14 billion per year. Private gardeners
cultivate mostly to produce better tasting and more nutritious food, but also to save money,
for exercise and for therapy. It makes them feel better. This is particularly true of community
gardens and farms which, by contrast, seek to enhance both food production and social
benefits. In New York, 87% of community gardeners invest their time in gardening so as to
improve the neighbourhood, 75% for fresh vegetable production, 62% for fun and self-
esteem, and 42% to save money (Weissman, 1995a, b). Their testimony indicates the value of
these community gardens (Box 3). Many of the recently established Community Supported
Agriculture (CSA) farms, with direct links to their consumers, not only provide weekly food
boxes but also run horticultural therapy and educational sessions (Pretty, 2002).
In a survey of 20 community gardens in New York State, it was reported that people
participated primarily to access fresh foods, to enjoy nature and for mental and physical
health benefits (Armstrong, 2000). In more than half the cases, the gardens had changed the
attitudes of residents about their neighbourhood, and in a third, had led to collective action
to address local issues.
An important unanswered question for those concerned for sustainability is to what extent
do the benefits of wildness experiences continue off-site? Do they provoke long-term
changes in thinking, which could lead to deep social and political transformations? It is also
true that people with a certain set of positive environmental values may be predisposed
towards the restorative potential of nature (Kaiser et al., 1999), and that these values help to
shape environmental attitudes (Kals et al. 1999; Schultz and Zelezny, 1999). As Barnes (2000)
has put it: “The future of the planet depends on your enjoyment.”
Box 3. The contribution of community gardens to local communites
Ruth Fergus, Madison Community Garden
“When we first began our community garden, it meant changing an eyesore of a burnt-out building into something beautiful.
Now, each morning I wake up to a dream come true. It also changed our mischievous teenagers to a positive junior block
association, learning parliamentary procedure and conducting their own meetings instead of destroying the block”.
Bertha Jackson, 127th St Block Association, Central Harlem, 1995
“This is the beauty. Yearly we got two or three bushels of peaches from the tree. People have come from near and far for Harlem
grown peaches from our garden tree. The peach that grew in Harlem”.
Glenn Bader, Mount Eden, Bronx
“No one believed it could be done. Everyone told us that the students were failures. Students that had a history of violence and
trouble could add nothing to their community. We fooled them”.
Tito Arroyo, Bronx
“The landlord to the right of the garden said `this makes this block, my building, more valuable and more beautiful’.
Mary Scales, in a letter in the New York Times (30 Jan, 1997)
“Our community garden was created by students, staff, neighbours, community workers and environment groups. Together we
managed to have the lot cleared, a fence erected and a garden created. The students, along with our neighbours, have improved
the environment, which has made East New York a more beautiful place to work and live. Flowers bloom, vegetables are
harvested, the smell of barbecues fills the air and the students learn. They enjoy learning outside... and our gardens are an oasis
of beauty in the deserts of urban decay”.
Sources: Weissman. 1995a, b
3. Physical Activity as Determinant of Emotional Well-Being
As we have indicated earlier, there is now compelling evidence that regular physical activity
is good for health not only in preventing important diseases and conditions, but in
prolonging life. We are also interested in the extent to which physical activity can positively
affect mental well-being and self-esteem (Scully et al., 1999).
3.1 Self-Esteem, Sport and Exercise
According to Campbell (1984), self-esteem is an awareness of good possessed by self. Self-
esteem is a self-rating of how well the self is doing. This worth is dictated by both the
individual and the primary culture in which a person operates. It is, therefore, both a
personal attribute based on the things that are valued most, and a societal attribute, based
on the things which individuals value the most.
There are several reasons why good or high self-esteem is important. It is seen as a key
indicator of emotional stability, and adjustment to life demands is seen as one of the
strongest predictors of subjective well-being (Deiner, 1984). High self-esteem is valued and
is associated with healthy behaviours and it is therefore important to consider it in relation
to health. It also seems to be a concept that the general public seems to understand (it is now
part of the National Curriculum).
The symptoms of low self-esteem include depression, anxiety, neuroses, suicidal ideation,
sense of hopelessness, lack of assertiveness, and low perceived personal control. Clearly the
consequences of these are likely to be negative in both the short and long term. With the
possible exception of the mania component of manic depression (which involves heightened
self-esteem), most mental health problems are related to reduced self-esteem either as a
consequence or a cause of the illness. If self-esteem could be improved, then it may be that
underlying problems could also be solved. Thus in addressing self-esteem, this could be
used as a marker to identify whether we are helping to solve underlying problems.
The evidence suggests that aerobic exercise can improve self-esteem (Fox and Corbin, 1989)
as well as have an antidepressant effect (McDonald and Hodgdon, 1994). However, like the
research on the benefits of nature (cf Frumkin, 2002), much of the evidence is correlational
rather than causal (there have not been many well-designed experiments).
The evidence base for different groups differs. In children and adolescents, exercise is an
effective medium for developing positive self-esteem. It is very good for those with low self-
esteem and is powerful if it also encourages mastery and self-development (Marsh and
Peart, 1988; Calfas and Taylor, 1994; French et al., 1995). In middle-aged adults, it is very
important, though for older adults, there is little research.
The evidence suggests that exercise affects an undetermined psycho-physiological
mechanism, leads to improved fitness and/or weight loss, more autonomy and personal
control, and a better sense of belonging and significance. However, there is much about the
underlying mechanisms that is not known (Box 4).
Box 4. Factors affecting the role of exercise on self-esteem (Hill, 1965)
1. Strength of association (is depression associated with a lack of exercise) there is an association
but not as strong as with coronary heart disease
2. Consistency (yes this putative relationship does often occur )
3. Specificity (how “tight” is the relationship? – not well researched)
4. Temporal sequence (does inactivity precede onset of depression? not well researched)
5. Dose response (how much is enough -not clear not well researched)
6. Plausibility (it does seem plausible that a biological mechanism exists which could explain this
7. Coherence (it seems probable that this mechanism would fit with other known mechanisms)
8. Experimental evidence (some but not enough and not enough of high quality).
3.2 Physical Activity and Body Image
Various studies have discovered that physically-active men and women evaluate their
physical appearance more positively and are significantly more satisfied with various parts
of their bodies compared with those who are not physically active (Davis, 1997; Lowland,
1998, 1999; Guinn et al. 1997). Bartlewski et al. (1996) found women who enrolled in an
aerobic exercise class showed a decrease in social physique anxiety throughout the duration
of their attendance. Social physique anxiety is a bodily self-consciousness resulting from
perceived evaluations by other people, and it did not change significantly for non-exercising
control subjects.
Lox (1995) investigated the effect of exercise on subjective well-being in HIV-1 infected men
over a period of twelve weeks. They were assigned to either an aerobic exercise training
group, a resistance weight-training group or a control group. Both exercise groups
demonstrated improvements in perceived physical ability and subjective physical
appearance, while the control group exhibited decreases in these two measures. The aerobic
exercise group displayed greater increases in perceived physical appearance than the
weight-training group.
Marsh (1998) examined the physical appearance self-concept among elite athletes and non-
elite athletes by using the PSDQ appearance scale. This comprises a total of eleven subscales:
appearance, strength, condition/endurance, flexibility, health, coordination, activity, body
fat, sport, global and physical. A combined analysis gives total physical self-concept. There
were large between group effects favouring elite athletes and significant group x gender
interactions for total physical self-concept. Elite athletes scored more favourably than non-
elite athletes across all the PSDQ sub-scales except health concept, while there were no
significant group x gender interactions for appearance, body fat or global physical self.
Individuals who have physical disabilities often elicit a stigmatised response, as they fall
outside the range of what is considered to be „normal‟. They are assumed to differentiate
from conventional standards of body build and attractiveness. Taub et al. (1999) explored the
possible alteration of the image of a disabled body through involvement in sport and
physical activity. Males with a variety of disabilities including paraplegia, quadriplegia and
cerebral palsy were included in the study. The majority of participants perceived
participation in physical activity as a positive experience, and they believed they had an
enhanced bodily appearance as a result. They also considered sport and physical activity to
be compensatory to stereotypical perceptions about the appearance of a disabled body.
The importance of the participation experience itself rather than the type or intensity level of
the physical activity was emphasised. Dekel et al. (1996) also examined self-esteem and body
image in adolescents with postural deformities, who were diagnosed as having structural
and non-structural Adolescent Idiopathic Sciliosis (AIS). Again, individuals who engaged in
physical activity perceived their bodies more positively than those who did not.
However, not all studies have found a positive relationship between body image perception
and physical activity. Marsh et al. (1995) did not find any significant differences in physical
appearance self-concept between athletes and non-athletes, even though they did find
differences in self-esteem. Baldwin and Courneya (1997) found a significant correlation
between exercise participation and global self-esteem in women who had been treated for
breast cancer, but physical acceptance was not correlated significantly with exercise
Davis et al. (1993) investigated physical appearance with particular regard to men. Although
they hypothesised that appearance anxiety would be inversely related to physical activity
participation, this association was only weak. Upper body esteem accounted for nearly half
the variance in appearance anxiety, suggesting that male body dissatisfaction is most
notable for the chest and waist.
3.3 The Relationship Between Body Image and Self-Esteem
The body‟s appearance is a focal point in many people‟s lives as its characteristics are openly
displayed. By the age of eleven children have begun to rate themselves on particular aspects
of their appearance, and have already formed an opinion about whether or not they are
attractive. As shown in Table 6, certain features become important as well as consistently
relating to self-esteem. It indicates that the perception of appearance is the strongest
correlate of self-esteem for both boys and girls (0.61 and 0.69 respectively) compared to other
areas of life. The body is also of great importance to the self at times of life other than
childhood. This is evident from peoples‟ willingness to undergo self-presentation strategies
that are often unhealthy or expensive, such as cosmetic surgery and the use of sunbeds. The
use of steroids by body builders and the adoption of dysfunctional eating habits in young
girls in order to look slim can also be viewed as self-presentation strategies (Fox, 1997).
Table 6. Correlates of self-esteem in 12-year-old boys and girls (Page and Fox, 1997).
Boys (n=113)
Girls (n=130)
Athletic ability
Close friends
Social competence
Scholastic competence
Clothes concern
Face dissatisfaction
Hair dissatisfaction
Looks preoccupation
Weight dissatisfaction
0.61 (p<.01)
0.44 (p<.01
0.59 (p<.01)
0.52 (p<.01)
0.25 (p<.05)
0.39 (p<.01)
0.28 (p<.05)
0.69 (p<.01)
0.28 (p<.05)
0.43 (p<.01)
0.38 (p<.01)
0.43 (p<.01)
0.50 (p<.01)
0.38 (p<.01)
0.33 (p<.01)
Secord and Jourard (1953) speculated that if an individual‟s status and security were
dependent on their attractiveness, and they did not consider themselves to be attractive,
they would exhibit a loss in self-esteem. They found intercorrelations between body image
scores and self-concept scores of students, which were 0.58 and 0.66 (p<.01) for males and
females respectively. This suggests individuals have a moderate tendency to cathect their
body and self in the same direction and to the same degree. Guinn et al. (1997) also found a
negative relationship between self-esteem and body fatness in female adolescents. Body
image exerted a stronger influence over subjects‟ self-esteem scores than exercise.
Gender differences are important. In both athletes and non-athletes, men have been found to
have significantly higher self-esteem (p<.01) and physical appearance self-concept (p<.01)
than women (Marsh et al. 1995). Marsh (1998) found that group effect (elite/non-elite
athletes) was substantially larger than gender effect for total physical self-concept and most
scales on the PSDQ, with the exception of appearance, body fat and global physical scales.
For these scales the gender effect (favouring males) was substantially larger than the group
effect. Lowland (1998, 1999) discovered inactive and active women were more concerned
with appearance and weight and were less satisfied with weight and most parts of their
bodies than their male counterparts.
Secord and Jourard (1953) did not find any significant differences between means of scores
on the Body Cathexis Scale for the two sexes, although women did cathect their bodies more
highly than men indicating a poorer perception of body image. In an exploratory study of
motives for exercising and body image satisfaction, it was discovered that women who
experienced the most body dissatisfaction exercised for appearance and weight control.
Women also exercise for appearance-related reasons more than men (Smith et al. 1998).
3.4 Using Sport, Exercise and Physical Activity to Reduce Depression
There is good evidence to support the idea that physical activity has a positive effect on self-
esteem and depression, but clearly more research is required. One key problem lies in
defining clinical depression. Many people say they have clinical depression (emphasising
the term `clinical‟) to ensure that others understand that they are more than just unhappy. In
one way, individuals are clinically depressed if they see a doctor who evokes an
intervention, i.e. they are given time off work, prescribed drugs, and/or told to see a
counsellor or therapist. The issue of definition is important because many of the studies
cited as evidence that exercise beats depression were not with clinically-depressed patients
or at least its not clear that that was the case.
There are, however, objective ways to categorise clinical depression, including scoring 16 or
above on the Beck Depression Inventory (BDI) (Beck et al., 1961); using the DSM-IV (the
Diagnostic and Statistical Manual of Mental Disorders) or the ICD-10 (International
classification of diseases; using the Research Diagnostic Criteria (RCD) (Spitzer et al., 1978).
Studies using these kinds of measures would be more convincing that just with self-
diagnosed individuals.
There is also some epidemiological evidence (Martinsen et al.,1989; Morgan, 1994). Fitness
levels were lower for psychiatric patients than non-hospitalised controls. Patients who had
short (up to 61 days) hospital stays had higher levels of muscular endurance on admission
than those who stayed longer (at least one year) even though they had similar initial levels
of depression. But it is not clear whether lack of exercise causes depression, or depression
causes lack of exercise.
There are several key studies in which statistical adjustments have been made for
confounding variables such as age and socio-economic background. Farmer et al. (1998), in a
study of 1497 people over an eight year period, showed that women who did little or no
activity were twice as likely to develop depression as those who engaged in `much‟ or
`moderate‟ activity. But this was not true for men, but for those men who were depressed at
the baseline inactivity was a strong predictor of depression at the 8 year follow up. In a
study from a baseline point, then nine later and a further nine years after that, Camacho et al.
(1991) found a relationship between inactivity and depression. The relative risk of
depression was greater for both genders in those who had low physical activity.
Also if the amount of activity decreased (in active individuals) the risk of depression
increased. Paffenbarger et al. (1994) found that men aged 23-27 years who engaged in three
hours or more of sporting activity at a baseline point had a 27% reduction in the risk of
developing depression at follow up compared to those who did an hour or less. There was
also some important evidence for a dose response. Those who expended 2,500 kcal or more
per week were 28% less at risk of developing clinically recognisable depression than those
expending less than a 1000kcal wk-1. And those who expended between 1000 and 2499 had a
17% risk reduction compared to those in the least active group.
There have been several meta-analyses, in which North et al. (1990) and McDonald and
Hodgdon (1994) show that exercise does have an anti-depressant effect, though neither used
clinically depressed subjects. Calfas and Taylor (1994) also found links in healthy and at-risk
adolescents, though the number of studies involved was small. Craft and Landers (1998)
performed a meta-analysis of only clinically depressed subjects in thirty studies, and
showed a difference in levels of depression following exercise in moderate to severe
depression. Disman (1995), though, concluded that there were too many dissimilarities
between studies for such meta analyses to be meaningful.
We conclude that although there have been insufficient studies in this area, exercise
programmes can reduce clinically-defined depression, and that this can happen as quickly
as 4-6 weeks. Most studies had good internal and external validity, though larger sample
sizes, controlling for the effects of positive characteristics of an exercise leader, conducting
long-term follow-ups, and managing the non-treatment group were all required in future
4. Synergies from Green Exercise and Policy Implications
In Figure 1, we set out a framework for the roles of diet and physical activity as primary
determinants of mental and physical health. We also suggested that linkages with nature
and social communities plays a secondary role in influencing health. It is therefore feasible
to hypothesise that there may be a synergistic benefit in adopting physical activities whilst at
the same time being directly exposed to nature. We call this `green exercise‟. There is, as yet,
little empirical evidence for such benefits arising from both sources concurrently.
The behaviour of many groups of people seems to suggest that they already appreciate the
benefits of protecting the environment, undertaking physical activity, and combining the
two. Despite the increased daily disconnections between a predominantly urban population
and nature, and the increase in sedentary lifestyles imposed or adopted by the majority of
the population, people still express their values in a variety of direct and indirect ways,
i) Membership of environmental and wildlife organisations;
ii) Visits to the countryside and the growth in national and international eco-
iii) Membership of gymnasiums and of sports and outdoor organisations.
There is clear evidence that membership of environmental and wildlife organisations is
growing (eg National Trust > 3 million; RSPB > 1 million; Wildlife Trusts > 400,000;
Ramblers Association >170,000). Some of these activities and memberships already have a
`green exercise‟ component, such as organised rambling in the countryside, fell-running and
orienteering, mountaineering, and work days on nature reserves.
Each year, some 551 million day visits are made to the UK countryside (433 m) and seaside
(118 m), and these visitors spend more (£14 billion) than gross income earned by farms for
the food produced in the landscape (CA, 2001; Pretty et al., 2003). A substantial proportion of
these day visits involves significant physical exercise, including 110 m days on outdoor
sport and leisure, 104 m days on hiking and walking, 77 m on pony trekking,
mountaineering and shooting, and 32 m on cycling (Table 7).
There is also evidence that membership of private and public gyms and health clubs has
increased in recent years, as urban people look to local opportunities to engage in physical
activity. In 2001, there were 4059 public and private health and fitness clubs, up from about
2200 in 1980 (DCMS, 2002). Some 5.4 million people are members of these clubs (though this
does not mean they all take regular advantage of their membership). The UK has a network
of some 110,000 community amateur sports clubs run by 1.5 million volunteers. Large
numbers of people regularly engage in physical activity in their communities for example,
400,000 people play football each weekend in 33,000 registered amateur football clubs. There
are, however, concerns that organised local sports are under threat from loss of playing
fields for development, and the DCMS (2002) estimates that the numbers of sports clubs has
declined by 40,000 since 1996.
Green exercise has important public and environmental health consequences. At a
fundamental level, a fitter and emotionally more content population costs the economy less.
Obesity already costs more in public health terms, and will overtake smoking as Britain‟s
biggest killer in 10-15 years if current trends persist. If trends continue, other diet- and
physical inactivity related diseases will also increase. Increasing the support for and access
to a wide range of green exercise activities for all sectors of society will produce substantial
public health benefits and avoided costs.
Table 7. Green exercise in UK countryside, and days spent on each activity (1998)
Proportion of day visits
on each activity (%)
Number of days per
year (million) on
each activity (total of
551 million)
Outdoor sport and leisure
Hiking, walking and rambling
Swimming (of which 31% is outdoors)
Pony trekking, riding, shooting, hunting,
mountaineering, rock climbing, theme parks
Heritage attractions
Fields and nature
Source: Pretty et al. (2003), using data from CA (2001) and ETC (2000) UK Leisure Day Visits Survey and UK tourism
Getting the policy context right will also help, and the 2001 report of the National Audit
Office (2001) on obesity suggests that gyms at GP surgeries, healthy walks projects, exercise
on prescription, healthy school environments, and healthy travel to school projects can all
help. To these can be added the benefits of green views in hospitals, protection and support
for city farms and community gardens, less anonymous food (with substantial health
benefits if there are increases in fruit and vegetable consumption), and more support for
ecotourism, outdoor leisure activities, and visits to the countryside. Policy responses thus
require huge changes in the existing paradigm for public health (Lang and Heasman, 2002),
some suggesting the need for a more ecological or holistic approach (Egger and Swinburn,
1997; Mortlock, 2001).
These ideas, though, still remain on the margins of public health and environmental policy.
Clearly much more could be done by promoting behavioural changes to reduce the intake of
inappropriate foods as well as increase physical activities to burn excess calories. If everyone
ate five pieces of fruit and vegetable per day, and engaged in 30 minutes of moderate
physical activity five times per week, and ensured that calorie burning matched
consumption in food and drink, then a significant proportion of the annual £10 billion costs
of obesity, coronary heart disease and physical inactivity could be avoided.
The DCMS (2002) indicates that a 10% increase in adult physical activity would benefit
England by £500 million per year, also saving 6000 lives. The emotional benefits and mental
well-being would be additional to these benefits, and could indeed outweigh them. If these
benefits are also achieved through activities that provoke long-term changes in attitudes to
nature and the environment across society, then the possibilities for transformations and
actions to support sustainability outcomes will be all the more likely to occur.
Adams W M. 1996. Future Nature. A Vision for Conservation. Earthscan, London
Allied Dunbar. 1992. Fitness Survey. London
Altman I and Wohlwill J F (eds). 1983. Behaviour and the Natural Environment. Plenum, NY
Anderson W, Reid C and Jennings G. 1994. Pet ownership and risk factors for cardiovascular disease. Med J
Australia 157, 298-301
Armstrong D. 2000. A survey of community gardens in upstate New York: implications for health promotion and
community development. Health and Place 6(4), 319-327
Astrup A, Buenemann B, Flint A and Raben A. 2002. Low-fat diets and energy balance: how does the evidence
stand in 2001. Proceedings of the Nutrition Society 61, 1-11
Astrup A. 2001. Healthy lifestyles in Europe: prevention of obesity and type II diabetes by diet and physical
activity. Public Health Nutrition 4(2B), 499-515
Baldwin M K and Courneya K S. 1997. Exercise and self-esteem in breast cancer survivors: An application of the
exercise and self-esteem model. J. Sport. Exerc. Psychol.19, 347-358
Barnes S. 2000. “The future of the planet depends on your enjoyment” – a personal view. Birds (RSPB) 18 (1), 17
Bartlewski P P,Van Raatlte J L and Brewer BW. 1996. Effects of aerobic exercise on the social physique anxiety
and body esteem of female college students. Women in Sport and Physical Activity Journal 5, 49-62.
Beck AT, Ward C H, Mendelsohn M, Mock J and Erbaugh. 1961. An inventory for measuring depression. Archives
of General Psychiatry, 4, 561-571
Beck A M and Meyers N M. 1996 Health enhancement and companion animal ownership. Amer J Public Health 17,
Bennett D. 1999. Stepping from the diagram: Australian Aboriginal cultural and spiritual values relating to
biodiversity. In Posey D (ed). 1999. Cultural and Spiritual Values of Biodiversity. IT Publications and
UNEP, London
Benton T. 1994. Biology and social theory in the environmental debate. In Redclift M and Benton T (eds). Social
Theory and the Global Environment. Routledge, London
Berlin J A and Colditz G A. 1990. A meta analysis of physical activity in the prevention of coronary heart disease.
Am. J. Epidemiol. 132, 612-628
Blair S N and Hardman A. 1995. Introduction: Physical activity, health and well being - an international
consensus conference. Research Quarterly for Exercise and Sport 66 ii.
Calfas K J and Taylor C. 1994. Effects of physical activity on psychological variables in adolescents. Pediatric
Exercise Science 6, 406-423
Camacho T C, Roberts R E, Lazarus N B, Kaplan G A and Cohen R D. 1991. Physical activity an depression
:Evidence from the Alameda county study. American Journal of Epidemiology 134, 220-231
Campbell R N. 1984. The New Science: Self-Esteem Psychology. Lanham, MD: University Press of America.
Carter D and Carter S. 1979. Designing for Therapeutic Environments. John Wiley, Chichester
Centers for Disease Control and Prevention. 1996. Physical Activity and Health. A report of the Surgeon General.
Washington DC
Coleman J. 1988. Social capital and the creation of human capital. Am. J. Sociol. 94, supplement: 95-120.
Cooper N S. 2000. How natural is a nature reserve? An ideological study of British nature conservation
landscapes. Biodiversity and Conservation 9, 1131-1152
Cooper-Marcus C and Barnes M. 1999. Healing Gardens: Therapeutic Benefits and Design Recommendations. John
Wiley and Sons, New York
Countryside Agency. 2001. The State of the Countryside 2001. Countryside Agency, Cheltenham. [At URL]
Davis C. 1997. Body image exercise and eating behaviours. In K.R Fox (ed.), The Physical Self: From Motivation to
Well Being (pp.143-174). Champaign, IL: Human Kinetics.
Davis C, Brewer H and Ratusny. 1993. Behavioural frequency and psychological commitment: necessary
concepts in the study of excessive exercising. Journal of Behavioral Medicine 16, 611-628
DCMS. 2002. Game Plan: a strategy for delivering Government's sport and physical activity objectives. Department of
Culture, Media and Sport and Cabinet Office.
DEFRA. 2002. National Food Survey 2000. Department of Environment, Food and Rural Affairs. London
Deiner E. 1984. Subjective well-being. Psychological Bulletin 95, 542-575
Dekel Y, Tenenbaum G and Kudar K. 1996. An explanatory study on the relationship between postural
deformities and body-image and self esteem in adolescents: the mediating role of physical activity.
International Journal of Sport Psychology 27(2), 183-196
Department of Health. 2001. Health Survey for England. London
Department of Health. 1999. Saving Lives: Our Healthier Nation. London
Dishman R K. 1995. Physical activity and public health. Mental Health Quest 47, 362-385.
DLTR. 2002. Transport Statistics Bulletin. Department of Local Government, Transport and the Regions, London
Dubos R. 1979. A God Within. Angus and Robertson
EA. 2002. Eden Alternative Green House Project. At URLs and
Ebbeling C B, Pawlak D B and Ludwig D S. 2002. Childhood obesity: public health crisis, common sense care. The
Lancet 360 (Aug 10), 473-482
Egger G and Swinburn B. 1997. An `ecological‟ approach to the obesity pandemic. British Medical Journal 315, 477-
ETC. 2000. United Kingdom Tourist Statistics 1999. English Tourism Council, London.
Eurodiet. 2001. The Eurodiet Reports and Proceedings. Public Health Nutrition Special Issue 4.2 (A), 265-436
Farmer M, Locke B, Moscicki E, Dannenberg A, Larson D and Radloff, L. 1998. Physical activity and depressive
symptoms: The NHANES ! edipemiologic follow up study. The American Journal of Epidemiology 128,
Ferro Luzzi A and James P. 2000. European Diet and Public Health: The Continuing Challenge. Eurodiet Final Report.
Fox W. 1995. Toward a Transpersonal Ecology. State University of New York Press, New York
Fox K R. 1997. The physical self and processes in self esteem development. In K.R.Fox (Ed) The Physical Self: From
Motivation to Well-Being (pp111-140). Morgantown, WV: Fitness information technology.
Fox K R and Corbin C B. 1989. The physical self perception profile: development and preliminary validation
.Journal of Sport and Exercise Psychology 11, 408-430
Francis M, Lindsey P, Rice J S (eds). 1994. The Healing Dimensions of People-Plant Relations: Proc. of a Research
Symposium. March 24-27, 1994, University of California, Davis. UC Davis Center for Design Research,
Davis, CA.
Fredrickson L M and Anderson D H. 1999. A qualitative exploration of the wilderness experience as a source of
spiritual inspiration. J. Environ. Psychology 19, 21-39
Freeman H (ed). 1984. Mental Health and the Environment. Churchill Livingstone, London
Freeman H. 1998. Healthy environments. In Encyclopaedia of Mental Health, Volume 2. Academic Press
French S A, Story M and Perry C L. 1995. Self esteem and obesity in children and adolescents: A literature
review. Obesity Research 3, 479-490
Friedman E and Thomas S A. 1995. Pet ownership, social support and one-yaer survival after acute myocardial
infarction in the cardiac arrhythmic suppression trial (CAST). Am J Cardiol 76, 1213-17
Frumkin H. 2001. Beyond toxicity. human health and the natural environment. American Journal of Preventative
Medicine 20 (3), 47-53
Frumkin H. 2002. White coats, green plants: clinical epidemiology meets horticulture. Emory Medical School,
Garnett T. 1996. Growing Food in Cities. A report to highlight and promote the benefits of urban agriculture in the
UK. SAFE Alliance and National Food Alliance, London
Garreau J. 1992. Edge City. Life on the New Frontier. Anchor Books, New York
Gray A. 1999. Indigenous peoples, their environments and territories. In Posey D (ed). 1999. Cultural and Spiritual
Values of Biodiversity. IT Publications and UNEP, London
Guinn B, Semper T and Jorgensen L. 1997. Mexican American female adolescent self-esteem: the effect of body
image, exercise behaviour and body fatness. His. J. Behav. Sci. 19(4), 517-526
Halpern D. 1995. Mental Health and the Built Environment. More than Bricks and Mortar? Taylor and Francis,
Harrison C and Davies G. 2002. Conserving biodiversity that matters: practitioners‟ perspectives on brownfield
development and urban nature conservation in London. J. Environ. Manage. 65, 95-108
Health Education Authority. 1995. Health Update Physical Activity. London
Herzog T, Chen H C and Primeau J S. 2002. Perception of the restorative potential of natural and other settings. J.
Environ. Psychol. 22, 295-306
Hill A B. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine,
58, 295-300.
Ingold T. 1986. Evolution and Social Life. Cambridge University Press, Cambridge
Jacobs, J. 1961. The Life and Death of Great American Cities. Random House, London
Kaiser F G, Wölfing S and Fuhrer U. 1999. Environmental attitude and ecological behaviour. J. Environ. Psychol.
19, 1-19
Kals E, Schumacher D and Montada L. 1999. Emotional affinity toward nature as a motivational basis to protect
nature. Environment and Behaviour 31, 178-202
Kaplan R. 1973. Some psychological benefits of gardening. Environment and Behaviour 5, 145-161
Kaplan R and Kaplan S. 1989. The Experience of Nature: A Psychological Perspective. Cambridge University Press,
Kaplan R, Kaplan S and Ryan R L. 1998. With People in Mind. Design and the Management of Everyday Nature. Island
Press, Washington DC
Kaplan S. 1995. The restorative benefits of nature: toward an integrative framework. J. Environ. Psychol. 15, 169-
Katcher A and Wilkins G. 1993. Dialogue with animals: its nature and culture. In Kellert S R and Wilson E O
(eds). 1993. The Biophilia Hypothesis. Island Press, Washington DC
Katcher A and Beck A (eds). 1983. New Perspectives on Our Lives with Companion Animals. University of
Pennsylvania Press, Philadelphia
Katcher A H, Friedmann E, Beck A M, and Lynch J J. 1983. Looking, Talking, and Blood Pressure: The
Physiological Consequences of Interacting with the Living Environment. In Katcher A and Beck A (eds).
1983. New Perspectives on Our Lives with Companion Animals. University of Pennsylvania Press.
Philadelphia, PA
Kellert S. 1993. The biological basis for human values of nature. In Kellert S R and Wilson E O (eds). 1993. The
Biophilia Hypothesis. Island Press, Washington DC
Kellert S R and Wilson E O (eds). 1993. The Biophilia Hypothesis. Island Press, Washington DC
Kenkel D S and Manning W. 1999. Economic evaluation of nutrition policy. Or, there‟s no such thing as a free
lunch. Food Policy 24, 145-162
Korpela K and Hartig T. 1996. Restorative qualities of favourable places. J. Environ. Psychology 16, 221-233
Lang T and Heasman M. 2003. Food Wars: The Global Battle for Mouths, Markets and Minds. Earthscan, London
Langenbach R R. 1984. Continuity and sense of place: the importance of the symbolic image. In Freeman H (ed).
1984. Mental Health and the Environment. Churchill Livingstone, London, pp455-469
Lee T (ed). 1999. Environmental stress reactions following the Chernobyl accident. UNESCO, Paris
Lindheim R and Syme S L. 1983. Environments, people and health. Ann. Rev. of Public Health 4, 335-339
Linstead K D, Tonstad S and Kuzma J W. 1991. Self-report of physical activity and patterns of mortality in
Seventh-Day Adventist men. Journal of Clinical Epidemiology 44, 355-364
Lowland N W. 1998. Body image and physical activity. A survey among Norwegian men and women. Int. J.
Sport. Psychol. 29(4), 339-365
Lowland NW. 1999. Body image and physical activity. Thesis, Norwegian University of Sport and Physical
Lox C L. 1995. Exercise as an intervention for enhancing subjective well-being in an HIV-1 population. J. Sport.
Exerc. Psychol. 17: 345-362
Marsh H W. 1997. The measurement of physical self concept: A construct validation approach. In K R Fox (Ed.).
The Physical Self: From Motivation to Well-Being (pp.27-58) .Human Kinetics, Champaign, IL
Marsh H W and Peart N D. 1988. Competitive and co-operative physical fitness training programs for girls:
effects on physical fitness and multidimensional self concepts. Journal of Sport and Exercise Psychology 10,
Marsh H W, Richards G E, Johnson S, Roche L and Tremayne R. Physical self description questionnaire:
psychometric properties and multitrait-multimethod analysis of relations to existing instruments.
Journal of Sport and Exercise Psychology 16, 270-305
Martinsen EW. 1989. The role of aerobic exercise in the treatment of depression. Stress Medicine 3, 93-100
Maslow, A. 1968. Towards a Psychology of Being. Van Nostrand, Princeton NJ
McBey M A. 1985. The therapeutic aspects of gardens and gardening: an aspect of total patient care. J. Advanced
Nursing 10, 591-95
McDonald D G and Hodgdon J A. 1991 Psychological Effects of Aerobic Fitness Training: Research and Theory.
Springer-Verlag, New York
Metzner R. 2000. Green Psychology. Transforming Our Relationship to the Earth. Part St Press
Milton K. 2002. Loving Nature: Towards an Ecology of Emotion. Routledge, London
Mitchell R G. 1983. Mountain Experiences: The Psychology and Sociology of Adventure. University of Chicago Press,
Moore E O. 1982. A prison environment‟s effect on health care service demands. J. Environ. Systems 11, 17-34
Morgan W P. 1994. Physical Activity, fitness and depression. In C. Bouchard, R.J. Shepard & T.Stephens (Eds),
Physical activity fitness and health (pp 851-867). Champaign, IL: Human Kinetics
Mortlock C. 2001. Beyond Adventure. Cicerone Press
Muir J. 1911. My First Summer in the Sierra. Houghton Mifflin, Boston (reprinted in 1988 by Canongate Classics,
Muir J. 1992. The Eight Wilderness-Discovery Books. Diaden Books, London and Seattle
Nabhan G P and St Antoine S. 1993. The loss of floral and faunal story: the extinction of experience. In Kellert S R
and Wilson E O (eds). 1993. The Biophilia Hypothesis. Island Press, Washington DC
Naess A. 1989. Ecology, Community and Lifestyle: Outline of an Ecosophy. Cambridge University Press, Cambridge
NAO. 2001. Tackling Obesity in England. National Audit Office. The Stationary Office, London
Newman O. 1972. Defensible Space. Macmillan, NY
Newman 1980. Community of Interest. Anchor, New York
NIH. 2002. Prevalence statistics related to overweight and obesity. Washington DC
North T C, McCullagh P and Tran Z V. 1990. The effects of exercise on depression. Exercise and Sport Sciences
reviews 18, 379-415
Okri B. 1996 Joys of Story Telling. In Birds of Heaven. Penguin, Harmondsworth
Paffenbarger R S, Hyde R T, Wing A L, Lee I-M, Jung D L and Kampert J D.1993. The association of changes in
physical activity level and other lifestyle characteristics with mortality among men. New England Journal
of Medicine 328, 538-45
Paffenbarger R S, Lee I-M and Leung R. 1994. Physical activity and personal characteristics associated with
depression and suicide in American college men. Acta Psychiatrica Scandinavica Supplementum 377, 16-22
Page V and Fox K R. 1997. Adolescent weoght management and the physical self. In K.R.Fox (ed). The Physical
Self: From Motivation to Well Being. pp 240-241 Champaign. Il, Human Kinetics
Perlman M. 1994. The Power of Trees.
Pietinene P, Vartiainen E, Steppianeu R, Aro A, and Puska P. 1996. Changes in diet in Finland from 1972 to 1992:
impact on coronary heart disease risk. Prevent. Med. 25, 243-50
Popkin B. 1998. The nutrition transition and its health implications in lower-income countries. Public Health
Nutrition 1(1), 5-21
Popkin B. 1999. Urbanisation, lifestyle changes and the nutrition transition. World Development 27, 1905-1916
Posey D (ed). 1999. Cultural and Spiritual Values of Biodiversity. IT Publications and UNEP, London
Pretty J N. 1998. The Living Land: Agriculture, Food and Community Regeneration in Rural Europe. Earthscan, London
Pretty J N. 2002. Agri-Culture. Reconnecting People, Land and Nature. Earthscan, London
Pretty J N and Ward H. 2001. Social capital and the environment. World Development 29 (2), 209-227
Pretty J N, Mason C F, Nedwell D B and Hine R E. 2003. Environmental costs of freshwater eutrophication in
England and Wales. Environmental Science and Technology 37(2), 201-208
Rayner M. 2001. A submission to the Policy Commission on the Future of Farming and Food. British Heart
Foundation Health Promotion Group, University of Oxford
Relph R. 1976. Place and Placeness. Pion Publishers, London
Riboli E and Norat T. 2001. Cancer prevention and diet: opportunities in Europe. Public Health Nutrition 4(2B),
Rogers C. 1951. Client-Centred Therapy: Its Current, Implications and Theory. Houston, Boston
Rossman B B and Ulehla Z J. 1977. Psychological reward values associated with wilderness use. Environment and
Behaviour 9, 41-66
Roszak T, Gomes M E and Kunner AD (eds). 1995. Restoring the Earth, Healing the Mind. Sierra Club Books, San
Schama S. 1996. Landscape and Memory. Fontana Press, London
Schoeller D, Shay K and Kusner R. 1997. How much physical activity is needed to minimise weight gain in
previously obese women? AJCN 66, 551-556
Schlosser E. 2001. Fast Food Nation. Houghton Mifflin, Boston
Schultz P W and Zelezny L. 1999. Values as predictors of environmental attitudes: evidence for consistency
across 14 countries. J. Environ. Psychol. 19, 255-265
Scott N R. 1974. Towards a psychology of wilderness experience. Natural Resources Journal 14, 231-7
Scully D, Kremer J, Meade M, Graham R and Dudgeon K.1999. Physical exercise and psychological well being: a
critical review. British Journal of Sports Science 32, 11-20
Secord P F and Jourard S M. 1953. The appraisal of body cathexsis: body cathexis and the self. Journal of
Consulting Psychology 17, 343-347.
Seed J, Macy J , Fleming P and Naess A. 1988. Thinking Like a Mountain: Towards a Council of All Beings. New
Society, Philadelphia
Siegel J. 1990. Stressful life events and use of physician services among the elderly: the moderating effect of pet
ownership. J Personality Social Psychol. 58, 1081-6
Smith B L, Handley P and Eldridge D A. 1998. Sex differences in exercise motivation and body image satisfaction
among college students. Percept. Mot. Skills. 86(2), 723-732
Sport England. 2000. Young People and Sport in England. London
Sport England. 2002. Addressing the Health Agenda. London
Swan J A. 1977. The psychological significance of the wilderness experience. Journal of Environmental Education 8,
Tall D. 1996. Dwelling; making peace with space and place. In Vitek W and Jackson W (eds). Rooted in the Land:
Essays on Community and Place. Yale University Press, Haven and London
Tanner C. 1999. Constraints on environmental behaviour. J. Environ. Psychology 19, 145-157
Taub D E, Blinde E M and Greer K R. 1999. Stigma management through participation in sport and physical
activity: experiences of male college students with physical disabilities. Human relations 52(11), 1469-
Taylor A F, Wiley A, Kuo F E and Sullivan W C. 1998. Growing up in the inner city: green spaces as places to
grow. Environment and Behaviour 30, 3-27
Thoreau H D. 1837-1853. The Writings of H D Thoreau Volumes 1-6 (published 1981 to 2000). Princeton
University Press, Princeton, NJ
Thoreau H D. 1902. Walden or Life in the Woods. Henry Frowde, Oxford University Press, London, New York and
UK Commission for Integrated Transport. 2002. European Best Practice in Delivering Integrated Transport. Key
Findings. London
Ulrich R S. 1984. View through a window may influence recovery from surgery. Science 224, 420-21
Ulrich R S. 1993. Biophilia, biophobia and natural landscaopes. In Kellert S R and Wilson E O (eds). 1993. The
Biophilia Hypothesis. Island Press, Washington DC
Ulrich R S, Dimberg U and Driver B L. 1991. Psychophysiological indicators of leisure benefits. IN driver B L,
Brown P J and Peterson G L (eds) Benefits of Leisure. Venture, State College, Penn.
Verderber S F. 1986. Dimensions of person-window transactions in the hospital environment. Environment and
Behaviour 18, 456-66
Weissman J (ed). 1995a. City Farmers: Tales from the Field. Parks and Recreation, City of New York, New York
Weissman J (ed). 1995b. Tales from the Field. Stories by GreenThumb Gardeners. Parks and Recreation, City of New
York, New York
Whitehouse S, Varni J W, Seid M, Cooper-Marcus C, Ensberg M J, Jacobs J R and Mehlenbeck R S. 2001.
Evaluating a children‟s hospital garden environment: utilisation and consumer satisfaction. J. Environ.
Psychology 21, 301-314
WHO. 1998. Obesity: Preventing and Managing the Global Epidemic. WHO, Geneva
Williams K and Harvey D. 2001. Transcendent experience in forest environments. J. Environ. Psychol. 21, 249-260
Wilson E O. 1984. Biophilia: The Human Bond with Other Species.
Wilson E O. 1993. Biophilia and the conservation ethic. In Kellert S R and Wilson E O (eds). 1993. The Biophilia
Hypothesis. Island Press, Washington DC
Wolf A M and Colditz G A. 1998. Current estimates of the economic cost of obesity in the United States. Obesity
Research 6(2), 97-106
Young R and Crandall R. 1984. Wilderness use and self-actualisation. Journal of Leisure Research 16 (2), 149-160
NZZ 2006 11 Nov Der Möblierte Wald Vom Wanderweg über den Vitraparcours zum
... Especially in geopark territories, geotourism, as a niche of tourism, focuses on the valuation and promotion of landscapes and geopatrimony in natural and urban environments, as attractions with significant potential for territorial development [46,47]. In this context, the Araripe UGG, due to its location and geographical characterization, has an intimate connection with the Chapada and the Araripe National Forest [48][49][50][51][52][53][54][55][56][57][58][59] and, given its landscape, naturalness and scenic beauty, presents relevant potential and opportunity for interaction and ecosystem health from the practice of green exercise as a scheduled or incidental activity [11][12][13]18,26,[60][61][62][63][64][65][66][67]. ...
... In this context, the importance of nature trails is emphasized as the main (or only) access route that allows the visitor to have contact with the ecosystem and its cultural appeal. Moreover, the management of a trail's itinerary, besides allowing access, generates direct and indirect income opportunities for entrepreneurs, artisans and local stakeholders, such as tour guides and drivers of traditional or native communities, such as quilombolas, indigenous and riverine [12,[22][23][24][25][26]62,66,[68][69][70][71][72][73][74][75]. ...
... The definition of these indicators, besides allowing users to be adequately prepared, facilitates the good performance of several local professionals, such as tour guides, educators, sport and health professionals, among others. The data available on the trails also allow the practice of various adventure sports as an active experience of visitation correlated to the natural heritage [12,13,66,[77][78][79]. ...
Full-text available
Natural trails in UNESCO Global Geopark territories show strong salutogenic, inclusive and interactive characteristics as potentials and opportunities for ecosystem health. It is essential to provide information to inform the hiker as to the characteristics of the environment and the attractions and challenges of the route. Based on a network analysis methodology we aimed to identify the indicators of centrality and strength of connection in order to classify the effort index and bio-mechanical overload of the Araripe UNESCO Global Geopark trails in Brazil. The results showed strong connection and centrality of the variables related to the biomechanical overload in the effort index. In the trail of Pontal de Cruz the altimetric variation and the surface of the ground are highlighted in the biomechanical overload that presented a horizontal course equivalent 2.6 times larger than the presented distance. In Sítio Fundão trail, the surface of the ground also stood out, increasing the exposure in 36% of the presented distance. On the Missão Velha Waterfall trail, the variable that stood out was the biomechanical overload on the knee, equivalent to a horizontal increase of 28% of the measured distance. The methodology presented sought to optimise the mapping, management and consolidation of a network of natural trails aggregated to a high geotouristic, scientific, educational, cultural and well-being potential as presented in the Araripe UGG territory.
... One factor that may modulate the benefits and behaviours associated with physical activity is the environment in which it is performed-specifically, the extent of natural versus built (e.g., streets, buildings) environmental features. The term "green exercise" [8] was introduced in 2003 as an umbrella term to describe physical activity in the presence of nature, ranging from full immersion in outdoor, natural environments to indoor exposures to nature elements (e.g., views, images, smells, sounds). Emerging experimental evidence suggests that exercise performed in outdoor, natural environments (i.e., outdoor green exercise) may confer additional health benefits, as compared with exercise in outdoor, built environments [9][10][11][12][13] or indoor environments [14][15][16]. ...
... Appendix A Figure A1. Publications indexed in Europe PMC between 2003-2020 that reference "green exercise" [8], i.e., physical activity performed while exposed to nature. Table A1. ...
Full-text available
A growing body of research is exploring the potential added health benefits of exercise when performed outdoors in nature versus indoors. This systematic review aimed to compare the effects of exercise in outdoor environments versus indoor environments on psychological health, physical health, and physical activity behaviour. We searched nine databases from inception to March 2021 for English language, peer-reviewed articles: MEDLINE, Embase, PubMed, Scopus, Web of Science, CINAHL, SportsDiscus, GreenFile, and CENTRAL. We included randomized and non-randomized trials that compared multiple bouts of exercise in outdoor versus indoor environments, and that assessed at least one outcome related to physical health, psychological health, or physical activity behaviour. Due to minimal outcome overlap and a paucity of studies, we performed a narrative synthesis. We identified 10 eligible trials, including 7 randomized controlled trials, and a total of 343 participants. Participant demographics, exercise protocols, and outcomes varied widely. In the 10 eligible studies, a total of 99 comparisons were made between outdoor and indoor exercise; all 25 statistically significant comparisons favoured outdoor exercise. Interpretation of findings was hindered by an overall high risk of bias, unclear reporting, and high outcome heterogeneity. There is limited evidence for added health or behaviour benefits of outdoor exercise versus indoor exercise. Rigorous randomized controlled trials are needed with larger samples and clear reporting.
... Some studies only include forest watching, while others reported walking in a forest or, most typically, a combination of both (for a review, see Park et al. (2010)). It has been suggested that doing any type of physical activity (such as walking) while in a natural setting (the so-called green exercising) has a synergic effect and leads to more significant psychological benefits than a simple presence in nature or physical activity in a non-natural setting (Pretty et al., 2003). Some empirical studies confirm these suggestions (Hartig et al., 2003;Pretty et al., 2007), but during short forest baths, watching and walking seem to have the same effects (Park et al., 2010). ...
... While most VR studies did not allow participants to walk, others usually used a controller. The active movement should strengthen the effects in our implementation (Pretty et al., 2003), but to what extent these differences might affect virtual forest bathing is still unclear. ...
Full-text available
Forest environments have been proven beneficial for physiological well-being, supporting relaxation and meditative processes. Unfortunately, some groups, predominantly those with reduced mobility, are prevented from forest visitation. Presenting such environments in virtual reality could provide a viable substitute. However, as forest structure and composition are important aspects of its restorative power, to accurately compare the efficacy of virtual forests to that of real natural spaces, the virtual environment should match the real location as closely as possible. Furthermore, if participants achieve similar benefits in both settings, virtual copies (digital twins) of forests could be a viable option for studying forest bathing in a controlled environment. We collected LiDAR scans of a forest location near Prague, took spatial audio recordings of the forest ambiance, and built the forest’s digital twin in Unreal Engine. To compare the therapeutic efficacy of the virtual forest with its real counterpart, groups of volunteers spent half an hour in either the real forest, the virtual forest, or both. We collected participants’ demographic and psychometric data, assessing their relaxation, emotional state, and cybersickness before and after the session. Our data show an increase in relaxation with no significant differences between the environments, although participants’ emotional states did not improve in either condition. We found that participants’ experiences were comparable between the environments, but cybersickness limited the potential efficacy of virtual forest bathing. The limitations of the virtual forests as a platform for research into forest bathing are discussed.
... The growing impact of technology, coupled with the potential benefits of virtual natural environments, it is expected that studies which address the importance of virtual natural environment could become a lifeblood in scientific research (Palanica, Lyons, Cooper, Lee, & Fossat, 2019). Studies on natural and virtual environment have revealed reliable positive results with improved psychological wellbeing (Fredrickson & Levenson, 1998;Fredrickson & Anderson, 1999;Pretty, Armstrong, 2000;Hagerty, et al., 2001;Griffin, Sellens & Pretty, 2003;Pretty, Peacock, Sellens & Griffin, 2005). ...
Full-text available
This study examined the connections of virtual environment and self-agency and how they may increase the level of psychological wellbeing of university students. Participants were university students in Abuja and Ondo State. Participant's responses selected for the study were seventy-two (n=72). Participants were randomized into 1st control group n=24, 2nd control group n=24, and experimental groups n= 24. Pictorial image and self-report questionnaires were used to administer well-established psychometric surveys and Likert type scaled Watson, et al. (1988); Positive and Negative Affect Schedule (PANAS) and Rotter's (1966) Locus of Control Scale (LCS). This was a two-in-one study conducted in two phases: Pre-intervention assessment phase, and intervention and post-intervention phases. The pre-intervention assessment phase focused on how the predictor variable (self-agency) relate with student' level of psychological wellbeing. Phase 2 of the study (intervention and post-intervention phases) was designed to evaluate the extent to which virtual environment enhanced psychological wellbeing among participants who scored low on the measure of psychological wellbeing. The results indicated that the difference between pre-test and post-test scores of participants in the experimental group was significant [t (24) = 13.23, p <. .01]. The outcome of these comparison implied that virtual environment affected those in the experimental group. Based on the findings of the study is recommended that technologically-based psychological applications should be developed in better improve psychological therapies that impact psychological wellbeing.
... Despite the fact that human health and well-being are highly dependent on the environment one lives in (Barton and Grant 2006), life is rapidly becoming an urban affair, with more than 54% of the population living in urban areas (WHO and UN Habitat 2016). As a result of growing urban areas and habits, contact with natural environments has suffered a strong decline (Pedretti-Burls 2007;Maller et al. 2006), with severe outcomes for individuals, their communities and cultures (Pretty et al. 2003). Reflecting this growing concern, many researchers from fields such as environmental psychology, ecology, biology, and psychiatry, have developed studies about the link between natural environments and human well-being (Biedenweg, Scott and Scott 2017;Maller et al. 2009). ...
... Estudos assinalam uma crescente procura pela prática de atividades físicas e esportivas na natureza por PCD (PRETTY et al., 2003;TAHARA;CARNI-CELLI FILHO;SCHWARTZ, 2006;SARAIVA;OLIVEIRA, 2022). No âmbito das atividades de lazer, tais práticas são de grande importância para o desenvolvimento global das PCD, ao tornarem possível não só o reconhecimento de suas potencialidades, como também a sua inclusão na sociedade (MENEGHETTI et al., 2013). ...
... " Green exercise bezeichnet Bewegungsaktivitäten, bei denen Personen sich in einer natürlichen ("grünen") Umgebung bewegen (Pretty et al. 2003). ...
Während Bewegung und Gesundheit zu traditionellen Forschungsfeldern von Sportwissenschaft und Public Health gehören, rückt die systemische Beziehung von Bewegung, Gesundheit und Nachhaltigkeit erst in jüngerer Zeit in den Fokus der Wissenschaft. Bewegung umfasst in einer ganzheitlichen Sichtweise körperliche Alltagsaktivitäten, aktive Freizeitgestaltung und den organisierten Sport und weist in diesen Facetten unterschiedliche Potenziale und Herausforderungen für planetare Gesundheit und Nachhaltigkeit auf. Für die Transformation in eine nachhaltige Gesellschaft müssen diese auf politischer Ebene erkannt und durch entsprechende strukturelle Maßnahmen flankiert werden. Dieser Beitrag zeigt auf, welche Rolle Bewegungsförderung für die Erreichung der globalen Nachhaltigkeitsziele spielen kann, und gibt einen Überblick über systemische Zusammenhänge und Wechselwirkungen zwischen Bewegung, individueller und gesamtgesellschaftlicher Gesundheit und ökologischen Rahmenbedingungen.
... It has been suggested that PA in the presence of nature can lead to additional, more distinct mental health benefits such as lower stress and anxiety levels and an overall better psychological state (Smith and Merwin, 2020). The term "green exercise" (GE) was first introduced by Pretty and Griffin (2003) and described as "a physical activity in green places that may bring both physical and mental health benefits". GE is one of the primary modalities used to refer to PA in the presence of nature and more specifically surrounded by greenery such as parks and forests. ...
Physical activity in the presence of nature can lead to additional, more distinct mental health benefits such as lower stress and anxiety levels and an overall better psychological state when compared to indoor physical activity. Interestingly, the brain mechanisms underlying the effects of green exercise (GE) and virtual green exercise (VGE) on psychological responses are hitherto under-researched. The present study sought to deepen our understanding of the brain mechanisms underlying the effects of GE and VGE during self-paced walking. Thirty individuals took part in the present study. Two experimental (i.e., GE and VGE) and a control condition (CO) were administered in a randomized and counterbalanced order. Participants were asked to walk for ¼ mile at a pace of their choosing and self-report their psychological states at various timepoints during the exercise trials. Heart rate variability and the brain's electrical activity were monitored continuously throughout the experimental protocol. An accelerometer was used to identify the beginning and end of each step. The results indicate that both experimental manipulations were sufficient to influence the majority of psychological and psychophysiological parameters. The most pronounced effects were identified for GE when compared to CO and VGE. VGE was also sufficient to evoke positive emotions and partially reallocate attention externally, although such effects were less pronounced than those observed for GE. The brain mechanisms underlying the abovementioned psychophysiological responses may be associated with significant changes in theta activity throughout the cerebral cortex as well as increased connectivity in the frontal and parietal areas.
... Another factor that may affect the short-term psychological health benefits from dog walking is the environment in which the dog is walked. The term "green exercise" has been developed to describe physical activity, such as dog walking, that is engaged in while at the same time being exposed to nature (Pretty, Griffin, Sellens, & Pretty, 2003). A multitude of studies have found that engaging in green exercise is more salutary for people's mental health compared to exercising in a non-green environment (Bratman, Daily, Levy, & Gross, 2015;Nisbet & Zelenski, 2011;Thompson Coon et al., 2011). ...
Full-text available
The purpose of this study was to examine whether dog walking is beneficial for dog owners’ health by providing sufficient physical activity for health benefits and improving their psychological health immediately after dog walking. The sample was comprised of 61 dog walkers who wore an accelerometer for one week on all of their dog walks and completed seven visual analogue scales assessing their psychological health before and after each of their dog walks. Slightly more than half of the time spent dog walking was at the moderate- to vigorous-intensity level recommended for health benefits. Furthermore, through dog walking alone, approximately two in five dog walkers met Canada’s 150-minute physical activity guideline for health benefits. Analyses comparing dog walkers’ psychological health before and after their dog walks revealed an improvement on six out of seven psychological health measures. Dog walkers felt less stressed after walking their dog and experienced an increase in their energy, self-esteem, social life satisfaction and overall life satisfaction as well as a more positive mood. Taken together, these findings provide objective evidence that dog walking is a viable means of attaining the physical activity needed for health benefits and highlight the need to further explore the short-term health benefits of dog walking.
Centenarians are a small but increasing population of interest. A growing body of literature identifies a combination of potential genetic, environmental, and social factors that contribute to well-being and longevity. While naturalists have praised the benefits of nature for human health and well-being for centuries, only relatively recently have researchers begun to study and write about the impact of nature on longevity and successful aging.
Numerous provocative studies on the psychological effects of aerobic fitness training are available today, and more are appearing almost on a daily basis. This book reviews and evaluates the research, and it asks and attempts to answer significant background questions: What are the various motivating factors that have contributed to the emergence of the national fitness movement? What are the public health considerations con- cerning the relationship between physical fitness and coronary heart disease? What exactly do we mean by "physical fitness," especially "aerobic" fitness? This book contains essential, in-depth data for everyone interested in the most solid and reliable information on the psychology of aerobic fitness.