ArticlePDF Available

Wood Densities of Tropical Tree Species

Authors:
  • International Institute of Tropical Forestry

Figures

Content may be subject to copyright.
SUMMARY
Wood density information for a large number of tropical tree
species is presented in units of
ovendry
weight in grams per
cubic centimeter of green volume. The data base includes 1,280
entries from tropical America (40 percent), tropical Asia (36 per-
cent), and tropical Africa (24 percent). The most frequent wood
densities were 0.5 to 0.8 g/cm3. In all three tropical continents,
the most frequent class was the 0.5 to 0.6 g/cm3. These data are
useful for a wide variety of practical and scientific applications,
including the estimation of forest stand biomass from wood
volume data.
ACKNOWLEDGEMENTS
These data were collected for a project related to estimating
the biomass of tropical forests from inventory data. The project
was supported by subcontracts
19B-07762C
with S. Brown at
the University of Illinois and 19X-43326(= with A.E. Lugo at the
University of Puerto Rico, under Martin Marietta Energy
Systems, Inc., contract
DE-AC05840R21400
with the U.S.
Department of Energy. The U.S. Department of Agriculture,
Forest Service, Institute of Tropical Forestry, provided library
support to the study.
Wood Densities of Tropical Tree Species
Gisel Reyes, Sandra Brown, Jonathan Chapman,
and
Ariel E. Lugo
INTRODUCTION
Information on the biomass of tropical forests is
critical in order to answer many questions on the
role of these forests in global phenomena, including
the global carbon and other nutrient cycles, and on
the magnitude of the global wood resources.
The biomass of tropical forests has been measured
for a few sites scattered around the tropical world,
but the area represented by these studies is
extremely small
(~30
ha) compared with the total
area of tropical forests (about 18 million
km2)
(Brown and Lugo 1982). Furthermore, there is
strong evidence that the selection of these few sites
was biased toward high biomass forests (Brown and
Lugo 1984). A vast quantity of forest inventory data
is available for the tropics. These data often report
stand and stock tables (number of trees per unit
area and volume per unit area, respectively) by
diameter class or total volume for areas that are rep-
resentative of thousands of hectares of forests. The
data are useful for estimating forest biomass by a
variety of techniques (Brown and others 1989;
Gillespie and others in press).
To use forest inventory data for biomass estima-
tion, wood density values for species or species
groups are often needed. For example, the product of
gross commercial volume and wood density, by
species or species groups, gives the biomass of the
commercial wood. Total biomass can then be esti-
mated using biomass expansion factors (total
biomass/commercial wood biomass) as reported in
Brown and others (1989). Wood density data may
also be useful for the study of forest structure and
response to environmental factors (e.g., Chudnoff
1984). However, Chudnoffs (1984) analysis of pat-
terns in wood densities of tropical trees according to
life zone was not conclusive because the data base
was small. Weaver (1987) demonstrated that the
average wood density of montane forest stands in
Puerto Rico increased with increasing age of the
stand. Similar analyses for other ecologically
contrasting conditions are not possible because wood
density data are normally not readily available to
ecologists and foresters.
In studies of tropical forest biomass (Brown and
Lugo 1982, 1984; Brown and others 1989; Lugo and
others
19881,
a large data base has been assembled
on wood density of tropical tree species. Because
wood volume data, as reported in forest inventories,
are given in units of green volume, and because vol-
umes needed to be converted to oven dry weights,
wood density is reported in
ovendry
weight grams
per cubic ‘centimeter of green volume. This informa-
tion is summarized here to help others in need of it.
Readers are encouraged to make the authors aware
of additional sources of information so that the data
base can be updated and disseminated periodically.
The information is stored at the Institute of Tropical
Forestry and can be obtained from the senior author.
METHODS
The list of species for which wood densities were
gathered is based on the species encountered in
inventories of the following regions and countries:
1. Tropical America
C.
d.
Lowland moist forests of Brazil
Lowland to upland and wet, moist, and dry
forests (as described in Holdridge 1967) of
Venezuela
Guyana
Surinam
2. Tropical Asia
a. Malaysia
b. Sri Lanka
Gisel Reyes is a technical information specialist, Jonathan Chapman is a biological technician, and Ariel E. Lugo is the project leader at
the Institute of Tropical Forestry, U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, Rio Piedras,
PR 00928-2500; Sandra Brown is an ecologist with the Department of Forestry, University of Illinois, 110
Mumford
Hall, 1301 W. Gregory,
Urbana, IL 61801.
1
c. Tropical forest regions of east India
3. Tropical Africa
a. Cameroon
b. Gabon
The sources used for wood densities are listed by
each region (table 1). Difficulties were encountered
in finding sufficient wood density data in the desired
units for forests of tropical Africa and Asia. Most of
the data for these regions were in
lb/f@
volume at
la-percent moisture (air-dry weight). Because of this
limitation, a regression equation was developed
using data in Chudnoff (1984) for wood density with
volume at 12-percent moisture versus wood density
at green volume. There were no significant differ-
ences among the regression equations for the three
tropical regions; thus, only the equation based on all
species is used. The regression equation, based on
data for 379 trees, is as follows:
Y = 0.0134 + 0.800X
(r2
= 0.988)
where
Y = wood density at ovendry weight/green
volume; g/cm3
X
=
wood density at air-dry weight/volume at
12-percent moisture; g/cm3
All density data adjusted by this regression equa-
tion are indicated in the data set (table
2)
with an
asterisk
(*I.
RESULTS AND DISCUSSION
Table 2 lists the species as identified in the origi-
nal source and the reported wood density (g/cm3) for
each species. All values cited in the sources (table
1)
are reported without comment, although age of tree
from which the sample was derived may be a factor
for differences between bibliographic sources for the
same species (indicated by a plus sign
[+I
in table
2).
However, it is likely that most determinations are
based on mature trees.
There are a total of 1,180 species listed in table 2.
Tropical Asia, tropical America, and tropical Africa
are represented, respectively, by 428, 470, and 282
species or 36,40, and 24 percent of the record.
The data set is summarized in figure 1 according
to continent and frequency of occurence of wood den-
sity classes. The most frequent wood densities are
the 0.4 to.0.8
g/cm3
classes. The 0.5 to 0.6 class is
dominant in the data sets of all three continents.
The wood density of trees in the tropical America
2
data set were more evenly distributed across four
classes (0.4-0.5 to
0.7-0.8).
This data set has the
broadest range of wood densities (0.1 to 1.0) and the
highest frequency of dense wood
(>0.8);
however,
this range may be partly, due to the larger data set
for this region.
The patterns in figure 1 most likely reflect the
smallness and bias of the sources toward commercial
forests and species. Clearly, more data of this type
are needed before conclusions regarding the ecologi-
cal meaning of the patterns can be reached.
MEAN
=
0.57
SE
=
0.007
n
=
428
1-
2
tTROPICAL AMERICA
s
MEAN
=
0.60
2
SE
=
0.008
2
20 n
=
470
i:g:>;:i.
.:.:.:.:+:.:
TROPICAL AFRICA
igig;;;
.
1
. . .
.
..i.....
::>:::
j:::::
MEAN
=
0.50
::::::::::::::
::::::::::::::
. .
. ..
..i.....
0.
I
‘0.2 ‘0.3 ‘0.4 ‘0.5 ‘0.6 ‘0.7 ‘0.8 ‘0.9 ‘1.0
WOOD DENSITY CLASS
(g/cm31
Figure I.-Frequency distribution of tropical forest species by wood
density class for three tropical regions encompassing parts of
rune
tropical countries.
Table 1.Sources of wood density data
bu
tropical region
Asia
Al&on, A.S. 1982. Timbers of Fiji: properties and potential uses. Suva, Fiji: Department of
Forestry. 183
p.
Chowdhury, K.A.; Gosh, S.S. 1958. Indian woods: their identification, properties, and uses. Dehra
Dun, India: Manager of Publications. 304
p.
Vol. l-2.
Chudnoff, Martin. 1984. Tropical timbers of the world. Agric. Handb. 607. Washington, DC: U.S.
Department of Agriculture. 464
p.
Food and Agriculture Organization. 1980. Guidelines for the improved utilization and marketing of
tropical wood species. Laguna, Philippines: Forest Products Research and Industries
Development Commission (FORPRIDECOM), National Science Development Board. 153 p.
Howard, L.A. 1951. A manual of the timbers of the world: their characteristics and uses. London:
MacMillan. 751
p.
Singh, K.D. 1978. Informations on the industrial raw material catchments for pulp and paper
(unpublished report for the Hindustan Paper Corp., personal communication, March 1987,
,
on file with the wood density data for regions of Southeast Asia).
Trotter, H. 1944. The common commercial timbers of India and their uses. Dehra Dun, India:
Vasant Press. 289 p.
America
Berni, C.A.; Bolza, E.; Christensen, F.J. 1979. South American timbers: the properties, uses and
characteristics of 190 species. Ivory House, Melbourne, Australia: Commonwealth Scientific
and Industrial Research Organization, Division of Building Research. 229 p.
Chudnoff, Martin. 1984. Tropical timbers of the world. Agric. Handb. 607. Washington, DC: U.S.
Department of Agriculture. 464 p.
Dickinson, F.E.; Hess, R.W.; Wangaard, F.F. 1949. Properties and uses of tropical woods, I.
Tropical Woods 95. 145 p.
Fonseca Coelho, F. de J.; de Castro Ferreira, H.; Barros-Silva, S. [and others].
[nd.]
Estudo fltoeco-
logico-as regioes fitoecologicas, sua natureza e seus recursos economicos. Folha SA. 211-Santarem.
Vegetacao 4: 311- 405.
Gonzales T., M.E.; Gonzalez T.,G.E. 1973. Propiedades fisicas, mecanicas, uses, y otras caracteristi-
cas de algunas maderas comercialmente importantes en Costa Rica. Parte I. San Pedro, Costa
Rica: Laboratorio National de Productos Forestales. 51 p.
Hess, R.W.; Wangaard, F.F.; Dickinson, F.E. 1950. Properties and uses of tropical woods, II.
Tropical Woods 97. 132 p.
Hoheisel, H.; Karstedt, P. 1967. Identification of Ecuadorian wood species for possibilities of uti-
lization on basis of technological results. Merida, Venezuela: Latin-American Forest Research
and Training Institute, National Forest Products Laboratory. 34 p.
Hoheisel, H.; Karstedt, P.; Londono, A. 1968. Identification of some Colombian wood species and
their possible use on the basis of physical and mechanical properties. Merida, Venezuela: Latin-
American Forest Research and Training Institute. 60 p.
Howard, L.A. 1951. A manual of the timbers of the world: their characteristics and uses. London:
MacMillan. 751 p.
Instituto Brasileiro de Desenvolvimento Florestal. 1981. Madeiras da Amazonia. Caracteristicas
e utilizacao. Floresta National da Tapajos. Brasilia, Brazil: Conselho National de
Desenvolvimento Cientifico e Tecnologico. 113 p. Vol. 1.
3
Table 2.-Wood densities
(g/ems,
of tree species for tropical regions of three continents
Species Wood density
Tropical Asia
Acacia
arabica
0.70*
Acacia catechu
0.88
Acacia
confusa
0.75
Acacia leucophloea
0.76
Acacia richii
0.69
Adina cordifolia
0.58, 0.59+
Aegle marmelo
0.75
Agathis dammara
0.41
Agathis spp.
0.44
Agathis uitiensis
0.45
Aglaia diffusa 0.70
Aglaia iloilo
0.53
Aglaia llanosiana
0.89
Alangium longiflorum
0.65
Alangium
meyeri
0.63
Albizzia amara
0.70*
Albizzia falcataria
0.25
Albizzia lebbek
0.55,0.66+
Albizzia odoratissima
0.76
Albizzia procera
0.52*,
0.59+
Aleurites moluccana
0.25
Aleurites trisperma
0.43
Alnus japonica
0.43
Alphitonia philippinensis
0.40
Alphitonia zizyphoides
0.50
Alphonsea arborea
0.69
Alseodaphne longipes
0.49
Alstonia macrophylla
0.62
Alstonia scholaris
0.36
Alstonia spp.
0.37
Amoora aherniana
0.58
Amoora macrocarpa
0:55
Amoora spp.
0.60
Anisophyllea zeylanica
0.46*
Anisoptera
aurea.
0.53
Anisoptera
spp, 0.54
Anisoptera thurifera
0.54
Anogeissus latifolia
0.78, 0.79+
Anthocephalus chinensis
0.36,0.33+
Antidesma pleuricum
0.59
Aphanamixis cumingiana
0.58
Aphanamiris perrottetiana
0.52
Araucaria bidwillii
0.43
Artocarpus blancoi
0.43
Artocarpus heterophylla
0.60
Artocarpus lakoocha
0.53*
Artocarpus ovata
0.47
Artocarpus spp.
0.58
Azadirachta
indica
0.69
Azadirachta spp.
0.52
Balanocarpus spp.
0.76
Barringtonia edulis
*
0.48
Bauhinia spp.
0.67
Beilschmiedia tawa
0.58
Berrya
cordifolia
0.78*
Bischofia javanica
0.54,0.58,0.62+
Bleasdalea vitiensis
0.43
Bombax
ceiba
0.33
Species Wood density
Bombycidendron vidalianum
Boswellia serrata
Bridelia retusa
Bridelia squamosa
Buchanania
lanzan
Buchanania latifolia
Bursera serrata
Butea monosperma
Calophyllum blancoi
Calophyllum inophyllum
Calophyllum
neo-ebudicum
Calophyllum obliquinervium
Calophyllum spp.
Calophyllum vitiense
Calycarpa arborea
Cananga odorata
Canarium asperum var. asperum
Canarium hirsutum forma
scabrum
Canarium
luzonicum
Canarium spp.
Canarium vanikoroense
Canarium
vitiense
Canarium vrieseanum forma stenophyllum
Canthium monstrosum
Carallia calycina
Cassia
fist&a
Cassia javanica
Cassia spectabilis
Castanopsis philippensis
Casuarina equisetifolia
Casuarina
nodiflora
Cedrela odorata
Cedrela spp.
Cedrela toona
Ceiba pentandra
Celtis luzonica
Chisocheton cumingianus
Chisocheton pentandrus
Chloroxylon swietenia
Chukrassia tabularis
Cinnamomum mercadoi
Cinnamomum spp.
Citrus
grandis
Cleidion
speciflorum
Cleistanthus
eollinus
Cleistocalyx operculatus
Cleistocalyx spp.
Cochlospermum
gossypium+religiosum
Cocos nucifera
Colona
serratifolia
Combretodendron quadrialatum
Cordia spp.
Cotylelobium spp.
Crataeva religiosa
Cratoxylon arborescens
Cryptocarya
spp.
Cubilia cubili
Cullenia
excelsa
0.53
0.50
0.50
0.50
0.45
0.45
0.59
0.48
0.51
0.57
0.50
0.58
0.53
0.50
0.53
0.29
0.50,0.60+
0.40
0.51
0.44
0.54
0.54
0.56
0.42
0.66*
0.71
0.69
0.48
0.51
0.83
0.85
0.38
0.42
0.43
0.23
0.49
0.52
0.52
0.76, 0.79, 0.80+
0.57
0.65
0.43
0.59
0.50
0.88
0.66
0.76
0.27
0.50
0.33
0.57
0.53
0.69
0.53*
0.40
0.59
0.49
0.53
5
Table 2.-Wood densities
(glcmsl
of tree species for tropical regions of three
continents-(Continued)
Species Wood density
Cynometra insularis 0.76,
0.91+
Cynometra
ramifZora
0.70
Cynometra spp.
0.80
Dacrycarpus
imbricatus 0.45,
0.47+
Dacrydium elatum
0.48
Dacrydium nausoriensis
0.52
Dacrydium nidulum
0.52
Dacrydium spp.
0.46
Dacryodes spp.
0.61
Dalbergia latifolia
0.75
Dalbergia paniculata
0.64
Decussocarpus philippinensis
0.50
Decussocarpus vitiensis
0.37
Degeneria vitiensis
0.35
Dehaasia triandra
0.64
Dialium spp.
0.80
Dillenia luzoniensis
0.69
Dillenia megalantha
0.69
Dillenia pentagyna
0.53
Dillenia philippinensis
0.61
Dillenia spp.
0.59
Diospyros embryopteris
0.63*
Diospyros inclusa
0.68
Diospyros melanoxylon
0.68
Diospyros mindanaensis
0.69
Diospyros
nitida
0.71
Diospyrosphilippensis
0.81
Diospyros pilosanthera
0.80
Diospyros poncei
0.81
Diospyros pyrrhocarpa
0.60
Diospyros spp.
0.70
Diplodiscus paniculatus
0.63
Dipterocarpus caudatus
0.61
Dipterocarpus eurynchus
0.56
Dipterocarpus gracilis
0.61
Dipterocarpus
grandiflorus
0.62
Dipterocarpus kerrii
0.56
Dipterocarpus kunstlerii
0.57
Dipterocarpus spp.
0.61
Dipterocarpus warburgii
0.52
Dracontomelon
duo
0.52
Dracontomelon edule
0.46
Dracontomelon spp.
0.50
Dryobalanops spp.
0.61
Dtypetes
bordenii
0.75
Durio spp.
0.53
Durio zibethinus
0.44,0.53+
Dyera
costulata
0.36
Dysoxylum altissimum
0.42
Dysoxylum decandrum
0.51
Dysoxylum euphlebium
0.63
Dysoxylum quercifolium
0.49
Dysoxylum richii
0.49
Elaeocarpus serratus
0.40*
Emblica officinalis
0.80
Endiandra laxiflora
0.54
Endospermum macrophyllum
0.40
Endospermum peltatum
0.31
Endospermum spp.
0.38
6
L
Species Wood density
Enterolobium cyclocarpum
0.35
Epicharis cumingiana
0.73
Erythrina
fusca
0.25
Erythrina suberosa
0.32
Erythrina subumbrans
0.24
Erythrophloeum
densiflorum
0.65
Eucalyptus citriodora
0.64
Eucalyptus deglupta
0.34
Eugenia spp.
0.65
Fagraea gracilipes
0.84
Fagraea spp.
0.73
Ficus
benjamina
0.65
Ficus
botryocarpa
0.43
Ficus
minahassae
0.42
Ficus
spp. 0.39
Ficus
variegata
0.28
Ganua obovatifolia
0.59
Garcinia myrtifolia
0.65
Garcinia spp.
0.75
Gardenia latifolia
0.64
Gardenia
turgida
0.64
Garuga pinnata
0.51
Gluta
spp.
0.63
Gmelina arborea
0.41,0.45+
Gmelina vitiensis
0.54
Gonocaryum calleryanum
0.64
Gonystylus bancanus
0.52
Gonystylus macrophyllus
0.52
Gonystylus punctatus
0.57
Grewia
multiflora
0.46
Grewia tiliaefolia
0.68
Hardwickia binata
0.73
Harpullia arborea
0.62
Heritiera ornithocephala
0.68
Heritiera spp.
0.56
Heritiera sylvatica
0.77
Hevea brasiliensis
0.53
Hibiscus tiliaceus
0.57
Homalanthus populneus
0.38
Homalium spp.
0.76
Hopea
acuminata
0.62
Hopea
foxworthyi
0.64
Hopea
plagata
0.88
Hopea
spp.
0.64
Intsia
btjuga
0.61, 0.68, 0.74+
Intsia palembanica
0.68
Kayea
garciae
0.53
Kingiodendron alternifolium
0.48
Kleinhovia hospita
0.36
Knema spp.
0.53
Koompassia
excelsa
0.63
Koompassia malaccensis
0.72
Koordersiodendron pinnatum
*
0.65,
0.69+
Kydia calycina
0.72
Lagerstroemia
parviflora
0.62
Lagerstroemia piriformis
0.50
Lagerstroemia speciosa
0.53
Lagerstroemia spp.
0.55
Lannea coromandelica
0.54
Lannea
grandis
0.50
Table 2.-Wood densities
(g/cm%
of tree species for tropical regions of three
continents4Continued)
Species
Wood density
Leucaena leucocephala
0.64
Litchi chinensis ssp. philippinensis
0.88
Lithocarpus celebica
0.68
Lithocarpus llanosii
0.63
Lithocarpus soleriana
0.63
Litsea
garciae
0.34
Litsea
leytensis
0.35
Litsea
perrottetii
0.45
Litsea
spp.
0.40
Lophopetalum
spp.
0.46
Macaranga bicolor
0.29
Macaranga denticulata
0.53
Madhuca fulva
0.53
Madhuca longifolia var. latifolia
0.74
Madhuca oblongifolia
0.53
Mallotus multiglandulosus
0.42
Mallotus philippensis
0.64
Mangifera altissima
0.55
Mangifera
indica
0.52,0.59+
Mangifera merrillii
0.52
Mangifera spp.
0.52
Maniltoa grandiflora
0.76
Maniltoa minor
0.76
Mastixia philippinensis
0.47
Melanorrhea spp.
0.63
Melia
dubia
0.40
Melicope triphylla
0.37
Meliosma macrophylla
0.27
Melochia umbellata
0.25
Me&a
ferrea
0.83,0.85+
Metrosideros
collina
0.70,0.76+
Michelia
platyphylla
0.51
Michelia
spp.
0.43
Microcos
stylocarpa
0.40
Micromelum compressum
0.64
Milliusa velutina
0.63
Mimusops elengi
0.72*
Mitragyna
parviflora
0.56
Myristica castaneifolia
0.49
Myristica chartacea
0.49
Myristica gillespieana
0.49
Myristica
spp.
0.53
Neesia spp. 0.53
Neonauclea bernardoi
0.62
Neotrewia cumingii
0.55
Ochna foxworthyi
0.86
Ochroma pyramidale
0.30
Octomeles sumatrana
0.27, 0.32+
Oroxylon indicum
0.32
Ougenia dalbergiodes
0.70
Palaquium
fidjiense
0.48
Palaquium hornei
0.70
Palaquium lanceolatum
0.55
Palaquium luzoniense
0.45
Palaquium philippense
0.41
Palaquium spp.
0.55
Palaquium tenuipetiolatum
0.50
Palaquium vitilevuense
0.48
Pangium edule
0.50
Parashorea malaanonan
0.51
t
Species
Wood density
Parashorea
spp.
Parashorea stellata
Paratrophis glabra
Parinari corymbosa
Parinari insularum
Parinari
spp.
Parkia roxburghii
Payena
spp.
Peltophorum pterocarpum
Pentace
spp.
Phaeanthus ebracteolatus
Phyllocladus hypophyllus
Pinus
caribaea
Pinus
insularis
Pinus
merkusii
Pisonia umbellifera
Pittosporum pentandrum
Planchonella vitiensis
Planchonia spectabilis
Planchonia
spp.
Podocarpus neriifolius
Podocarpus
spp.
Polyalthia
flava
Polyscias nodosa
Pometia pinnata forma pinnata
Pometia
spp.
Pouteria villamilii
Premna tomentosa
Pterocarpus
indicus
Pterocarpus marsupium
Pterocymbium macrorater
Pterocymbium tinctorium
Pyge’um vulgare
Quercus
spp.
Radermachera pinnata
Salmalia malabarica
Samanea
saman
Sandoricum koetjape
Sandoricum vidalii
Sapindus saponaria
Sapium luzontcum
Schleichera oleosa
Schrebera swietenoides
Semicarpus anacardium
Serialbizia
acle
Serianthes melanesica
Sesbania grandiflora
Shorea
agsaboensis
Shorea
almon
Shorea
assamica forma philippinensis
Shorea
astylosa
Shorea
ciliata
Shorea
contorta
Shorea
gisok
Shorea
guiso
Shorea
hopeifolia
Shorea
malibato
Shorea
negrosensis
Shorea
palosapis
Shorea
plagata
0.44
0.59
0.77
0.76
0.65
0.68
0.34
0.55
0.62
0.56
0.56
0.53
0.48
0.47,0.48+
0.54
0.21
0.51
0.77
0.58
0.59
0.52
0.43
0.51
0.38
0.58
0.54
.
0.47
0.96
0.52
0.67
0.47
0.28
0.57
0.70
0.51
0.32,0.33+
0.45, 0.46+
0.44
0.43
0.58
0.40
0.96
0.82
0.64
0.57
0.48
0.40
0.35
0.42
0.41
0.73
0.75
0.44
0.76
0.68
0.44
0.78
0.44
0.39
0.70
7
Table 2. -Wood densities
(g/ems)
of tree species for tropical regions of three
continents-fcontinued)
Species Wood density
Shorea
polita
0.47
Shorea
polysperma
0.47
Shorea
robusta
0.72
Shorea
spp. balau group
0.70
Shorea
spp. dark red meranti
0.55
Shorea
spp. light red meranti
0.40
Shorea
spp. white meranti
0.48
Shorea
spp. yellow meranti
0.46
Shorea
virescens
0.42
Sloanea
javanica
0.53
Soymida febrifuga
0.97
Spathodea campanulata
0.25
Stemonurus luzoniensis
0.37
Sterculia
ceramica
0.27
Sterculia foetida
0.47*
Sterculia urens
0.67
Sterculia vitiensis
0.31
Stereospermum suaveolens
0.62
Strombosia philippinensis
0.71
Strychnos potatorum
0.88
Swietenia macrophylla
0.49,0.53+
Swintonia foxworthyi
0.62
Swintonia spp.
0.61
Sycopsis
dunni
0.63
Syzygium
cumini
0.70
Syzygium luzoniense
0.63
Syzygium nitidum
0.74
Syeygium
simile
0.56
Syzygium spp. 0.69,
0.76+
Tamarindus indica
0.75
Tectona
grandis
0.50,0.55+
Teijsmanniodendron ahernianum
0.90
Terminalia arjuna
0.68
Terminalia belerica
0.72
Terminalia catappa
0.52
Terminalia chebula
0.96
Terminalia citrina
0.71
Terminalia copelandii
0.46
Terminalia
foetidissima
0.55
Terminalia microcarpa
0.53
Terminalia
nitens
0.58
Terminalia pterocarpa
0.48
Terminalia tomentosa
0.73,0.76,
0.77+
Ternstroemia megacarpa
0.53
Tetrameles
nudiflora
0.30
Tetramerista glabra
0.61
Thespesia populnea
0.52
Toona calantas
0.29
Trema orientalis
0.31
Trichospermum richii
0.32
Tristania decorticata
0.91
Tristania micrantha
0.89
Tristania spp. 0.80
Turpinia ovalifolia
0.36
Vateria indica
0.47*
Vatica
mangachapoi
0.65
Vatica
obscura
1.04*
Vatica
pachyphylla
0.78
Vatica
spp.
0.69
Vitex
parviflora
0.70
8
I
i
Species Wood density
Vitex peduncularis
0.96
Vitex spp.
0.65
Vitex turczaninowii
0.49
Wallaceodendron celebicum 0.55,
0.57+
Weinmannia luzoniensis
0.49
Wrightia tinctorea
0.75
Xanthophyllum
excelsum
0.63
Xanthostemon verdugonianus
1.04
Xylia xylocarpa
0.73,0.81+
Zanthoxylum rhetsa
0.33
Zizyphus
spp.
0.76
Zizyphus
talanai
0.53
Zizyphus xylopyra
0.85
Tropical America
Albizzia caribaea
0.64
Albizia
spp.
0.52
Alcornea
latifolia
0.49
Alcornea
spp.
0.34
Alexa
grandiflora
0.60
Alexa
imperatricis
0.41,0.51+
Alnus ferruginea
0.38
Alnus jorullensis
0.38
Anacardium
excelsum
0.41
Anacardium spruceanum
0.42
Anadenanthera macrocarpa
0.86
Anadenanthera
rigida
0.63
Andira inermis 0.63,
0.64+
Andira retusa
0.67
Aniba perutilis
0.50
Aniba
riparia
lduckei
0.62
Aniba spp. 0.38,
0.60+
Antiaris
africana
0.38
Apeiba
aspera
0.23
Apeiba echinata
0.36
Apeiba spp. 0.20,
0.24+
Apeiba tibourbon
0.12
Artocarpus comunis
0.70
Aspidosperma album
0.68
Aspidosperma cruentum
0.71
Aspidosperma dugandii
0.77
Aspidosperma marchravianum
0.68
Aspidosperma megalocarpum
0.71,0.81+
Aspidosperma spp.
(araracanga
group)
0.75
Aspidosperma
spp. (peroba group)
0.62,0.65+
Astronium graveolens
0.75,0.80,0.84,0.89+
Astronium lecointei
0.73
Bagassa guianensis
0.68,0.69+
Banara guianensis
0.61
Basiloxylon exelsum
0.58
Beilschmiedia pendula
0.54
Beilschmiedia sp.
0.61
Berthollettia
excelsa
0.59,
0.63+
Bixa arborea
0.32
Bombacopsis quinatum
0.38,0.45,0.51+
Bombacopsis sepium
0.39
Borojoa patinoi
0.52
Bowdichia
nitida
0.77
Bowdichia spp.
0.74
Brosimum acutifolium
0.55
Table
2.-Wood
densities
(g/ems)
of tree species for tropical regions of three
continents4Continued)
Species Wood density
Brosimum parinarioides
0.57
Brosimum potabile
0.53
Brosimum rubescens
0.73
Brosimum sp. 0.64,
0.84+
Brosimum spp. (alicastrum group) 0.64,
0.66+
Brosimum spp. (utile group)
0.43
Brosimum utile 0.41,
0.46+
Brysenia adenophylla
0.54
Buchenauia capitata 0.61,
0.63+
Buchenavia huberi
0.59,0.79+
Bucida buceras
0.93
Bulnesia arborea
1.00
Bursera simaruba
0.29, 0.34+
Byrsonima aerugo
0.62
Byrsonima coriacea
0.64
Byrsonima coriacea var. spicata
0.61
Byrsonima spp.
0.61, 0.64, 0.75+
Cabralea cangerana
0.55
Caesalpinia spp.
1.05
Calophyllum brasiliense
0.51,0.54,0.55+
Calophyllum mariae
0.46
Calophyllum sp.
0.65
Calycophyllum candidisimum
0.67
Campnosperma panamensis
0.33,0.50+
Carapa guianensis
0.56
Carapa sp.
0.47
Caryocar nr. barbinerve
0.62
Caryocar spp. 0.69,
0.72+
Caryocar villosum
0.72
Casearia
arborea
0.53
Casearia
guianensis
0.70
Casearia
praecox
0.69*
Casearia
sp.
0.62
Cassia moschata
0.71
Cassia multijuga
0.57
Casuarina equisetifolia
0.81
Catostemma commune
0.51
Catostemma spp.
0.55
Cecropia peltata 0.29, 0.30,
0.36+
. Cecropia spp.
0.36
Cedrela angustifolia
0.36
Cedrela huberi
0.38
Cedrela odorata
0.43,0.44,0.45+
Cedrela spp. 0.40,
0.46+
Cedrelinga catenaeformis
0.41, 0.53+
Ceiba pentandra
0.23,0.24,0.25,0.29+
Centrolobium paraense var. orinocensis
0.69
Centrolobium spp.
0.65
Cespedesia macrophylla
0.63
Chaetocarpus schomburgkianus
0.80
Chlorophora tinctoria
0.71,0.75+
Clarisia racemosa
0.53,0.57+
Clathrotropis brunnea 0.82
Clathrotropis spp.
0.89
Clusia
rosea
0.67
Cochlospermum orinocensis
0.26
Copaifera duckeilreticulata
0.62
Copaifera
officinalis
0.59
Copaifera spp. 0.46,
0.55+
Cordia alliodora
0.42,0.47,0.50,0.57+
i
Species Wood density
Cordia apurensis
0.66
Cordia bicolor
0.43,0.49+
Cordia borinquensis
0.70
Cordia collococca
0.47
Cordia exaltata
0.41
Cordia
fallax
0.36
Cordia goeldiana
0.50
Cordia sagotii
0.50
Cordia spp. (gerascanthus group)
0.74
Cordia spp. (alliodora group)
0.48
Cordia sulcata
0.60
Couepia sp.
0.70
Couma macrocarpa
0.50,0.53+
Couratari pulchra 0.50,
0.54+
Couratari spp.
0.50
Couratari stellata
0.65,0.78+
Croton xanthochloros
0.48
Cupressus lusitanica 0.43,
0.44+
Cyrilla
racemiflora
0.53
Dactyodes colombiana
0.51
Dacryodes
excelsa
0.52,
0.53+
Dalbergia nigra
0.68
Dalbergia retusa.
0.89
Dalbergia stevensonii
0.82
Declinanona calycina
0.47
Dialium guianensis
0.87
Dialyanthera spp. 0.36,
0.48+
Dicorynia guianensis
0.60, 0.65+
Dicorynia paraensis
0.60
Didymopanax morototoni 0.36, 0.40,
0.45+
Didymopanaxpittieri
0.43
Didymopanax sp.
0.74
Dimorphandra mora
0.99*
Diplotropis purpurea
0.76, 0.77, 0.78+
Dipterix odorata
0.81,0.86,0.89+
Drypetes variabilis
0.69
Dussia lehmannii
0.59
Ecclinusa guianensis
0.63
Endlicheria cocvirey
0.39
Enterolobium cyclocarpum
0.34,0.45+
Enterolobium schomburgkii
0.82
Eperua spp.
0.78
Eriotheca longipedicellatum
0.45
Eriotheca sp.
0.40
Erisma uncinatum 0.42,
0.48+
Erythrina sp.
0.23
Eschweilera amara
0.85
Eschweilera
corrugata
0.66
Eschweilera grata
0.88
Eschweilera hologyne
0.76
Eschweilera
odora
0.81,0.85+
Eschweilera sagotiana
0.82
Eschweilera spp.
0.71,0.79,0.95+
Eschweilera subglandulosa 0.87,
0.89+
Eschweilera
tenax
0.62
Eschweilera trinitensis
0.77
Eucalyptus
robusta
0.51
Eugenia compta
0.68
Eugenia pseudosidium
0.62
Eugenia stahlii
0.73
9
Table
P.--Wood
densities
(glcms)
of tree species for tropical regions of three
continents--@ontinued)
Species Wood density
Euxylophora paraensis
0.68,0.70+
Fagara aff. F. martinicense
0.41
Fagara sp. 0.57
Fagara spp.
0.69
Ficus citrifolia
0.40
Ficus sp.
0.32
Genipa americana
0.57, 0.58, 0.66+
Genipa spp.
0.75
Goupia glabra 0.67,
0.72+
Guarea chalde
0.52
Guarea spp.
0.52
Guarea trichiloides 0.51,
0.52+
Guatteria spp.
0.36
Guazuma ulmifolia 0.52,
0.50+
Guettarda scabra
0.65
Guillielma gasipae 0.95,
1.25+
Gwtavia sp.
0.56
Helicostylis tomentosa 0.68,
0.72+
Hernandia
Sonora
0.29
Hevea brasiliense
0.49
Himatanthus
articulata
0.40,0.54+
Hirtella davisii
0.74
Humiria balsamifera
0.66,0.67+
Humiriastrum melanocarpum
0.60
Humiriastrum procera
0.70
Hura crepitans
0.36, 0.37, 0.38+
Hyeronima alchorneoides
0.60,0.64+
Hyeronima
laxiflora
0.59
Hymenaea courbaril
0.54, 0.76, 0.77+
Hymenaea davisii
0.67
Hymenolobium
excelsum
0.63
Hymenolobium sp.
0.64
lnga alba
0.53
Inga
capitata
0.64
Inga coruscans
0.72
Inga
floribunda
0.56
Inga ingoides
0.50
Inga laurina 0.62
Inga marginata
0.72
Inga sp.
0.49,0.52,0.58,0.64+
Inga splendens
0.55
Inga
Vera
0.59
Iryanthera
grandis
0.63
Iryanthera hostmanii
0.50
Iryanthera spp.
0.46
Jacaranda copaia
0.35
Jacaranda hesperia
0.35
Jacaranda sp.
0.55
Joannesia heveoides
0.39
Lachmellea speciosa
0.73
Laetia procera
0.68
Lecythis davisii
0.82
Lecythis ollaria
0.72
Lecythis paraensis
0.88
Lecythis sp.
0.83
Lecythis spp.
0.77
Licania aff. micrantha
0.86
Licania alba 0.91
Licania apetala
0.64.0.78+
10
T
Species Wood density
Licania
densiflora
Licania hypoleuca
Licania macrophylla
Licania
parviflora
Licania sp.
Licania spp.
Licaria cayennensis
Licaria spp.
Lindackeria sp.
Linociera domingensis
Lonchocarpus sericens
Lonchocarpus spp.
Lonchocarpus straminens
Loxopterygium sagotii
Lucuma spp.
Luehea cymulosa
Luehea spp.
Lueheopsis duckeana
Mabea piriri
Machaerium spp.
Macoubea guianensis
Magnolia sororum
Magnolia splendens
Magnolia spp.
Maguira sclerophylla
Mammea americana
Mangifera
indica
Manilkara bidentata
Manilkara sp.
Marila sp.
Marmaroxylon racemosum
Matayba domingensis
Matisia hirta
Maytenus
ficiformis
Maytenus spp.
Mezilaurus itauba
Mezilaurus lindaviana
Michropholis garciniaefolia
Michropholis spp.
Minquartia guianensis
Mora
excelsa
Mora
gonggrijpi
Mora magistosperma
Mora sp.
Mouriria guianensis
Mouriria huberi
Mouriria pseudo-germinata
Mouriria sideroxylon
Myrcia
paivae
Myrcia
splendens
Myrciaria
floribunda
Myristica spp.
Myroxylon
balsamum
Nectandra antillana
Nectandra concinna
Nectandra coriacea
Nectandra
rigida
Nectandra rodioei
Nectandra rubra
Nectandra sp.
0.80
0.90
0.76
0.76
0.61,
0.79+
0.78
0.99
0.82
0.41
0.81
0.78
0.69
0.75
0.56
0.79
0.55
0.50
0.64
0.59
0.70
0.40*
0.50
0.59
0.52
0.57
0.62
0.55
0.82, 0.84, 0.85+
0.89
0.63
0.78*
0.70
0.61
0.67
0.71
0.68
0.68
0.64
0.61
0.76,0.79+
0.80
0.80
0.88
0.71
0.80
0.75
0.65
0.88
0.73
0.80
0.73
0.46
0.74, 0.76,
0.78+
0.42
0.54,
0.56+
0.51
0.59
0.91
0.55
0.43, 0.48, 0.72+
Table
2.-Wood densities
(glcms)
oftree
species for tropical regions of three
continents-fcontinued)
Species Wood density
Nectandra
spp.
0.52
Ocotea glandulosa
0.46
Ocotea leucoxylon
0.45
Ocotea
moschata
0.61
Ocotea rodioei 0.85,
0.86+
Ocotea rubra
0.54, 0.55, 0.56+
Ocotea
spathulata
0.62
Ocotea
spp. 0.51
Onychopetalum amazonicum
0.64
Ormosia krugii
0.50
Ormosia lignivalvis
0.58
Ormosia
spp. 0.59
Ouratea sp.
0.66
Pachira acuatica
0.43
Paratecoma peroba
0.60
Parinari campestris
0.69
Parinari
excelsa
0.64
Parinari
rodolfi
0.72
Parinari spp. 0.68
Parkia belutina
0.42
Parkia multijuga
0.38
Parkia oppositifolia
0.24
Parkia pendula
0.51
Parkia spp.
0.39
Peltogyne porphyrocardia
0.92
Peltogyne spp.
0.79
Pentaclethra macroloba
0.65,0.68+
Peru glabrata
0.65
Peru schomburgkiana
0.59
Persea
spp. 0.40,
0.47,0.52+
Petitia domingensis
0.66
Pinus
caribaea
0.51
Pinus
oocarpa
0.55
Pinus
patula
0.45
Piptadenia
communis
0.68
Piptadenia macrocarpa
0.83*
Piptadenia pittieri
0.62,0.76+
Piptadenia psilostachya
0.67
Piptadenia
rigida
0.73
Piptadenia sp.
0.58
Piptadenia suaveolens
0.72
Piranhea longepedunculata
0.90
Piratinera guianensis
0.96
Pithecellobium guachapele (syn. Pseudosamea) 0.56
Pithecellobium
saman
0.48
Platonia insignis 0.70’
Platymiscium pinnatum
0.80,0.81+
Platymiscium polystachium
0.73
Platymiscium spp. 0.71,
0.84+
Podocarpus oleifolius
0.46
Podocarpus rospigliossi
0.40
Podocarpus spp.
0.46
Pourouma aff. apiculata
0.45
Pourouma
aspera
0.28
Pourouma aff. guianensis
0.33
Pourouma aff. melinonii
0.32
Pouteria carabobensis
0.68
Pouteria
egregia
0.89
Pouteria eugeniifolia
1.08
Pouteria gonggrijpii
0.84
i
Species Wood density
Pouteria melinonii
0.63*
Pouteria
multiflora
0.74
Pouteria
pomifera
0.76
Pouteria sp.
0.73
Pouteria spp. 0.64,
0.67+
Prioria copaifera
0.40,0.41+
Protium crenatum
0.54
Protium decandrum
0.56
Protium heptaphyllum
0.40,0.55+
Protium neglectum
0.58,0.64+
Protium sp.
0.73
Protium spp.
0.53,0.64+
Protium tenuifolium
0.60
Pseudolmedia laevigata
0.64
Pterocarpus
officinalis
0.32,
0.50+
Pterocarpus rohrii
0.41
Pterocarpus sp. 0.46,
0.50+
Pterocarpus spp.
0.44
Pterocarpus
vernalis
0.59
Pterogyne
nitens
0.66
Pterygota
excelsa
0.58
Qualea
albiflora
0.50
Qualea
cf. lancifolia
0.58
Qualea
dinizii
0.58
_
Qualea
spp.
0.55
Quararibaea guianensis
0.54
Quercus alata
0.71
Quercus costaricensis
0.61
Quercus eugeniaefolia
0.67
Quercus spp.
0.70
Raputia sp.
0.55
Rheedia spp.
0.72
Rollinia exsucca
0.32
Rollinia sp. 0.34,
0.36+
Rollinia spp.
0.36
Saccoglottis cydonioides
0.72
Sapium biglandulosum
0.45
Sapium cf. jenmanni
0.41
Sapium laurocerasus
0.38
Sapium sp. 0.38,
0.48+
Sapium ssp.
0.47,0.72+
Schinopsis spp.
1.00
Sclerobium aff. chrysophyllum
0.62
Sclerobium guianensis
0.56
Sclerobium paniculatum
0.34
Sclerobium spp.
0.47
Sickingia spp.
0.52
Simaba
multiflora
0.51
Simarouba amara 0.32,
0.34,0.38+
Sloanea
berteriana
0.80
Sloanea
grandiflora
0.80
Sloanea
guianensis
0.79
Spondias
lutea
0.38
Spondias
mombin
0.30,
0.40,0.41+
Sterculia apetala
0.33, 0.36
Sterculia pilosa
lspeciosa
0.53
Sterculia pruriens
0.46
Sterculia spp.
0.55
Stryphnodendron polystachum
0.52
Stylogyne spp.
0.69
11
Table 2.-Wood densities
(g/cm31
of tree species for tropical regions of three
continents-fcontinued)
Species Wood density
Swartzia spp. 0.95
Swietenia macrophylla
0.42,0.45,0.46,0.54+
Symphonia globulifera
0.68
Tabebuia guayacan
0.82
Tabebuia heterophylla
0.58
Tabebuia heterotricha
0.82
Tabebuia pentaphylla
0.51
Tabebuia
msea
0.54
Tabebuia serratifolia 0.92, 0.95,
0.99+
Tabebuia spectabilis
1.07
Tabebuia spp.
(lapacho
group)
0.91
Tabebuia spp.
(roble)
0.52
Tabebuia spp. (white cedar)
0.57
Tabebuia
stenocalyx
0.55,0.57+
Tachigalia myrmecophylla
0.56
Talisia sp.
0.84
Tapirira guianensis
0.47*
Terminalia amatonia
0.66
Terminalia
catappa
0.59
Terminalia guianensis
0.63
Terminalia
lucida
0.65
Terminalia sp.
0.50, 0.51, 0.58+
Tetragastris altisima
0.61
Tetragastris balsamifera
0.63,0.67+
Tetragastris panamensis
0.71
Tetragastris spp.
0.71
Toluifera
balsamum
0.74
Torrubia cuspidata
0.47
Torrubia sp.
0.52
Toulicia pulvinata
0.63
Tovomita guianensis
0.60
Trattinickia burserifolia
0.44
Trattinickia rhoifolia
0.37
Trattinickia sp.
0.38
Trichilia propingua
0.58
Trichosperma
mexicanum
0.41
Triplaris sp.
0.64
Triplaris spp.
0.56
Triplaris surinamensis
0.51
Trophis sp.
0.54
Vatairea lundellii
0.64
Vatairea spp.
0.60
Virola sebifera
0.48
Virola spp.
0.40, 0.44, 0.48+
Virola
surinamensis
0.37,0.42+
Vismia spp.
0.41
Vitex divaricata
0.62
Vitex gaumeri
0.56
Vitex orinocensis
0.53
Vitex spp.
0.52,0.56,0.57+
Vitex stahelii
0.60
Vochysia ferruginea
0.42, 0.47+
Vochysia guianensis
0.45
Vochysia hondurensis
0.33
Vochysia lehmannii
0.48
Vochysia maxima
0.46
Vochysia spp.
0.40,0.47,
0.79+
Vochysia tetraphylla
0.48
Vochysia tomentosa
0.36
Vouacapoua americana
0.79
12
-
I
Species Wood density
Warszewicsia coccinea
0.56
Xanthoxylum martinicensis
0.46
Xanthoxylum spp.
0.44
Xylopia columbiana
0.51
Xylopia emarginata
0.59
Xylopia
frutescens
0 64”
Tropical Africa
Afzelia
bipindensis
Afzelia
pachyloba
Afzelia
spp.
Aidia ochroleuca
Albizia ferruginea
Albizia glaberrima
Albizia gummifera
Albizia spp.
Albizia
tygia
Allanblackia
floribunda
Allophyllus africanus
f.
acuminatus
Alstonia congensis
Amphimas ferrugineus
Amphimas pterocarpoides
Anisophyllea obtusifolia
Annonidium mannii
Anopyxis klaineana
Anthocleista keniensis
Anthonotha macrophylla
Anthostemma aubryanum
Antiaris
africana
Antiaris spp.
Antrocaryon klaineanum
Aucoumea klaineana
Autranella
congolensis
Baillonella toxisperma
Balanites aegyptiaca
Baphia kirkii
Beilschmiedia corbisieri
Beilschmiedia
diversiflora
Beilschmiedia kweo
Beilschmiedia louisii
Beilschmiedia membranifolia
Beilschmiedia
nitida
Berlinia bracteosa
Berlinia
confusa
Berlinia spp.
Blighia welwitschii
Bombax
buonopozense
Bombax
chevalieri
Bombax
rhodognaphalon
Bombax
spp.
Brachystegia cynometroides
Brachystegia laurentii
Brachystegia mildbraedii
Brachystegia spp.
Bridelia
grandis
Bridelia micrantha
Calpocalyx heitzii
Calpocalyx klainei
Canarium schweinfurthii
Canthium rubrocostratum
0.66”
0.63*
0.67
0.78*
0.47*
0.52”
0.51*
0.52
0.46*
0.63*
0.45
0.33
0.63*
0.63*
0.63*
0.29*
0.74*
0.50*
0.78*
0.32*
0.37
0.38
0.50*
0.37
0.78
0.71
0.63*
0.93*
0.63*
0.63*
0.56*
0.70*
0.50*
0.50*
0.60*
0.56*
0.58
0.74*
0.32*
0.41*
0.36*
0.40
0.56*
0.45*
0.50*
0.52
0*50*
0.47*
0.66*
0.63*
0.40*
0.63*
Table
2.-Wood
densities
(g/ems,
of tree species for tropical regions of three
continents4Continued)
Species
Carapa procera
Casearia
battiscombei
Cassipourea euryoides
Cassipourea malosana
Ceiba pentandra
Celtis brieyi
Celtis mildbraedii
Celtis
spp.
Celtis zenkeri
Chlorophora ercelsa
Chrysophyllum
albidum
Cleistanthus mildbraedii
Cleistopholis
patens
Coelocaryon preussii
Cola cordifolia
Cola gigantea
Cola gigantea var.
glabrescens
Cola natalensis
Cola
sp.
Combretodendron macrocarpum
Conopharyngia
holstii
Copaifera mildbraedii
Copaifera religiosa .
Cordia
africana
Cordia millenii
Cordia platythyrsa
Corynanthe gabonensis
Corynanthe pachyceras
Coda edulis
Croton macrostachyus
Croton megalocarpus
Cryptosepalum staudtii
Ctenolophon englerianus
Cylicodiscus gabonensis
Cynometra alexandri
Dacryodes buettneri
Dacryodes edulis
Dacryodes igaganga
Dacryodes klaineana
Dacryodes
le-testui
Dacryodes normandii
Dacryodes
spp.
Daniellia klainei
Daniellia ogea
Daniellia soyaunii
Desbordesia pierreana
Detarium senegalensis
Dialium bipindense
Dialium dinklagei
Dialium
excelsum
Didelotia
africana
Didelotia brevipaniculata
Didelotia
letouzeyi
Diospyros kamerunensis
Diospyros
spp.
Discoglypremna caloneura
Distemonanthus benthamianus
Drypetes
gossweilleri
Drypetes
sp.
Ehretia
acuminata
Wood density
0.59
0.50
0.70*
0.59*
0.26
0.50”
0.56*
0.59
0.59”
0.55
0.56*
o.a7*
0.36*
0.56”
0.50*
0.46”
0.46*
0.70”
0.70”
0.70
0.50*
0.63*
0.50”
0.40*
0.34
0.36”
0.56”
0.63”
0.7w
0.50*
0.57
0.70*
0.78*
0.80
0.74
0.53”
0.50”
0.53”
0.70”
0.50”
0.50*
0.61
0.45*
0.40*
0.45”
0.87”
0.63*
0.83”
0.72
0.78*
0.78”
0.53
0.50
0.78*
0.82
0.32*
0.58
0.63*
0.63*
0.51*
Species
Enantia chlorantha
Endodesmia calophylloides
Entandrophragma angolensis
Entandrophragma candollei
Entandrophragma cylindricum
Entandrophragma utile
Eribroma oblongum
Eriocoelum microspermum
Erismadelphus
ensul
Erythrina vogelii
Erythrophleum ivorense
Erythroxylum
mannii
Fagara heitzii
Fagara macrophylla
Ficus
iteophylla
Ficus
mucus0
Funtumia
africana
Fumtumia latifolia
Gambeya
africana
Gambeya lacourtiana
Gambeya madagascariensis
Gambeya
spp.
Garcinia gerardii
Garcinia mannii
Garcinia punctata
Gilbertiodendron dewevrei
Gilbertiodendron
grandiflorum
Gilbertiodendron mayombense
Gilletiodendron mildbraedii
Gossweilerodendron balsamiferum
Guarea cedrata
Guarea laurentii
Guarea thompsonii
Guibourtia arnoldiana
Guibou’rtia
demeusei
Guibourtia ehie
Guibourtia pellegriniana
Guibourtia spp.
Guibourtia tessmannii
Hannoa klaineana
Harungana madagascariensis
Hexalobus
crispiflorus
Holoptelea
grandis
Homalium letestui
Homalium spp.
Hylodendron gabonense.
Hymenostegia
afzelii
Hymenostegia
pellegrini
Irvingia gabonensis
Irvingia grandifolia
Julbernardia
globiflora
Khaya grandifoliola
Khaya ivorensis
Khaya senegalensis
Klainedoxa gabonensis
Lannea welwitschii
Lecomtedoxa klainenna
Letestua durissima
Lophira alata
Lovoa trichilioides
Wood density
0.42”
0.66”
0.45
0.59
0.55
0.53
0.60*
0.50”
0.56*
0.25”
0.72
0.50
0.41*
0.69
0.40”
0.39*
0.40*
0.45*
0.63
0.63*
0.56*
0.56*
0.66Y
0.78”
0.78”
0.65”
0.66”
0.63”
0.87”
0.40
0.48
0.56”
0.55”
0.64
0.70”
0.67
0.74”
0.72
0.74*
0.28”
0.45”
0.48”
0.59”
0.66:”
0.70
0.78”
0.78”
0.78”
0.71
0.78”
0.78
0.60
0.44
0.60
0.87
0.45”’
0.78:”
0.87”
0.87”
0.45”
13
Table 2.-Wood densities
(glcmsl
of tree species for tropical regions of three
continents-fcontinued)
Species Wood density
Macaranga
conglomerata
0.40*
Macaranga kilimandscharica
0.40*
Maesopsis eminii
0.41
Malacantha sp. aff. alnifolia 0.45”
Mammea
africana
0.62
Manilkara cuneifolia
0.81*
Manilkara
lacera
0.78”
Markhamia hildebrandtii
0.50*
Markhamia
platycalyx
0.45*
Memecylon capitellatum
0.77”
Microberlinia bisulcata
0.63”
Microberlinia brazzavillensis
0.70
Microcos coriaceus
0.42”
Milletia laurentii 0.70”
Milletia spp.
0.72
Mitragyna
ciliata
0.45
Mitragyna stipulosa
0.47
Monopetalanthus coriaceus
0.45*
Monopetalanthus durandii
0.50*
Monopetalanthus heitzii
0.39
Monopetalanthus letestui
0.50”
Monopetalanthus pellegrinii
0.47”
Musanga cecropioides
0.23
Nauclea diderrichii
0.63
Neopoutonia macrocalyx 0.32”
Nesogordonia fouassieri
0.70”
Nesogordonia papaverifera
0.65
Newtonia buchananii
0.48*
Newtonia glandulifera
0.74”
Ochtocosmus africanus
0.78’
Odyendea gabonensis
0.32”
Odyendea
spp. 0.32
Oldfieldia
africana
0.78*
Ongokea gore
0.72
Oxystigma
oxyphyllum
0.53
Pachyelasma tessmannii 0.70”
Pachypodanthium confine
0.58*
Pachypodanthium staudtii
0.58”
Paraberlinia bifoliolata
0.56”
Parinari
ercelsa
0.69
Parinari glabra
0.87”
Parinari goetzeniana 0.78”
Parkia bicolor
0.36”
Pausinystalia brachythyrsa
0.56”
Pausinystalia cf. talbotii
0.56”
Pentaclethra eetveldeana
0.63”
Pentaclethra macrophylla
0.78”
Pentadesma butyracea
0.78”
Phyllanthus discoideus
0.76”
Pierreodendron africanum
0.70;”
Piptadenia gabunensis
0.70*
Piptadeniastrum africanum
0.56
Plagiostyles
africana
0.70”
Poga oleosa
0.36
Polyalthia suaveolens
0.66”
Premna angolensis
0.63”
I
Species Wood density
Pteleopsis hylodendron
Pterocarpus angolensis
Pterocarpus soyauxii
Pterygota bequaertii
Pterygota
spp.
Pycnanthus angolensis
Randia cladantha
Rauwolfia
macrophylla
Ricinodendron heudelotii
Saccoglottis gabonensis
Santiria
trimera
Sapium ellipticum
Schrebera arborea
Sclorodophloeus zenkeri
Scottellia chevalieri
Scottellia coriacea
Scyphocephalium ochocoa
Scytopetalum tieghemii
Sindoropsis letestui
Staudtia stipitata
Stemonocoleus micranthus
Sterculia
oblonga
Sterculia rhinopetala
Strephonema pseudocola
Strombosia glaucescens
Strombosia grandifolia
Strombosiopsis tetrandra
Swartzia
fistuloides
Symphonia globulifera
Syzygium cordatum
Tarrietia
densiflora
Tarrietia utilis
Terminalia
superba
Tessmania
africana
Testulea gabonensis
Tetraberlinia bifoliolata
Tetraberlinia tubmaniana
Tetrapleura tetraptera
Tieghemella
africana
Tieghemella heckelii
Trema guineensis
Trema
sp.
Trichilia heudelotii
Trichilia prieureana
Trichoscypha arborea
Triplochiton scleroxylon.
Uapaca
spp.
Vepris undulata
Vitex doniana
Xylopia aethiopica
Xylopia chrysophylla
Xylopia hypolambra
Xylopia quintasii
Xylopia staudtii
-
0.63*
0.59
0.61
0.56*
0.52
0.40
0.78*
0.47*
0.20
0.74”
0.53*
0.50*
0.63*
0.68Y
0.50*
0.56
0.48
0.56”
0.56*
0.75
0.56”
0.61
0.64
0.56*
0.80
0.74*
0.63”
0.82
0.58”
0.59*
0.63
0.54”
0.45
0.85”
0.60
0.54*
0.60”
0.50”
0.55
0.55”
0.40”
0.40*
0.50”
0.63”
0.59”
0.32
0.60
0.70”
0.40
0.50”
0.70*
0.63”
0.70”
0.36*
+The wood densities specified pertain to more than one bibliographic source.
*
Wood density value is derived from the regression equation given in the text,
14
LITERATURE CITED
Brown, S.; Gillespie, A.J.R.; Lugo, A.E.1989.Biomass
estimation methods for tropical forests with appli-
cations to forest inventory data. Forest Science.
35: 881-902.
Brown, S.; Lugo, A.E. 1982. The storage and produc-
tion of organic matter in tropical forests and their
role in the global carbon cycle. Biotropica.
14(3X
161-187.
Brown, S.; Lugo, A.E. 1984. Biomass of tropical
forests: a new estimate based on forest volumes.
Science. 223: 1290-1293
Chudnoff, Martin. 1984. Tropical timbers of the
world. Agric. Handb. 607. Washington, DC: U.S
Department of Agriculture. 464 p.
Gillespie, A.J.R.; Brown, S.; Lugo, A.E. [In
press].
Tropical forest biomass estimation from truncated
stand tables. Forest Ecology and Management.
Holdridge, L.R. 1967. Life zone ecology. San Jose,
Costa Rica: Tropical Science Center. 206 p.
Lugo, A.E.; Brown, S.; Chapman, J. 1988. An analyt-
ical review of production rates and
stemwood
biomass of tropical forest plantations. Forest
Ecology and Management. 23: 179-200.
Weaver,, P.L. 1987. Structure and dynamics in the
Colorado Forest of the Luquillo Mountains of
Puerto Rico. East Lansing: Michigan State
University. 296 p. Ph.D. dissertation.
15
Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood
densities of tropical tree species. Gen. Tech. Rep. SO-89 New Orleans, LA:
U.S. Department of Agriculture, Forest Service, Southern Forest Experiment
Station. 15~.
Wood densities of a number of tree species for tropical America, tropical Asia,
and tropical Africa have been compiled.
Persons of any race, color, national origin, sex, age, religion, or with any
handicapping condition are welcome to use and enjoy all facilities, programs,
and services of the USDA. Discrimination in any form is strictly against
agency policy, and should be reported to the Secretary of Agriculture,
Washington, DC 20250.
*U.S.
GOVERNMENT PRINTING OFFICE:
1992-666-020/40031
... The sapflux data were obtained from Poyatos et al. (2021) and the WD data for the species were gathered from different publications [Kallarackal J, Otieno D, Schmidt MW and Tenhunen JD (unpublished)] . . . . . . . . . . . . . . . . . . . . . . . 34 Fig. 3.12 Frequency distribution of WD from different continents using data from Reyes et al. (1992). Highlighted are WD values for which highest sap flux densities are expected according to the quantile regression model (Kallarackal et al. 2013); in all three continents, the most frequent WD values fall in this region [From Kallarackal et al. (2013) Linear relationships between a RWI-SPEI relationship and WD, b RWI-SPEI relationship and ψmin. ...
... It is reasonable to assume that trees with WD values in the above range are preferred over others although they may have specific advantages of water transport or mechanical strength in isolation. Of course, the statement of Woodcock and Shier (2002) that Fig. 3.12 Frequency distribution of WD from different continents using data from Reyes et al. (1992). Highlighted are WD values for which highest sap flux densities are expected according to the quantile regression model (Kallarackal et al. 2013); in all three continents, the most frequent WD values fall in this region [From Kallarackal et al. (2013) with permission] "there are many ways to make a tree" is valid, because depending on the specific environment where they grow, trees will resort to different ways of trade-offs for their survival. ...
Book
Full-text available
Recent research has shed light on the crucial role of wood density, a fundamental physical property, as a functional trait. This means wood density isn't just about how much a piece of wood weighs, but how it influences a plant's entire strategy for survival and growth. While variations exist between individual species, a surprising trend has emerged: the majority of this variation can be traced back to a plant's genus or even family. This strong phylogenetic signal indicates that wood density is a deeply ingrained characteristic, shaped by a plant's evolutionary history. This newfound understanding allows us to leverage wood density as a taxon-based functional trait. By considering the typical wood density of a plant group (like a genus or family), we can improve models and predictions related to various ecological and functional aspects in forests and plantations. Over the past couple of decades, scientists have been actively exploring the connections between wood density and a wide range of plant functions. Denser wood is often linked to slower growth rates, delayed reproduction, and increased mechanical strength. It also influences a plant's ability to transport water, resist death (mortality rate), and manage internal water balance (water potential). Additionally, wood density is closely tied to physiological aspects such as gas exchange and xylem hydraulic conductance, which are crucial for nutrient and water movement. Wood density is also an important parameter to determine the carbon sequestration capacity of a tree or vegetation, thus important in climate change research. This proposed book will delve into these fascinating connections, highlighting how wood density acts as a key player in shaping the lives of plants and the overall health of forest ecosystems.
... When the specific density of the wood was not available for a given species, a default reference value of 0.58 g/cm³ was used, in accordance with the recommendations of Reyes et al. (1992) [29] for African tropical forests. ...
Article
The expansion of cocoa cultivation in Côte d'Ivoire, although crucial to the national economy, has been at the expense of forest cover, leading to massive deforestation, loss of biodiversity and degradation of essential ecosystem services. Cocoa-based agroforestry systems (SAFc), incorporating shade trees, are increasingly being promoted as a sustainable solution for reconciling agricultural productivity and environmental conservation. This study aimed to (1) characterise the floristic diversity of shade trees associated with cocoa trees in different SAFc in the Nawa region; (2) assess the structural characteristics of these trees; (3) estimate biomass and carbon sequestration of SAFc; and (4) compare the economic value of trees associated with SAFc. Sixteen (16) cocoa plantations representing four types of SAFc (full sun systems, shaded systems and two intermediate systems) were selected and floristic surveys were carried out. A total of 83 tree species in 62 genera and 32 botanical families were recorded, with higher species richness in shaded systems (52 species) and intermediate 2 (40 species). Structural analysis revealed a predominance of young trees (diameter class [10-20] cm), suggesting active regeneration. Overall, the results indicate that intermediate SAFc systems offer an optimal balance between cocoa productivity, biodiversity conservation and the provision of ecosystem services, particularly in terms of biomass accumulation and carbon sequestration. Promoting intermediate SAFc could therefore strengthen the sustainability of cocoa production in Côte d'Ivoire.
... m and it is made from wood. The thermophysical properties for each component in the meeting office such as (brick, insulator, glass, wood, and argon) that are used in the numerical simulation are demonstrated in Table 2. Before starting the simulation, mesh analysis was done on the geometry to find the optimum mesh of the meeting room for Model 2 as illustrated in Figure 5. Table 2 Thermophysical properties of the Office material in Icepak simulation [26][27][28][29][30][31] In Figure 5, it can be remarked that the results of the ambient temperatures reach a steady state after the 3 rd value at the mesh count of 97316. The reason we have chosen the 3 rd one is to decrease the computational time of the simulations by Icepak because the 4 th one will give the same results in a longer time. ...
Article
Full-text available
Optimization becomes an essential tool in all aspects of life. Air entrances and exits locations in any building are one of them that need to be optimized to reduce the energy consumption. Hence, a numerical and analytical investigations of two Models were performed to a teaching assistantship (TA's) office. The original office design (Model 1) has all the hot and cold air inlets beside the air outlet in the mid-position of the room ceiling. The suggested model of the office (Model 2) is designed by putting the cold air inlet in the middle of the ceiling, whereas the hot air inlet in the middle of the floor close to the widow of the office. The air outlet was kept in the middle of the room ceiling. These models analysed as a function of the ambient temperatures in the 21st of four months (December, March, June, and September) within the periods 9:00, 12:00, and 16:00 h. For more validation, the comparison between the analytical and numerical results of Model 2 is validated with a maximum variation of about 7%. In addition, the analytical room temperature results of Model 1 are higher than Model 2 by 10.3%. Finally, the best average comfortable temperature for humans had been discovered in Model 2 for all cases around 23 ˚C with a maximum error percentage of less than 10%.
... Wood density of each species found on the TSP was obtained from literatures (i.e. Reyes, et al. [16] and African Wood Density Data Base website). ...
Article
Full-text available
This study used allometric equations to evaluate the biomass and carbon stock of recreational trees at Agodi Gardens in Ibadan Metropolis. Stratified sampling technique was used to delineate 15 plots (25m x 25m). Six allometric equations were selected to estimate Aboveground Biomass (AB) of the tree species. Models selected were assessed based on highest adjusted coefficient of determination (AdjR2), significant F-ratio (P<0.05) and least Root Means Square Error (RSME). A total of 220 trees belonging to 18 species were encountered. The dominant Diameter at Breast Height (DBH) and Height (Ht) were 62.8cm and 39.1m, respectively for Alstonia bonnei and Elaeis guineensis. The mean AB/ha was 2.8006Kgha-1 and the highest carbon stock of 3.332147 x 10-4 was recorded for Khaya ivorensis. Equation C= 2.6 x 10-7+ln (AB) + lnDBH²+lnHt (AdjR²=99%), gave the best fit to estimate carbon stock in the study area. The study found a significant relationship between AB, DBH and Ht, with a high correlation between DBH and Ht (P-value=0.00). Hence, as the DBH increases, the Ht increases with an increase in AB. Most trees had low slenderness coefficients (<70). The developed allometric model improved the prediction of aboveground stem biomass and carbon stock, making it useful for future research.
... Since both the study sites belong to tropical dry deciduous bio-region of India, the AGB was calculated using the following formula of Chave et al. (2005): where F is Chave et al. (2005) constant for broadleaf tropical forests, ρ represents a specific wood density of any plant species, and H stands for the height of the tree. The Food and Agriculture Organization's (FAO) database for tropical trees was used to obtain the specific wood density of a tree species (Reyes 1992). TD was measured as the number of trees per unit area. ...
Article
This study, conducted in fire-prone dry deciduous forests of Ajodhya and Susunia hills, aims to assess the diverse impacts of forest fire events on vegetation health, soil nutrient balance, and availability of nontimber forest products (NTFPs) that conjointly modulate the livelihoods of local communities. Vegetation health and soil nutrient pool were assessed through transect sampling at both fire-affected (FA) and fire-unaffected (FU) forest plots of the study area. Two depths (D1: 0–15 cm, D2: 15–30 cm) were considered for soil sampling. Vegetation parameters like basal area, canopy cover, above-ground biomass, species diversity, and tree density were significantly lower (p < 0.01) in FA compared to FU. Organic C and available N were significantly lower (p < 0.01) at D1 of soils in FA than in FU. Significant differences were found in organic C (p < 0.01), available N (p < 0.001), and available P (p < 0.01) contents of FA and FU plots at D2. Participatory appraisals conducted among the neighboring forest-dependent communities indicated that almost every forest fire event was human-induced. These adversely affected extraction of Shorea robusta leaves, fuelwood, wild mushrooms, Madhuca indica fruits, etc. Conversely, Diospyros melanoxylon leaf production increased after 2–3weeks of fire due to clearing up of hitherto untapped forestlands. Cumulatively, this study uniquely attempts to contextualize the environmental impacts of fire with its socio-economic ramifications as evident from degrading natural resources, scarcity of essential NTFPs, and escalation in number plus intensity of human–animal conflicts.
... Where, V = Volume, SG = Specific gravity The Specific gravity or wood density values (SG) of most trees were taken from Reyes et. al., (1996) [22] and the ICRAF Wood Density database. After this, the below-ground biomass (BGB) was estimated by multiplying the AGB by 0.26. ...
Article
Full-text available
The urgency of climate action has never been more apparent, and this research seeks to align the vital task of carbon mitigation with pragmatic solutions grounded in urban forestry. The objectives of this study encompass the quantification of carbon and CO2 stocks within the urban trees of Kalaburagi city, India, the analysis of the relative abundance of tree species, and the dissemination of findings aimed at raising awareness about the imperative of climate action. This study follows a systematic sampling approach to measure and collect data. Physical measurements were taken of each tree species spanning 20 hectares, and the readings were enumerated using allometric formulas to obtain the carbon and CO2 stocks (in metric tons). A total of over 500 individual trees belonging to 20 families were recorded. The total Biomass stood at 188.286 t, Carbon stocks reached 89.436 t, and CO2 stocks reached 327.871 t in the study area. Azadirachta indica had the highest relative abundance and sequestration potential, followed by other members of the family Meliaceae and Fabaceae, Murraya koenigii had the lowest carbon storage potential. The results satisfied the Shannon-Simpson indices. This research is not merely an academic endeavour; it is a call to arms, a clarion call for cities to recognize the invaluable contribution of their arboreal denizens in the struggle against climate change.
... Les densités des arbres ont été obtenues grâce à la base de données suivante : Global Wood densité data base (Zanne et al., 2009). Pour les espèces dont il n'existe pas une littérature disponible sur la densité spécifique, la valeur par défaut (ρ défaut = 0,58 g/cm3) est choisie pour les forêts tropicales d'Afrique (Reyes et al., 1992 Figure 2). ...
Book
Full-text available
The National Forest Monitoring System will monitor information related to measurement, reporting and verification of REDD + activities, and provide comprehensive support for the implementation of forestry policies and programs such as the National Forest Program, the National Strategic Plan, Protected Area Management, and the Framework. Strategic plan for the fisheries sector. The National Forest Monitoring System is designed in accordance with a step-by-step approach that incorporates new approaches after improving data and opportunities for capacity building and technological advances. This will ensure that the National Forest Monitoring System will continue to provide timely, reliable and accurate information that will indicate policies and actions to address the causes of deforestation and forest degradation in Cambodia. The National Forest Monitoring System is designed to take into account the national situation, possibilities and priorities, and to rely on existing institutions with a vision to build institutional capacity. The National Forest Monitoring System is also in line with the guidelines of the Intergovernmental Working Group on Climate Change and the decisions of the Conference of the Parties to the UN Framework Convention on Climate Change related to REDD +. Cambodia aims to achieve the use of Level 2 or higher data for national GHG inventory and five carbon reservoir assessments.
Chapter
The chapter discusses the significance of wood density (WD) in trees and its impact on various physiological and ecological aspects. It notes a consistent correlation between slow-growing trees and higher WD, while fast-growing trees exhibit lower WD. In dry forests, low WD trees demonstrate higher growth rates due to increased storage water, allowing for earlier seasonal growth. WD is inversely related to tree height rather than girth. Additionally, studies reveal associations between WD and vegetative and reproductive phenophases, with high WD species influenced by water availability and low WD species regulated by photoperiod. The text highlights the crucial role of WD in predicting tree mortality, emphasizing that higher-density species tend to have lower mortality rates. This relationship is explained by the resilience of high-density wood to environmental stressors such as drought-induced embolism, mechanical breakage, and pathogen attacks. WD significantly influences water transport efficiency, with higher WD resulting in lower water transport rates but increased resistance to cavitation or embolism. Furthermore, the passage discusses the negative correlation between WD and sapflux, indicating that while higher WD restricts water transport efficiency, it enhances cavitation resistance, allowing adaptation to drier environments. Trees with WD values in the range of 0.5–0.65 g cm−3 are considered most efficient in water transport. The conclusion emphasizes that WD is a valuable predictor of water consumption in tree species and stand water use, though certain limitations such as measurement accuracy and environmental factors must be considered in its predictive capacity.
Article
Full-text available
This paper contains a strategy for estimating total aboveground biomass of tropical forests. We developed regression equations to estimate aboveground biomass of individual trees as a function of diameter at breast height, total height, wood density, and Holdridge life zone (sensu Holdridge 1967). The regressions are applied to some 5,300 trees from 43 independent sample plots, and 101 stand tables from large-scale forest inventories in four countries, to estimate commercial and total aboveground biomass per unit area by forest type, and to estimate expansion factors defined as the ratio of aboveground to commercial biomass. The quadratic stand diameter (QSD, i.e., the diameter of a tree of average basal area) in a given forest stand influences the magnitude of the expansion factor. Stands of small trees have large expansion factors (up to 6.4), and as QSD increases, the expansion factor decreases to a constant value (about 1.75). For undisturbed forests in moist, moist transition to dry, and dry life zones respectively, the expansion factors for total aboveground biomass were 1.74, 1.95, and 1.57 respectively. For undisturbed, logged, and nonproductive forest categories used by the FAO to report global commercial wood volume data, we estimated expansion factors of 1.75, 1.90, and 2.00 respectively. Applying these factors to FAO data results in a 28 to 47% increase in previous volume-derived estimates of tropical forest biomass. However, estimates of tropical forest biomass based on small destructive samples continue to be high relative to estimates based on volume data. For. Sci. 35(4):881-902.
Article
Full-text available
Recent assessments of areas of different tropical forest types and their corresponding stand volumes were used to calculate the biomass densities and total biomass of tropical forests. Total biomass was estimated at 205 x 109 tons, and weighted biomass densities for undisturbed closed and open broadleaf forests were 176 and 61 tons per hectare, respectively. These values are considerably lower than those previously reported and raise questions about the role of the terrestrial biota in the global carbon budget.
Article
Data on stemwood biomass and mean annual biomass increment (MABI) for seven tropical tree plantation species were synthesized from the literature to evaluate species adaptibility and potential yields in different environments. Stemwood biomass ranged from < 1 to 712 t ha−1, and MABI ranged from about 1 to 30 t ha−1 year−1 in plantations of Pinus caribaea, Tectona grandis, Pinus patula, Gmelina arborea, Cupressus lusitanica, Eucalyptus grandis, and Albizia falcataria. Stemwood biomass and MABI varied with species, plantation age, and climate. Linear models best described the relationship between stemwood biomass and age of plantation, and the slopes of these equations (MABIs) varied among species and among life zones for a given species. Significant relations were found between stemwood biomass and MABI and water availability (the ratio of temperature to precipitation, T/P). In general, stemwood biomass and MABI decreased at high (arid) and low (very humid) T/P ratios. Each tree species had an optimal T/P at which its maximum stemwood biomass and MABI occurred. Other site factors, such as soil fertility, modified plantation response to climate.
Article
Total aboveground forest biomass may be estimated through a variety of techniques based on commercial inventory stand and stock tables. Stand and stock tables from tropical countries commonly omit trees below a certain commercial limit, often ⩾ 35ccm. Biomass estimates made from such tables will fail to include from 25–45% of the total stand biomass. Using stand tables generated for large forested areas, we describe several methods of estimating the numbers of stems in one or two missing small-diameter classes (truncated stand tables) based on the numbers of stems in the larger size classes. We show that an exponential model reasonably approximates diameter distributions among most diameter classes in various types of tropical moist forest. The most accurate method of estimating the number of stems in smaller (missing) diameter classes used the ratio of the numbers of stems in the two smallest diameter classes. The error of estimation of total stand biomass using this approach (10–12%) was always less than the error incurred by omitting the missing classes (25–45%).
Article
The ratio of leaf litter production to net primary production (0.25-0.65) was inversely related to the ratio of temperature to precipitation (T/P), suggesting different strategies of allocation of the net primary production in different life zones. The relationship between total litterfall (1.0-15.3 t/ha yr, excluding large wood) and T/P was significant; litterfall was highest in tropical moist forest life zones and lower in wetter or drier ones. The turnover time of biomass in mature tropical forests is similar for all life zones, and is of the order of 34 yr. The total tropical and subtropical basal and altitudinal forest area of 1838 million ha comprises 42% dry forest, 33% moist forest, and 25% wet and rain forest life zone groups. Data yielded a total storage of 787 billion t organic matter, with vegetation accounting for 58, soils 41, and litter 1%. About half of the total storage was located in the tropical basal wet, moist, and dry forest life zone groups. Litterfall data result in a total litter production in tropical forests of 12.3 billion t organic matter/yr. Most litter was produced in the tropical basal moist forest group (30%) and least in the tropical basal dry forest group (10%). Turnover time of litter in tropical forests was <1 yr. Lowest turnover times were in very wet (1 yr) and in dry (0.9-1.9 yr) life zone groups. -from Authors
Article
Thesis (Ph. D.)--Michigan State University. Dept. of Botany and Plant Pathology, 1987. Includes bibliographies.
Description y propiedades de algunas maderas venezolanas
  • H J Van Der Slooten
  • E P Martinez
van der Slooten, H.J.; Martinez, E.P. 1959. Description y propiedades de algunas maderas venezolanas. Boletin Informativo Divulgativo. Merida, Venezuela: Instituto Forestal Latinoamericano de Investigation y Capacitation. Centro de Documentation y Publicaciones. [not paged].