Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Sink Mobility is becoming popular due to excellent load balancing between nodes and ultimately resulting in prolonged network lifetime and throughput. A major challenge is to provide reliable and energy-efficient operations are to be taken into consideration for differentmobility patterns of sink. Aim of this paper is lifetime maximization of Delay TolerantWireless Sensor Networks (WSNs) through the manipulation of Mobile Sink (MS) on different trajectories. We propose Square Routing Protocol with MS (SRP-MS) based on existing SEP (Stable Election Protocol) by making it Cluster Less (CL) and introducing sink mobility.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... This LP model also resulted in minimizing routing delay. This delay minimizing problem is very important to be solved because in time critical applications, this is a quite significant and is needed to be solved as is [34]. ...
... The previous protocols have used the probabilistic techniques for CH selection [1][16] [34]. Nodes then associate with each CH based upon received signal strength. ...
... This study present clustering based routing for WSNs. A large number of the clustering protocols are homogeneous, for example LEACH [32], [12], PEGASIS [33], and HEED [34],ACH [35], [36]. As CHs collect data from its member or slave node, aggregates and than forward to faraway located BS, this process overload the CH and it consumes lot of energy.In LEACH, the CHs are selected periodically and consume uniform energy by selecting a new CH in each round. ...
Thesis
Full-text available
In current era of technology, applications of wireless sensor networks (WSNs) are rising in various fields. The deployment of WSNs for real life applications is greater than before. Still, the energy constraints remain one of the key issues; it prevents the complete utilization of WSN technology. Sensors typically powered with battery, which have insufficient life span. Even though renewable energy sources like solar energy or piezoelectric means are used as supplementary energy in WSNs, it is still some degree of reserve to consume energy judiciously. Proficient energy routing is thus a key requirement for a trustworthy design of a wireless sensor network. In this article, we advise a new Gateway Based Energy-Efficient Clustering Routing Protocol (M-GEAR) for WSNs. We divide the sensor nodes into four logical regions based on their distance from the gateway node and Base Station (BS). We install BS faraway from sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication to transmit its sensed data. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We then divide these two regions into clusters and each region elects its own Cluster Heads (CHs) independent of other region. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime. We also propose a reliable, power efficient and high throughput routing protocol for wireless body area networks (WBANs). We use multi hop topology to minimize energy consumption and maximizing network lifetime. We use a cost function to select parent node or forwarder. Proposed cost function selects a parent node, which has high residual energy and less distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes and distance parameter ensures successful packet delivery to sink. Simulation results shows that proposed protocol enhance the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.
... The cluster groupings are chosen to minimize the energy required for non-cluster-head nodes to transmit their data to their respective cluster heads. LEACH-C has two characteristics [5][6][7][8][9][10][11]. 1. The base station utilizes its global knowledge of the network to produce better clusters that require less energy for data transmission. ...
... These are termed as delay-tolerant networks. Authors in [57], exploited the sink mobility in delay-tolerant WSN by considering optimization problem for discovering trajectories and energy-efficient routing protocol. ...
Thesis
Full-text available
Wireless Sensor Networks (WSNs) extend human capability to monitor and con- trol the physical world, especially, in catastrophic/emergency situations where hu- man engagement is too dangerous. There is a diverse range of WSN applications in terrestrial, underwater and health care domains. In this regard, the wireless sensors have significantly evolved over the last few decades in terms of circuitry miniaturization. However, small sized wireless sensors face the problem of limited battery/power capacity. Thus, energy efficient strategies are needed to prolong the lifetime of these networks. This dissertation, limited in scope to routing only, aims at energy efficient solutions to prolong the lifetime of terrestrial sensor networks (i.e., WSNs) and Underwater WSNs (UWSNs). In WSNs, we identify that uneven cluster size, random number of selected Clus- ter Heads (CHs), communication distance, and number of transmissions/recep- tions are mainly involved in energy consumption which lead to shortened net- work lifetime. As a solution, we present two proactive routing protocols for cir- cular WSNs; Angular Multi-hop Distance based Clustering Network Transmission (AM-DisCNT) and improved AM-DisCNT (iAM-DisCNT). These two protocols are supported by linear programming models for information flow maximization and packet drop minimization. For reactive applications, we present four routing protocols; Hybrid Energy Efficient Reactive (HEER), Multi-hop Hybrid Energy Ef- ficient Reactive (MHEER), HEER with Sink Mobility (HEER-SM) and MHEER with Sink Mobility (MHEER-SM). The multi hop characteristic of the reactive protocols make them scalable. We also exploit node heterogeneity by presenting four routing protocols (i.e., Balanced Energy Efficient Network Integrated Super Heterogeneous (BEENISH), Mobile BEENISH (MBEENISH), improved BEEN- ISH (iBEENISH) and improved Mobile BEENISH (iMBEENISH)) to prolong the network lifetime. Since the problems of delay tolerance and mobile sink trajecto- ries need investigation, this dissertation factors in four propositions that explore defined and random mobile sink trajectories. On the other hand, designing an energy efficient routing protocol for UWSNs demands more accuracy and extra computations due to harsh underwater environment. Subject to nodes’ energy consumption minimization, we present Autonomous Underwater Vehicle (AUV) and Courier Nodes (CNs) based routing protocol for UWSNs. We validate our propositions for both WSNs and UWSNs via simulations. Results show that the proposed protocols where we incorporated sink mobility perform better than the existing ones in terms of selected performance metrics.
... These sensors will detect the arm motion. The focus is also to extend the work done in [38] and [39] by proposing some techniques to recharge the sensors via induction. The induction will be achieved by considering mobility in the entire human body. ...
... In [15] authors introduce adopted authentication approach for the protection of ad-hoc wireless network by even-odd function. In this function, mobile node computes and generates random even or odd number during signaling process. ...
Article
Full-text available
In this paper, a novel framework is presented through link and path duration for link availability of paths. Further, we evaluate and analyze our work by varying the number of nodes, pause time and speed in VANETs. We select three routing protocols namely Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Fish-eye State Routing (FSR). Performance of these protocols is analyzed using Packet Delivery Ratio (PDR), Normalized Routing Overhead (NRO), End-to-End Delay (E2ED), Average Link Duration (ALD) and Average Path Duration (APD) against varying scalability, pause time and speed as performance metrices. We perform these simulations with NS-2 implementing Nakagami radio propagation model. The SUMO simulator is used to generate a random mobility pattern for VANETs. To find link duration and path duration we also use MATLAB. From the extensive simulations, we observe that AODV and DSR outperform better among all three routing protocols.
... This LP model also resulted in minimizing routing delay. This delay minimizing problem is very important to be solved because in time critical applications, this is a quite significant and is needed to be solved as is[25]. Aslam et al.[21]proposed CEEC which uses three energy levels of nodes i.e. normal, advance and super nodes. ...
Article
Full-text available
In this paper, we propose Regional Energy Efficient Cluster Heads based on Maximum Energy (REECH-ME) Routing Protocol for Wireless Sensor Networks (WSNs). The main purpose of this protocol is to improve the network lifetime and particularly the stability period of the network. In REECH-ME, the node with the maximum energy in a region becomes Cluster Head (CH) of that region for that particular round and the number of the cluster heads in each round remains the same. Our technique outperforms LEACH [1] which uses probabilistic approach for the selection of CHs. We also implement the Uniform Random Distribution Model to find the packet drop to make this protocol more practical. We also calculate the confidence interval of all our results which helps us to visualize the possible deviation of our graphs from the mean value.
... Transmission delay is another problem in WSNs when time critical data is required like health care applications. In26272829, authors presented and evaluate the performance of energy efficient and delay aware routing protcols to maximize the energy consumption. They investigate the different techniques to reduce the transmission delay for reactive and time critical applications. ...
Article
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Clustering Hierarchy (LEACH) routing protocol. Fundamental objective of our consideration is to analyze, how these ex- tended routing protocols work in order to optimize lifetime of network nodes and how quality of routing protocols is improved for WSNs. Furthermore, this paper also emphasizes on some issues experienced by LEACH and also explains how these issues are tackled by other enhanced routing protocols from classi- cal LEACH. We analytically compare the features and performance issues of each hierarchal routing protocol. We also simulate selected clustering routing protocols for our study in order to elaborate the enhancement achieved by ameliorate routing protocols.
Conference Paper
Wireless sensor networks (WSNs) have been widely used in many applications. However, in some particular situations such as battlefield communication and disaster monitoring, fixed sink nodes have shown their shortage on deployment, energy balance and connectivity. Also, most of the related works on mobile sink ignored packet loss and data collection coverage. In this paper, we propose a movement strategy for mobile sink based on the link quality: Orthogonal Sniffing Movement Algorithm (OSM). The movement strategy is carefully designed by analyzing the relationship between the route of sink node and link quality to achieve high data collection coverage. The movement of the mobile sink is determined dynamically by the evaluation results of link quality with sensor nodes. The simulation results reveal that OSM achieves high data collection coverage compared to other movement strategies.
Article
One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power; however, in the case of short range communication the consumption power in decoding is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on the basis of iterative message-passing algorithms for Low Density Parity Check Code (LDPC). To reduce energy dissipation in decoder, LDPC based coded communications between sensors are considered. Moreover, we evaluate the performance of LDPC at different code rates and introduce Adaptive Iterative Decoding (AID) by exploiting threshold on the number of iterations for a certain BER (0.0004). In iterative LDPC decoding, the total energy consumption of network is reduced by 20 to 25%.
Article
Full-text available
In this paper, a non-invasive inductive link model for an Implantable Biomedical Microsystems (IBMs) such as, a pacemaker to monitor Arrhythmic Patients (APs) in Body Area Networks (BANs) is proposed. The model acts as a driving source to keep the batteries charged, inside a device called, pacemaker. The device monitors any drift from natural human heart beats, a condition of arrythmia and also in turn, produces electrical pulses that create forced rhythms that, matches with the original normal heart rhythms. It constantly sends a medical report to the health center to keep the medical personnel aware of the patient's conditions and let them handle any critical condition, before it actually happens. Two equivalent models are compared by carrying the simulations, based on the parameters of voltage gain and link efficiency. Results depict that the series tuned primary and parallel tuned secondary circuit achieves the best results for both the parameters, keeping in view the constraint of coupling co-efficient (k), which should be less than a value \emph{0.45} as, desirable for the safety of body tissues.
Article
Full-text available
We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources—this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.
Conference Paper
Full-text available
Improving network lifetime is a fundamental challenge of wireless sensor networks. One possible solution consists in making use of mobile sinks. Whereas theoretical analysis shows that this approach does indeed benefit network lifetime, practical routing protocols that support sink mobility are still missing. In this paper, in line with our previous efforts, we investigate the approach that makes use of a mobile sink for balancing the traffic load and in turn improving network lifetime. We engineer a routing protocol, MobiRoute, that effectively supports sink mobility. Through intensive simulations in TOSSIM with a mobile sink and an implementation of MobiRoute, we prove the feasibility of the mobile sink approach by demonstrating the improved network lifetime in several deployment scenarios.
Conference Paper
Full-text available
This paper explores the idea of exploiting the mobility of data collection points (sinks) for the purpose of increasing the lifetime of a wireless sensor network with energy-constrained nodes. We give a novel linear programming formulation for the joint problems of determining the movement of the sink and the sojourn time at different points in the network that induce the maximum network lifetime. Differently from previous solutions, our objective function maximizes the overall network lifetime (here defined as the time till the first node "dies" because of energy depletion) rather than minimizing the energy consumption at the nodes. For wireless sensor networks with up to 256 nodes our model produces sink movement patterns and sojourn times leading to a network lifetime up to almost five times that obtained with a static sink. Simulation results are performed to determine the distribution of the residual energy at the nodes over time. These results confirm that energy consumption varies with the current sink location, being the nodes more drained those in the proximity of the sink. Furthermore, the proposed solution for computing the sink movement results in a fair balancing of the energy depletion among the network nodes.
Article
Full-text available
The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While communication protocols are striving to save energy by acting on sensor nodes, recent results show that network lifetime can be prolonged by further involving sink mobility. As most proposals give their evidence of lifetime improvement through either (small-scale) field tests or numerical simulations on rather arbitrary cases, a theoretical understanding of the reason for this improvement and the tractability of the joint optimization problem is still missing. In this paper, we build a framework for investigating the joint sink mobility and routing problem by constraining the sink to a finite number of locations. We formally prove the NP-hardness of the problem. We also investigate the induced subproblems. In particular, we develop an efficient primal-dual algorithm to solve the subproblem involving a single sink, then we generalize this algorithm to approximate the original problem involving multiple sinks. Finally, we apply the algorithm to a set of typical topological graphs; the results demonstrate the benefit of involving sink mobility, and they also suggest the desirable moving traces of a sink.
Article
Full-text available
This paper proposes a framework to maximize the lifetime of the wireless sensor networks (WSNs) by using a mobile sink when the underlying applications tolerate delayed information delivery to the sink. Within a prescribed delay tolerance level, each node does not need to send the data immediately as it becomes available. Instead, the node can store the data temporarily and transmit it when the mobile sink is at the most favorable location for achieving the longest WSN lifetime. To find the best solution within the proposed framework, we formulate optimization problems that maximize the lifetime of the WSN subject to the delay bound constraints, node energy constraints, and flow conservation constraints. We conduct extensive computational experiments on the optimization problems and find that the lifetime can be increased significantly as compared to not only the stationary sink model but also more traditional mobile sink models. We also show that the delay tolerance level does not affect the maximum lifetime of the WSN.
Article
Full-text available
This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme (Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility.
Conference Paper
In this paper, we explore a novel avenue of saving power in sensor networks based on predictable mobility of the observer (or data sink). Predictable mobility is a good model for public transportation vehicles (buses, shuttles and trains), which can act as mobile observers in wide area sensor networks. To understand the gains due to predictable mobility, we model the data collection process as a queuing system, where random arrivals model randomness in the spatial distribution of sensors. Using the queuing model, we analyze the success in data collection, and quantify the power consumption of the network. Even though the modeling is performed for a network which uses only single hop communication, we show that the power savings over a static sensor network are significant. Finally, we present a simple observer-driven communication protocol, which follows naturally from the problem formulation and can be used to achieve the predicted power savings.
Article
In order to prolong the network lifetime, energy-efficient protocols should be designed to adapt the characteristic of wireless sensor networks. Clustering Algorithm is a kind of key technique used to reduce energy consumption, which can increase network scalability and lifetime. This paper studies the performance of clustering algorithm in saving energy for heterogeneous wireless sensor networks. A new distributed energy-efficient clustering scheme for heterogeneous wireless sensor networks is proposed and evaluated. In the new clustering scheme, cluster-heads are elected by a probability based on the ratio between residual energy of node and the average energy of network. The high initial and residual energy nodes will have more chances to be the cluster-heads than the low energy nodes. Simulational results show that the clustering scheme provides longer lifetime and higher throughput than the current important clustering protocols in heterogeneous environments.
Article
Wireless Sensor Networks (WSNs) contain numerous sensor nodes having limited power resource, which report sensed data to the Base Station (BS) that requires high energy usage. Many routing protocols have been proposed in this regard achieving energy efficiency in heterogeneous scenarios. However, every protocol is not suitable for heterogeneous WSNs. Efficiency of protocol degrades while changing the heterogeneity parameters. In this paper, we first test Distributed Energy- Efficient Clustering (DEEC), Developed DEEC (DDEEC), Enhanced DEEC (EDEEC) and Threshold DEEC (TDEEC) under several different scenarios containing high level heterogeneity to low level heterogeneity. We observe thoroughly regarding the performance based on stability period, network life time and throughput. EDEEC and TDEEC perform better in all heterogeneous scenarios containing variable heterogeneity in terms of life time, however TDEEC is best of all for the stability period of the network. However, the performance of DEEC and DDEEC is highly effected by changing the heterogeneity parameters of the network.
Article
Wireless Sensor Networks (WSNs) are increasing to handle complex situations and functions. In these networks some of the nodes become Cluster Heads (CHs) which are responsible to aggregate data of from cluster members and transmit it to Base Stations (BS). Those clustering techniques which are designed for homogenous network are not enough efficient for consuming energy. Stable Election Protocol (SEP) introduces heterogeneity in WSNs, consisting of two type of nodes. SEP is based on weighted election probabilities of each node to become CH according to remaining energy of nodes. We propose Heterogeneity-aware Hierarchal Stable Election Protocol (HSEP) having two level of energies. Simulation results show that HSEP prolongs stability period and network lifetime, as compared to conventional routing protocols and having higher average throughput than selected clustering protocols in WSNs.
Article
Energy efficient routing protocol for Wireless Sensor Networks (WSNs) is one of the most challenging task for researcher. Hierarchical routing protocols have been proved more energy efficient routing protocols, as compare to flat and location based routing protocols. Heterogeneity of nodes with respect to their energy level, has also added extra lifespan for sensor network. In this paper, we propose a Centralized Energy Efficient Clustering (CEEC) routing protocol. We design the CEEC for three level heterogeneous network. CEEC can also be implemented in multi-level heterogeneity of networks. For initial practical, we design and analyze CEEC for three level advance heterogeneous network. In CEEC, whole network area is divided into three equal regions, in which nodes with same energy are spread in same region.
Conference Paper
Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.
Article
The clustering Algorithm is a kind of key technique used to reduce energy consumption. It can increase the scalability and lifetime of the network. Energy-efficient clustering protocols should be designed for the characteristic of heterogeneous wireless sensor networks. We propose and evaluate a new distributed energy-efficient clustering scheme for heterogeneous wireless sensor networks, which is called DEEC. In DEEC, the cluster-heads are elected by a probability based on the ratio between residual energy of each node and the average energy of the network. The epochs of being cluster-heads for nodes are different according to their initial and residual energy. The nodes with high initial and residual energy will have more chances to be the cluster-heads than the nodes with low energy. Finally, the simulation results show that DEEC achieves longer lifetime and more effective messages than current important clustering protocols in heterogeneous environments.
Conference Paper
The benefits of using mobile base station to prolong sensor network lifetime have been well recognized. However, due to the complexity of the problem (time-dependent network topology and traffic routing), theoretical performance limit and provably optimal algorithms remain difficult to develop. This paper fills this important gap by contributing theoretical results regarding the optimal movement of a mobile base station. Our main result hinges upon a novel transformation of the joint base station movement and flow routing problem from time domain to space domain. Based on this transformation, we first show that if the base station is allowed to be present only on a set of pre-defined points, then we can find the optimal time span for the base station on each of these points so that the overall network lifetime is maximized. Based on this finding, we show that when the location of the base station is un-constrained (i.e., can move to any point in the two-dimensional plane), we can develop an approximation algorithm for the joint mobile base station location and flow routing problem such that the network lifetime is guaranteed to be at least (1-epsiv) of the maximum network lifetime, where epsiv can be made arbitrarily small depending on required precision.
  • T Qureshi
  • N Javaid
  • M Malik
  • U Qasim
  • Z Khan
T. Qureshi, N. Javaid,M.Malik, U. Qasim, and Z. Khan, On performance evaluation of variants of deec in wsns, arXiv preprint arXiv:1208.2401, 2012.
  • A Khan
  • N Javaid
  • U Qasim
  • Z Lu
  • Z Khan
A. Khan, N. Javaid, U. Qasim, Z. Lu, and Z. Khan, Hsep: Heterogeneity-aware hierarchical stable election protocol for wsns, arXiv preprint arXiv:1208.2335, 2012.