Content uploaded by Teresa Terrazas
Author content
All content in this area was uploaded by Teresa Terrazas on Oct 05, 2015
Content may be subject to copyright.
Available in: http://www.redalyc.org/src/inicio/ArtPdfRed.jsp?iCve=33922725006
Redalyc
Scientific Information System
Network of Scientific Journals from Latin America, the Caribbean, Spain and
Portugal
Loza Cornejo, Sofía; Terrazas, Teresa; López Mata, Lauro
Fruits, seeds and germination in five species of globose Cacteae (Cactaceae)
Interciencia, vol. 37, núm. 3, marzo, 2012, pp. 197-203
Asociación Interciencia
Caracas, Venezuela
How to cite Complete issue More information about this article Journal's homepage
Interciencia
ISSN (Printed Version): 0378-1844
interciencia@ivic.ve
Asociación Interciencia
Venezuela
www.redalyc.org
Non-Profit Academic Project, developed under the Open Acces Initiative
197
MAR 2012, VOL. 37 Nº 3
Introduction
Cacti are a typical compo-
nent of arid and semiarid en-
vironments in the Western
Hemisphere, and the second
largest plant family restricted
to the New World (Anderson,
2001). Mexico is one of the
main centers of diversication
of the Cactaceae family
(Goettsch and Hernández,
2006); around 560 species
belonging to 50 genera are
KEYWORDS / Coryphantha / Ferocactus / Fruits / Germination / Mammillaria / Seeds /
Received: 10/28/2011. Modied: 02/17/2012. Accepted: 02/23/2012.
Sofía Loza-Cornejo. Ph.D. in
Botany, Colegio de Postgradua-
dos (COLPOS), México. Profes-
sor-Researcher, Centro Univer-
sitario de los Lagos, Mexico.
e-mail: oalo@culagos.udg.mx
Ter e s a Terrazas. Ph.D. in Biol-
ogy, University of North Caro-
lina at Chapel Hill, USA. Pro-
fessor, UNAM, Mexico. Ad-
dress: Instituto de Biología,
Universidad Nacional Autóno-
0378-1844/12/03/197-07 $ 3.00/0
distributed in this country
(Guzmán et al., 2003). Indeed,
73% of the genera and 78%
of the species are estimated to
be endemic to Mexico
(Hernández and Godínez,
1994), and the tribes Cacteae
and Echinocereae are almost
exclusively distributed in
Mexico (Anderson, 2001).
Members of Cacteae range
from globular or depressed to
short columnar cacti, varying
in size from dwarf (Turbini-
carpus and some Mammillaria
species) to giant (Ferocactus
and Echinocactus) gene r a .
Recently, signicant progress
has been made in understand-
ing various aspects of the bi-
ology, phylogeny, and mor-
pho-anatomy of Cactaceae
(Nobel, 2002; Godínez-Álva-
rez et al., 2003; Terrazas and
Arias, 2003; Hernández-
Hernández et al., 2011). The
current understanding of cac-
ti, particularly of Cacteae
members, is based on scarce
analysis of the morphology,
anatomy and composition of
stems, fruits and seeds. Some
species of this tribe produce
edible fruits. For example,
Ferocactus histrix produces a
small and acidic fruit called
‘tuna of biznaga’, which is
traded in regions of Hidalgo,
Querétaro, and San Luis Po-
tosí. The small red fruits of
Mammillaria species are gen-
erally edible and consumed
FRUITS, SEEDS AND GERMINATION IN FIVE SPECIES OF GLOBOSE
CACTEAE (CACTACEAE)
Sofía Loza-Cornejo, Teresa Terrazas and Lauro López-Mata
SUMMARY
The morphological characteristics of fruits and seeds, and the
germination responses of freshly matured seeds of ve species of
Cacteae (Coryphantha bumamma, C. clavata, C. cornifera, Fero-
cactus histrix and Mammillaria uncinata) were studied at room
temperature under laboratory conditions. The aim of the study
was to record the macro- and micro-morphology of fruits and
seeds of these species and to investigate specic requirements
for germination. Variance analysis detected signicant differen-
ces (p<0.05) for several variables: number of seeds per fruit,
weight, and fruit width. Larger fruits with more seeds are ob-
served for F. h i s tr i x, whereas smaller fruits with less weight and
fewer seeds are seen for C. clavata. Seed germination is a rapid
process and usually starts on the third day. High percentages of
germination (>80%) are observed on the sixth day in F. hi s t ri x
and M. uncinata. It is concluded that some morphological cha-
racteristics of fruits and seeds can be used to support further
systematic studies of Cactoideae genera and will contribute new
knowledge for their potential use and conservation.
ma de México, Apartado Pos-
tal 70-233, México, D.F. 04510.
México. e-mail: tter razas@
ibiologia.unam.mx
Lauro López-Mata. Ph.D. in
Biology, University of North
Carolina at Chapel Hill, USA.
Professor, COLPOS, Monte-
cillo, México.
198 MAR 2012, VOL. 37 Nº 3
locally (Bravo-Hollis and Sán-
chez-Mejorada, 1991). How-
ever, most of these species
are threatened because they
have been removed from their
natural populations or their
habitat has been modied by
changes in land usage (Her-
nández-Oria et al., 2007). For
several genera of Cactaceae,
studies on the morphological
variability of fruits and seeds
are scarce or have focused
exclusively on well-known or
economically important gen-
era. For example, the compo-
sition, phytochemicals, and
nutritious elements have been
analyzed in Opuntia (Joubert,
1993; Domínguez-López,
1996; Sáenz, 1997; Sáenz et
al., 1998; Butera et al., 2002;
Duru and Turker, 2005;
Stintzing et al., 2005), Hylo-
cereus (Wybraniec and Miz-
rahi, 2002), and Myrtillocac-
tus (Barrera et al., 1998). The
study of seed morphology and
germination processes is im-
portant for supporting system-
atic studies (Arias and Terra-
zas, 2004; Arroyo-Cosultchi
et al., 2006) and may also
help explain patterns of popu-
lation dynamics of Cactaceae
species under eld conditions.
Studies on seed germination
in this plant family have fo-
cused on the relationship be-
tween germination and differ-
ent attributes of the plant,
such as the effect of seed
mass and size on regeneration
strategies, mechanisms of re-
production, abundance of rare
species, and ecophysiological
requirements (Rojas-Aréchiga
et al., 1997; Rojas-Aréchiga
and Vázquez-Yanes, 2000;
Flores and Briones, 2001;
Ayala-Cordero et al., 2004;
Ra mí rez-Padilla and Valverde,
2005; Sánchez-Salas et al.,
2006; Jiménez-Aguilar and
Flores, 2010; Flores et al.,
2011). In the present study,
differences in fruit and seed
macro- and micro-morpholo-
gy, and the rates of germina-
tion processes were investi-
gated in members of Cacteae
that co-exist in the scrub of
Jalisco, Mexico.
Materials and Methods
Mature and healthy fruits
of Coryphantha bumamma
(Ehrenb.) Britton et Rose, C.
clavata (Scheidw.) Backeb, C.
cornifera (DC.) Lem., Fe-
rocactus histrix (DC.) G.E.
Linds., and Mammillaria unci-
nata Zucc. ex Pfeiff. were
collected from their native
populations in Jalisco, Mexi-
co. An analytical scale (Pre-
cisa XT 220 A) and a Mitu-
toyo digital caliper were used
to record the size and weight
of 30 fruits per species. The
fruits were dissected in the
laboratory and the seeds were
then washed in tap water to
eliminate pulp remains and
mucilage. The seeds were im-
mediately placed on absorbent
paper until they dried and
were stored in paper enve-
lopes at room temperature.
The number of seeds per fruit
for each species was regis-
tered. Two hundred seeds per
species were used to record
quantitative morphological
traits (weight, length, width)
and qualitative morphological
traits (shape, color, structure
of the testa) using an analyti-
cal balance and a dissecting
microscope Leica Zoom 2000
(Z45V) adapted to an image
analyzer (Media Cybernetics,
2006). The roundness index
(width/length ratio) was calcu-
lated from the length and
width measurements. For
scanning electron microscopy
(SEM), three or four seeds
per species were washed us-
ing ultrasound and 95% etha-
nol. Dry seeds were xed to
aluminum specimen holders
with double-sided adhesive
tape and coated with gold in
a JEOL-JFC-1100 sputter
coater. Morphological obser-
vations and micrographs were
carried out with a JEOL-JSM-
5310LV field-emission scan-
FRUTOS, SEMENTES E GERMINAÇÃO DE CINCO ESPÉCIES DE CACTEAE GLOBOSAS (CACTACEAE)
Sofía Loza-Cornejo, Teresa Terrazas e Lauro López-Mata
RESUMO
As características morfológicas dos frutos e sementes, e a
resposta germinativa de sementes maduras e recém colhidas de
cinco espécies de Cacteae (Coryphantha bumamma, C. clavata,
C. cornifera, Ferocactus histrix, e Mammillaria uncinata) foram
estudadas sob condições de laboratório e temperatura ambien-
te. Registraram-se as características macro e micro morfoló-
gicas dos frutos e sementes destas espécies e investigaram-se
os requerimentos especícos de germinação. A análise de va-
riação mostrou diferenças signicativas (p<0,05) para algumas
variáveis, tais como número de sementes por fruto, peso e lar-
gura de fruta. As frutas maiores e com maior número de se-
mentes são as de F. h istr ix, enquanto que os frutos menores e
leves com o menor número de sementes são as de C. clavata. A
germinação é um processo rápido que inicia ao terceiro dia. A
porcentagem de germinação mais alta (>80%) se observou ao
sexto dia em F. h istr ix e M. uncinata. Conclui-se que algumas
características morfológicas dos frutos e as sementes podem
apoiar futuros estudos de sistemática nos gêneros de Cactoide-
ae e que o conhecimento gerado contribuirá a seu uso poten-
cial e conservação.
FRUTOS, SEMILLAS Y GERMINACIÓN DE CINCO ESPECIES DE CACTEAE GLOBOSAS (CACTACEAE)
Sofía Loza-Cornejo, Teresa Terrazas y Lauro López-Mata
RESUMEN
Las características morfológicas de los frutos y semillas, y
la respuesta germinativa de semillas maduras y recién cose-
chadas de cinco especies de Cacteae (Coryphantha bumamma,
C. clavata, C. cornifera, Ferocactus histrix, and Mammillaria
uncinata) fueron estudiadas bajo condiciones de laboratorio y
temperatura ambiente. Se registraron las características ma-
cro y micromorfológicas de los frutos y semillas de estas espe-
cies e investigaron los requerimientos especícos de germina-
ción. El análisis de varianza mostró diferencias signicativas
(p<0.05) para algunas variables tales como número de semi-
llas por fruto, peso y ancho de fruto. Los frutos más grandes
y con mayor número de semillas son los de F. hist ri x , mientras
que los frutos más pequeños y ligeros con el menor número de
semillas son los de C. clavata. La germinación es un proceso
rápido que inicia al tercer día. El porcentaje de germinación
más alto (>80%) se observó al sexto día en F. h istr ix y M. un-
cinata. Se concluye que algunas características morfológicas
de los frutos y las semillas pueden apoyar futuros estudios de
sistemática en los géneros de Cactoideae y que el conocimien-
to generado contribuirá a su uso potencial y conservación.
199
MAR 2012, VOL. 37 Nº 3
ning electron microscope. The
morphological descriptions of
the seeds followed the termi-
nology proposed by Barthlott
and Hunt (2000).
The germination experi-
ments were carried out under
laboratory conditions using
three replicates of 50 seeds
per species. Seeds were disin-
fected by immersion in a so-
lution of 10% commercial
bleach during 5min (Vega-
Villasante et al., 1996),
washed several times with
distilled water, and sown on
Whatman Nº 2 filter paper
saturated with 10ml of dis-
tilled water in 9cm diameter
sterile Petri dishes. The mean
temperature in the laboratory
was measured using a Data-
logger Dickson SP125/175
Pro series thermometer. The
mean temperature was
25°C ±2°C during the day,
which has been mentioned to
be optimal for seed germina-
tion of cacti (Nobel, 1988;
Rojas-Aréchiga and Vázquez-
Yanes, 2000), and 12°C ±3°C
during the night. Germina-
tion was recorded at three
day intervals for 30 days,
when germination
ceased. A seed was
considered to be
germinated when
the radicle protrud-
ed. Interspecific
differences in mor-
phological charac-
ters of fruits and
seeds were evalu-
ated through vari-
ance analyses fol-
lowed by Tukey’s pair-wise
means comparison analyses
(p<0.05). Differences in the
number of seeds per fruit
were evaluated through cova-
riance analyses. All analyses
were performed with SAS
software V 9.1.3 (SAS, 2000).
Results
Morphology of
fruits and seeds
Fruits varied in
shape, size and col-
or (Table I, Figure
1). Most were juicy
berries, varying in
color from pale
green with light
red at the apex in
Coryphantha spe-
cies to red berries in M. unci-
nata and yellow-green in F.
histrix. The fruits exhibited
ovoid to claviform shapes,
and only F. hi strix showed
thick walls and was dehiscent
at the base. The smallest fruit
(1.4cm length) with the lowest
number of seeds (56 seeds/
fruit) occurred in C. clavata
and the largest fruit (3.2cm
length) with the most seeds
(>2000) was observed in F.
histrix, the species that also
had the heaviest fruits (8 ±3g,
Table I). The seeds were oval
to reniform, small to medium-
sized (Table II, Figures 2-4),
glossy or matte, and light-
brown to brown. The anticli-
nal boundaries were incon-
spicuous or raised. The
boundaries were straight ex-
cept in M. uncinata, and the
microrelief verrucose.
Interspecic comparison of
fruit and seed morphology
The analysis of variance
detected significant differ-
ences for the number of
seeds per fruit (F= 17419,
df= 4, p<0.0001), weight (F=
3295.67, df= 4, p<0.0001),
TABLE I
SEED NUMBER, MASS AND SIZE OF FRUITS OF FIVE
GLOBOSE SPECIES OF CACTEAE
Species Seeds/fruit
(number) We ight
(g) Length
(cm) Width
(cm)
Coryphantha bumamma 84 ±35 b 2.0 ±0.56 c 2.7 ±0.5 b 0.6 ±0.40 a
Coryphantha clavata 56 ±8 a 0.5 ±0.18 a 1.4 ±0.3 a 0.6 ±0.15 a
Coryphantha cornifera 99 ±2 b 1.4 ±0.22 b 2.7 ±0.9 b 1.2 ±0.80 ab
Ferocactus histrix 2100 ±90 c 8.0 ±2.80 d 3.2 ±0.6 b 2.2 ±0.40 b
Mammillaria uncinata 70 ±13 b 0.5 ±0.20 a 1.5 ±0.3 a 0.5 ±0.01 a
Means ±SD. n= 30 f ruits. Different letters in columns mean signicant differences (p<0.05).
TABLE II
MASS, SIZE AND ROUNDNESS INDEX OF FEEDS
OF FIVE GLOBOSE SPECIES OF CACTEAE
Species Weight
(mg) Length
(mm) Width
(mm) Roundness
index
Coryphantha bumamma 1.9 ±0.10 d 2.3 ±0.12 d 0.7 ±0.50 ab 0.3
Coryphantha clavata 1.8 ±0.28 d 1.4 ±0.12 c 0.9 ±0.13 b 0.6
Coryphantha cornifera 0.2 ±0.07 a 0.9 ±0.04 a 0.6 ±0.10 a 0.7
Ferocactus histrix 0.6 ±0.20 b 1.4 ±0.10 c 0.9 ±0.10 b 0.6
Mammillaria uncinata 1.1 ±0.15 c 1.0 ±0.02 b 0.7 ±0.14 a 0.7
Means ±SD. n= 200 seeds. Different letters in columns mean significant differences
(p<0.05).
Figure 1 Fruits of globose Cacteae. a:. Coryphantha cornifera, b: Fe-
rocactus histrix, c: Mammillaria uncinata.
Figure 2 SEM of Coryphantha species seeds, whole seeds and seed
surface view. a,b: Coryphantha bumamma; c,d: C. clavata; e,f: C. cor-
nifera. Bar= 1mm in a; 500μm in c,e; 50μm in b, d and f.
200 MAR 2012, VOL. 37 Nº 3
length (F= 2191.58, df= 4,
p<0.0001) and fruit width (F=
1917.22, df= 4, p<0.0001). F.
histrix was characterized by
larger and heavier fruits, and
more seeds. By contrast, C .
clavata and M. uncinata had
fruits with fewer seeds and
were smaller and lighter in
weight than the other species
(Table I). Significant differ-
ences in seeds among species
were observed for weight (F=
3797.76, df= 4, p<0.0001),
length (F= 9416.14, df= 4,
p<0.0001) and seed width
(F= 429.19, df= 4, p<0.0001).
C. bumamma seeds present-
ed higher weights and
lengths than the lighter and
smaller seeds of C. cornifera
(Ta ble I I ).
Seed germination response
All species reached 100%
germination in the three rep-
etitions per species. Seed ger-
mination was a rapid process
that started 3-6 days after
sowing (DAS). In C. cor-
nifera and C. clavata, germi-
nation started on the third
day, reaching the highest per-
centages (24-28%) at 6 and 15
das (Figure 5). Seed germina-
tion of C. bumamma began
on the sixth DAS, also reach-
ing the highest percentage
(24%) 9 DAS (Figure 5). F.
histrix and M. uncinata were
characterized by higher rates
of seed germination (>80%)
on the sixth DAS. These two
species concluded their germi-
nation 12 and 8 DAS re-
spectively. By contrast,
C. bumamma concluded
its germination 21 DAS
with 10% of its seeds
germinated in that time
(Figure 5).
Discussion
Morphology of fruits
and seeds
The studied species
showed considerable
variation in fruit and
seed morphology. The
Coryphantha species had
similarities in fruit mor-
phology with other spe-
cies of the genus (C.
echinoidea Britton & Rose, C.
greenwoodii Bravo, C. scheeri
(Muehlenpf.) L.D. Benson, C.
sulcata (Engelm.) Britton &
Rose, and C. werdermannii
Bo ed.) (Bravo-Hollis, 1978;
Bravo-Hollis and Sánchez-
Mejorada, 1991). Characteris-
tics, such as red and clavi-
form fruits of 1.5×0.5cm size,
in M. uncinata were similar
to other Mammillaria species
like M. standleyi (Britton &
Rose) Orcutt, M. johnstonii
(Britton & Rose) Orcutt, M.
heyderi Muehlenpf., M. mie-
giana W.H. Earle, M. ortegae
(Britton & Rose) Orcutt, M.
pachycylindrica Backeb., M.
scrippsiana (Britton & Rose)
Orcutt and M. magnimamma
Haw. (see Bravo-Hollis and
Sánchez-Mejorada, 1991).
Other Mammillaria species
(M. gigantea Hildm. ex K.
Schum. and M. melanocentra
Poselg) can be distinguished
by their claviform fruits,
which are pink or purple in
color. Noticeable differences
were observed in the fruit
size (length) of M. uncinata
and other species such as M.
gigantea. In the latter, the
fruits were 2.5-3.0cm long
(Bravo-Hollis and Sánchez-
Mejorada, 1991), whereas the
fruits of M. uncinata were
smaller (1.5 ±0.3cm).
Cactoideae seeds show con-
siderable variation in their
shape, size, structure and tes-
ta color (Barthlott and Hunt,
2000). Indeed, the studied
species exhibited morphologi-
cal variability. The seeds of
C. bumamma and C. cor-
nifera were curved or reni-
form, and similar to those of
C. durangensis (Runge ex K.
Schum) Britton & Rose. C .
clavata and M. uncinata had
oval seeds, similar to other
species of Mammillaria like
M. gigantea, M. petterssonii
Hildm. and Coryphantha like
C. gracilis L. Bremer & A.
B. Lau, C. pseudoechinus
Boed., C. recurvata ( E ngel m.)
Britton & Rose, C. robusti-
spina (Ant. Schott ex En-
gelm.) Brittion & Rose (Bra-
vo-Hollis, 1978; Bravo-Hollis
and Sánchez-Mejorada, 1991;
Barthlott and Hunt, 2000;
Figure 3. SEM of Ferocactus histrix and Mammillaria uncinata seeds. Complete
seed and details of testa Ferocactus histrix (a, b). Mammillaria uncinata (c, d).
Bar= 500μm in a, c; 100μm in b; 200μm in d.
Figure 4. SEM of the hilum-micropylar region, HMR. a: Coryphantha bu-
mamma, b: C. clavata, c: Ferocactus histrix, d: Mammillaria uncinata. Bar=
400μm in a; 500μm in b-d.
Figure 5 Percentage of germination of seeds of five species of
globose Cactoideae. Bars represent mean ±standard deviation of
three replicates of 50 seeds each. Cb: Coryphantha bumamma, Cc:
C. clavata, Cco: C. cornifera, Fh: Ferocactus histrix, Mun: Mam-
millaria uncinata.
201
MAR 2012, VOL. 37 Nº 3
Dicht and Lüthy, 2005). Great
variability occurs in the color
of the seed testa in Cactaceae.
A black or brown color is
characteristic in most species,
whereas a red or brown color
is common in other species,
such as C. bumamma and M.
uncinata. C. clavata and C.
cornifera exhibited dark
brown or brown seed testas,
which is characteristic of C.
duranguensis (Runge ex K.
Schum) Britton & Rose, C .
pseudonickelsiae Backeb., C.
pallida Britton & Rose, C.
macromeris (Engelm.) Lem.,
and C. sulcata (Engelm.) Brit-
ton & Rose, according to
Bravo-Hollis and Sánchez-
Mejorada (1991). Glossy seeds
were only observed in C. bu-
mamma, in agreement with
seeds of some columnar spe-
cies (Arias and Terrazas,
2004; Arroyo-Cosultchi et al.,
2007). In Cactaceae, studies
on the macro- and micro-mor-
phology of the seeds have
been successfully applied to
different taxonomic levels
(Friedrich and Glaetzle, 1983;
Glaetzle and Prestlé, 1986;
Arias and Terrazas, 2004;
Arroyo-Cosultchi et al., 2006,
2007). Buxbaum (1958) recog-
nized four subtribes, particu-
larly in the Cacteae tribe,
based on seed morphology:
Echinocactinae exhibits a
perisperm and hard, black
seed testas; Thelocactinae has
black seed testas and a mostly
warty surface; Ferocactinae
exhibits dotted or reticulated
seed testas; and Coryphan-
thinae has soft, smooth, and
brown testas, similar to the
Coryphantha and Mammil-
laria species studied herein.
More recently, Taylor and
Clark (1983) recognized that
the Ferocactus section in-
cludes species with a larger
hilum-micropylar region
(HMR), dried fruit dehiscing
by a basal pole and glossy
seed testas. By contrast, the
Bisnaga section includes spe-
cies with seeds whose HMR
is narrow with bright seed
testas (Taylor and Clark,
1983). Cota and Wallace
(1997) used chloroplast DNA
evidence to determine that the
members of one lineage (Sect.
Bisnaga) are related to F. a-
vovirens (Sche idw.) Br it t o n &
Rose and include species dis-
tributed mainly in Central
Mexico and areas in the puta-
tive center of the origin of the
genus (Tehuacan Valley). The
morphological characteristics
of the fruit, seed characteris-
tics and distribution of F. his -
trix support its inclusion in
the Bisnaga section along
with other species like F.
glaucescens ( DC.) Britton &
Rose, F. lindsayi Bravo, F.
macrodiscus ( Mar t .) Britton
& Rose, F. recurvus ( Mil l .)
Y. Ito ex G. E. Linds., F.
latispinus (Haw.) Br itton &
Rose and F. f lavovirens, as
suggested by Cota and Wal-
lace (1997).
Potential importance of
Cacteae fruits
Most cactus fruits are edi-
ble; however, information on
their morphology and nutri-
tional value is scarce (Kies-
ling, 2001; Pardo, 2002). Ac-
cording to Esquivel (2004),
most studies have focused on
the fruit of prickly pears
(Opuntia spp.). Little has been
investigated on the composi-
tion and aspects of fruit culti-
vation of other species of cac-
ti, despite the high potential of
these fruits for industrial use
(Ortega-Nieblas et al., 2001).
For example, the presence of
red-purple pigments in the
fruit epidermis of M. uncinata
is an important source of nat-
ural dyes in foods and in
various applications (Stintzing
et al., 2001; Wybraniec and
Mizrhi, 2002; Stintzing and
Carle, 2005; Emaldi et al.,
2006). Antihyperglycemic and
antihyperlipidemic effects
found in the fruits of F. lat i s-
pinus and F. hi strix have been
demonstrated, suggesting their
application in the prevention
of diabetes (Pérez-Gutiérrez
and Mota-Flores, 2010). Fur-
ther studies involving analyses
of the nutritional composition
of fruits of Cacteae species
as well as their morphologi-
cal characterization may con-
tribute significantly in the
search for alternative medici-
nal products.
Ecological aspects of seed
germination response
Differences in the number
of seeds per fruit were found
between the species studied.
A high variability was ob-
served in this trait even with-
in the same genus. For ex-
ample, C. bumamma and C.
cornifera had 84-99 seeds,
whereas C. clavata contained
56 seeds per fruit on average.
F. hist r i x was distinguished
by larger fruits and more
seeds than the other Cacteae
species studied. Mcintosh
(2005) found 1727-3064 seeds
per fruit in F. cylindraceus
(Engelm.) Orcutt and F. wisli-
zeni (Engelm.) Britton &
Rose, so F. histrix is near the
average for the genus. Ac-
cording to Rojas-Aréchiga and
Vázquez-Yanes (2000), the
number of seeds per fruit in
Cactaceae species is highly
variable; these differences
may serve as strategies for
reproductive efforts as men-
tioned by Harper et al. (1970).
The number of seeds per fruit
may also depend on the age
and size of the plant, the
number of owers produced,
and the origin (wild or culti-
vated species), as demonstrat-
ed for Cactoideae (Parker,
1987; León de la Luz and
Domínguez-Cadena, 1991;
Rojas-Aréchiga et al., 2001;
Guillen et al., 2011), or may
reect environmental hetero-
geneity (Harper et al., 1970).
However, more detailed stud-
ies are needed on intra-and
interspecific variability for
this characteristic.
With the exception of
Opuntioideae seeds, cacti
seeds germinate quickly
(Bregman and Bouman, 1983;
Potter et al., 1984; Del Cas-
tillo, 1986; Rojas-Aréchiga
and Vázquez-Yanes, 2000;
Mandujano et al., 2005). The
species analyzed in this study
began the germination pro-
cess between 3 and 6 DAS.
Two studied species, F. h is-
trix and M. uncinata, showed
the highest percentages of
germination at 6 DAS
(>80%), suggesting that this
process is synchronized with
available water. In contrast,
the species of Coryphantha
showed a wider period of
germination with their higher
values at 9 DAS or even 15
DAS (22 or 28% respective-
ly). Although there was a dif-
ferential time of germination
all species reached 100% ger-
mination after 22 DAS. The
germination in the species
studied is greater than those
reported by Sánchez-Soto et
al. (2010), Jiménez and Flores
(2010), and Flores et al.
(2011) for other species of
Ferocactus (62-91%), Mam-
millaria (42-99%) and Cory-
phantha (72-98%) However,
the high germination percent-
ages did not include any pre-
germination treatment, in
contrast with other studies in
which specific requirements
were needed as for light, wa-
ter availability, and mechani-
cal scarification (Nolasco et
al., 1996, 1997; Godínez-Ál-
varez and Valiente-Banuet,
1998; De la Barrera and No-
bel, 2003; Martínez-Mendoza
et al., 2004; Larrea-Alcázar
and López, 2008). The pre-
germination treatments in-
clude light-dark treatment,
different temperatures, addi-
tion of growth regulators
(Cancino et al., 1993; Flores
et al., 2006; Ortega-Baes and
Rojas-Aréchiga, 2007; Orte-
ga-Baes et al., 2010; Sánchez-
Soto et al., 2010), chemical
scarification (Rosas-López
and Collazo-Ortega, 2004),
and various stress conditions
and water potentials (Guillén
et al., 2009). In the present
study, seeds recently collected
were included. Moreover, lab-
oratory conditions during the
experiment (20-25°C) were
sufficient to promote seed
germination. Temperature is
an important factor that can
signicantly affect the germi-
nation percentage. Trujillo
(1982) mentioned that cactus
seeds germinate at tempera-
tures between 24 and 27°C.
There are species of cacti
that require temperatures
ranging from 15 to 35°C for
germination, such as T. t e r s-
checkii (J. Parm. ex Pfeiff.)
Britton & Rose (Ortega-Baes
and Rojas-Aréchiga, 2007),
Echinocactus platyacanthus
202 MAR 2012, VOL. 37 Nº 3
Link & Otto (Quintana, 1994)
and Epiphyllum phyllanthus
(L.) Haw. (Simão et al.,
2010). Other authors suggest
that alternating temperatures
increase germination rates of
globose species such as Echi-
nocactus platyacanthus, F.
avovirens, F. robustus (Pfei-
ff.) Britton & Rose, and M.
mazatlanensis (Rojas-Aréchi-
ga et al., 1998; Sánchez-Soto
et al., 2010). In addition to
temperature, germination also
depends on the species and
seed characteristics (thickness
of the seed coat, dormancy,
etc.). In some species, charac-
teristics of the testa, in par-
ticular cuticular secretions,
contribute to improve the col-
lection and distribution of
water during imbibition and
increase germination (Breg-
man and Graven, 1997). Spe-
cic features of the seed (thin
seed testa, absence of dor-
mancy and others) in the spe-
cies studied herein probably
influenced significantly the
higher germination rate, as
has been observed in germi-
nating seeds of columnar cac-
ti (Loza-Cornejo et al., 2008).
Further work on the mecha-
nisms of germination is need-
ed, particularly on the re-
quirements for the germina-
tion of seeds of other Cactoi-
deae, with the aim of contrib-
uting to their use, manage-
ment and conservation. Some
species, such as F. hist r i x, are
subject to special protection
in regions of Jalisco and other
Mexican states, and other spe-
cies, such as C. clavata, are
considered to be rare species
in Jalisco (Chávez-Martínez et
al., 2007; Harker et al., 2008).
Signicant differences were
observed for the number of
seeds per fruit, weight, and
fruit width in the cacti stud-
ied. Seed germination was a
rapid process, usually starting
on the 3 DAS, and high per-
centages of germination were
seen. Some morphological
characteristics of fruits and
seeds can be used to support
further systematic studies of
Cactoideae genera and will
contribute to knowledge for
the potential use and conser-
vation of these plants.
REFERENCES
Anderson EF (2001) The Cact us
Family. Timber Press. Portland,
OR, USA. 768 pp.
Arias S, Terrazas T (2004) Seed
morphology and variation in the
genus Pachycereus (Cactaceae).
J. Plant Res. 117: 277-289.
Arroyo-Cosultchi G, Terrazas T,
Arias S, Arreola-Nava H (2006)
The systematic significance of
seed morphology in Stenocereus
(Cactaceae). Taxon 55: 983-992.
Arroyo-Cosultchi G, Terrazas T,
Arias S, López-Mata L (2007)
Morfología de la semilla de
Neobuxbaumia (Cactaceae). Bol.
Soc. Bot. Mex. 81: 17-25.
Ayala-Cordero G, Terrazas T, López-
Mata L, Trejo-López C (2004)
Variación en el tamaño y peso
de la semilla y su relación con
la germinación de una población
de Stenocereus beneckei. Inter-
ciencia 29: 692-697.
Barrera F, Reynoso C, Mejía E
(1998) Estabilidad de betalaínas
extraídas del garambullo (Myrti-
llocactus geometrizans). Food
Sci. Technol. Int. 4: 115-12 0.
Barthlott W, Hunt D (2000) Seed
Diversit y in the Subfamily Cac-
toideae. Remous. Richmond,
UK. 173 pp.
Bravo-Hollis H (1978) Las Cactáceas
de México Vol I. UNAM. Mexi-
co. 755 pp.
Bravo-Hollis H, Sánchez-Mejorada H
(1991) Las Cactáceas de México.
Vol. III 2ª ed. UNAM. Mexico.
599 pp.
Bregman R, Bouman F (1983) Seed
germination in Cactaceae. Bot.
J. Linn. Soc. 86: 357-374.
Bregman R, Graven P (1997) Subcu-
ticular secretion by cactus seeds
improves germination by means
of rapid uptake and distribution
of water. Ann. Bot. 80: 525-535.
Butera D, Tesoriere L, Di Gaudio F,
Bongiorno AM, Pintaudi AM,
Kohen R, Livrea MA (2002)
Antioxidants activities of Sicil-
ian prickly pear (Opuntia cus-
indica) fruits extracts and re-
ducing properties of its beta-
lains: betanin and indicaxan-
thin. J. Agric. Food Chem. 50:
6895-6901.
Buxbaum F (1958) The phylogenetic
division of the subfamily Cereoi-
deae, Cactaceae. Madroño 14:
177-216.
Cancino J, León de la Luz JL, Coria
R, Romero H (1993) Effect of
heat treatment on germination of
seeds of cardón Pachy cereus
pringlei (S. Wats.) Britt. & Rose,
Cactaceae. J.
Ariz.-Nev. Acad.
Sci . 27: 49-54.
Chávez-Martínez RJ, Hernández-Oria
JG, Sánchez-Martínez E (2007)
Documentación de factores de
amenaza para la ora cactológica
del semidesierto Queretano. Bol.
Nakari 18: 89-95.
Cota JH, Wallace SR (1997) Chloro-
plast DNA evidence for diver-
gence in Ferocactus and its rela-
tionships to North American co-
lumnar cacti (Cactaceae: Cactoi-
deae). Syst. Bot. 22: 529-542.
De la Barrera E, Nobel PS (2003)
Physiological ecology of seed
germination for the columnar
cactus Stenocereus queretaroen-
sis. J. Arid Env. 53: 297-306.
Del Castillo RF (1986) Semillas, ger-
minación y establecimiento de
Ferocactus histrix. Cact. Suc.
Me x. 31: 5-11.
Dicht RE, Lüthy AD (2005) Cor y-
phantha Cacti of Mexico and
Southern USA. Springer. New
York, USA. 210 pp.
Domínguez-López A (1996) Empleo
de frutos y de los cladodios de la
chumbera (Opuntia ficus) en la
alimentación humana. Fo od S ci.
Technol. Int. 1: 65-74.
Duru B, Turker N (2005) Changes in
physical properties and chemical
composition of cactus pear
(Opuntia ficus-indica) dur ing
maturation. J PACD 7: 22-33.
Emaldi UJ, Nassar M, Semprum C
(2006) Pulpa del fruto del cardón
dato (Stenocereus griseus, Cacta-
ceae) como materia prima para la
elaboración de mermelada. Arch.
Latinoam. Nutr. 56: 1-16.
Esquivel P (2004) Los frutos de las
cactáceas y su potencial como
materia prima. Agr. Mesoam . 15:
215-219.
Flores J, Briones O (2001) Plant life-
form and germination in a Mexi-
can intertropical desert: effects of
soil water potential and tempera-
ture. J. Arid Env. 47: 485-49 7.
Flores J, Jurado E, Arredondo A
(2006) Effect of light on ger-
mination of seeds of Cactaceae
from the Chihuahuan Desert,
Mexico. Seed Sci. Res. 16:
149-155.
Flores J, Jurado E, Chapa-Vargas L,
Ceroni-Stuva A, Dávila-Aranda
P, Galíndez G, Gurvich D,
León-Lobos P, Ordóñez C,
Ortega-Baes P, Ramírez-Bullón
N, Sandoval A, Seal CE, Ulian
T, Pritchard HW (2011) Seeds
photoblastism and its relation-
ship with some plant traits in
136 cacti species. Env. Exp. Bot.
71: 79-88
Friedrich H, Glaetzle W (1983) Seed
morphology as an aid to classi-
fying the genus Echinopsis
Zucc. Bradleya 1: 91-104.
Glaetzle W, Prestlé H (1986) Seed
morphology of the genus Noto-
cactus. Bradleya 4: 79-96.
Godínez-Álvarez H, Valiente-Banuet
A (1998) Germination and early
growth of Tehuacan Valley cacti
species: the role of soils and
seed ingestion by disperser on
seedling growth. J. Arid Env. 39:
21-31.
Godínez-Álvarez H, Valverde T,
Ortega-Baes P (2003) Demo-
graphic trends in the Cactaceae.
Bot. Rev. 69: 173-203.
Goettsch B, Hernández HM (2006)
Beta diversity and similarity
among cactus assemblages in the
Chihuahuan Desert. J. Arid Env.
65: 513-528.
Guillén S, Benítez J, Martínez-Ra-
mos M, Casas A (2009) Seed
germination of wild, in situ-
managed, and cultivated popula-
tions of columnar cacti in the
Tehuacan-Cuicatlan Valley, Mex-
ico. J. Arid Env. 73: 407-413.
Guillén S, Terrazas T, De la Barrera
E, Casas A (2011) Germination
differentiation patterns of wild
and domesticated columnar cacti
in a gradient of articial selec-
tion intensity. Gen. Res. Crop
Evol. 58: 4 09-413.
Guzmán U, Arias S, Dávila P (2003)
Catálogo de Cactáceas Mexica-
nas. UNAM-CONABIO. Mexi-
co. 315 pp.
Harker M, García-Rubio LA, Riojas-
López ME (2008) Composición
orística de cuat rohábitats en el
Rancho Las Papas de Arriba,
municipio de Ojuelos, Jalisco,
Mexico. Acta Bot. Me x. 85: 1-29.
Harper JL, Lovel PH, Moore KG
(1970) The shapes and sizes of
seeds. Ann. Rev. Ecol. System. 1:
327-356.
Hernández MH, Godínez H (1994)
Contribución al conocimiento
de las cactáceas mexicanas
amenazadas. Acta Bot. Mex. 26:
33-52.
Hernández-Hernández T, Hernández
MH, De-Nova JA, Puente R,
Eguiar te LE, Magallón S (2011)
Phylogenetic relationships and
evolution of growth form in
Cactaceae (Caryophyllales, Eudi-
cotyledonae). Am. J. Bot. 98:
44 - 61.
Hernández-Oria JG, Chávez-Martínez
R, Sánchez-Martínez E (2007)
Factores de riesgo en las Cacta-
ceae amenazadas de una región
semiárida en el sur del Desierto
Chihuahuense, Mexico. Inter-
ciencia 32: 727-733.
Jiménez-Aguilar A, Flores J (2010)
Effect of light on seed germina-
tion of succulent species from
the southern Chihuahuan Desert:
comparing germinability and
relative light germination.
JPACD 12: 12-19.
Joubert E (1993) Processing of the
fruit of ve prickly pear culti-
vars grown in South Africa.
Food Sci. Technol. Int. 28:
377-387.
Kiesling R (2001) Cactáceas de la
Argentina promisorias agronómi-
camente. JPACD 4: 11-14.
Larrea-Alcázar DM, López RP
(2008) Seed germination of Cor-
ryocactus melanotrichus (K.
Schum.) Britton & Rose (Cacta-
ceae): and endemic columnar
cactus of the Bolivian Andes.
Ecol. Bol. 43: 135 -14 0.
203
MAR 2012, VOL. 37 Nº 3
León de la Luz JL, Domínguez-Cade-
na R (1991) Evaluación de la re-
producción por semillas de la
pitaya agria (Stenocereus gum-
mosus) en Baja California Sur,
México. Acta Bot. Mex. 14: 75-87.
Loza-Cornejo S, López-Mata L, Ter-
razas T (2008) Morphological
seed traits and germination of
six species of Pachycereae (Cac-
ta ceae). JPA CD 10: 71-84.
Mandujano MC, Montaña C, Rojas-
Aréchiga M (2005) Breaking
seed dormancy in Opuntia ras-
trera from the Chihuahuan Des-
ert. J. Arid Env. 62: 15-21.
Martínez-Mendoza D, López-Rodrí-
guez B, Flores-Martínez A,
Manzanero-Medina G (2004)
Evaluación de técnicas de
propagación de Mammillaria
oteroi Glass & R. Foster. Nat.
Des. 2: 5-7.
Mcintosh ME (2005) Pollination of
two species of Ferocactus: inter-
actions between cactus-specialist
bees and their host plants. Func.
Ec ol . 19 : 727-734.
Media Cybernetics (2006) Imag e
Pro-Plus. Version 6.1. Spring-
eld, MD, USA. 534 pp.
Nobel PS (1988) Environmental Biol-
ogy of Agaves and Cacti. Cam-
bridge University Press. New
York, USA. 280 pp.
Nobel PS (2002) Cacti-Biolog y
and Uses. University of Cali-
fornia Press. Berkeley, CA,
USA. 290 pp.
Nolasco HF, Vega-Villasante F, Díaz-
Rondero A (1996) Seed germi-
nation of Stenocereus thurberi
(Cactaceae) under different solar
irradiation levels. J. Arid Env.
36: 123-132.
Nolasco H, Vega-Villasante F, Rome-
ro-Schmidt HL, Díaz-Rondero A
(1997) The effects of salinity,
acidity, light and temperature on
the germination of seeds of
cardón (Pachycereus pringlei (S.
Wats.) Britton & Rose Cactace-
ae). J. Arid Env. 33: 87-94.
Ortega-Baes P, Rojas-Aréchiga M
(2007) Seed germination of
Trichocereus terscheckii (Cacta-
ceae): light, temperature and
gibberellic acid effects. J. Arid
Env. 69: 169 -176.
Ortega-Baes P, Aparicio-González M,
Galíndez G, Del Fueyo P, Süh-
ring S, Rojas-Aréchiga M (2010)
Are cactus growth forms related
to germination responses to
light? A test using Echinopsis
species. Acta Oecol. 36: 339-342.
Ortega-Nieblas M, Molina-Freaner F,
Robles-Burgueño MR, Vázquez-
Moreno L (2001) Proximate
composition, protein quality and
oil composition in seeds of co-
lumnar cacti from the Sonoran
Desert. J. Food Comp. Anal. 14:
575-584.
Parker KC (1987) Seed crop charac-
teristics and minimum repro-
ductive size of organ pipe cac-
tus (Stenocereus thurberi) in
southern Arizona. Madroño 34:
294 -303.
Pardo O (2002) Etnobotánica de al-
gunas cactáceas y suculentas del
Perú. Chlor is Chil. 5 (1) w w w.
chlorischile.cl
Pérez-Gutiérrez RM, Mota-Flores JM
(2010) Attenuation of hypergly-
cemia and hyperlipidemia in
streptozotocin-induced diabetic
rats by chloroform extract of
fruits of Ferocactus latispinus
and Ferocactus histrix. Bo l.
Latinoam. Car. Plant. Med. Aro-
mat. 9: 475- 484.
Potter RL, Petersen JL, Ueckert DN
(1984) Germination res ponses of
Opuntia spp. to temperature,
scarification and other treat-
ments. Weed Sci. 32: 106 -110.
Quintana SME (1994) Contribución
al conocimiento de algunos fac-
tores que disparan la germi-
nación de Echinocactus platya-
canthus LK & O. Thesis.
UNAM. Mexico 85 pp.
Ramírez-Padilla CA, Valverde T
(2005) Germination responses of
three congeneric cactus species
(Neobuxbaumia) with differing
degrees of rarity. J. Arid Env.
61: 331-343.
Rojas-Aréchiga M, Vázquez-Yanes
C (2000) Cactus seed germina-
tion: a review. J. Arid Env. 44:
85-104.
Rojas-Aréchiga M, Orozco-Segovia
A, Vázquez-Yanes C (1997) Ef-
fect of light on germination of
seven species of cacti from the
Zapotitlan Valley in Puebla,
Mexico. J. Ar id Env. 44: 85-
104.
Rojas-Aréchiga MA, Orozco-Segovia
A, Vázquez-Yanes C (1998)
Seed response to temperature of
Mexican cacti species from two
life forms: an ecophysiological
interpretation. Plant Ecol. 135:
207-214.
Rojas-Aréchiga M, Casas A,
Vázquez-Yanes C (2001) Seed
germination of wild and culti-
vated Stenocereus stellatus (Cac-
taceae) from the Tehuacán-Cui-
catlán Valley, Central Mexico. J.
Arid Env. 49: 279-287.
Rosas-López U, Collazo-Ortega M
(2004) Conditions for the germi-
nation and the early growth of
seedlings of Polaskia chichipe
(Goss.) Backeberg and Echino-
cactus platyacanthus Link and
Otto (Rose) Bravo-Hollis (Cac-
ta ceae). Phyton 73: 213-22 0.
Sáenz C (1997) Usi potenziali del
frutto e dei claddi di condidia
nell industria alimentare. Riv.
Frutticult. 12: 47-52.
Sáenz C, Estévez AM, Sepúlveda E,
Mecklenburg P (1998) Cactus
pear fruit: a new source for nat-
ural sweetener. Plan t Fo od s
Hum. Nutr. 52: 141-149.
Sánchez-Salas J, Flores J, Martínez-
García E (2006) Efecto del
tamaño de semilla en la germi-
nación de Astrophytum myrios-
tigma Lemaire. (Cactaceae), es-
pecie amenazada de extinción.
Interciencia 31: 371-375.
Sánchez-Soto BH, Reyes-Olivas A,
García-Moya E, Terrazas T
(2010) Germinación de tres cac-
táceas que habitan la región cos-
tera del noroeste de México. In-
terciencia 35: 299-305.
SAS (2000) User´s Guide. Statistics.
SAS Institute Inc. Cary, NC,
USA 128 pp.
Simão E, Nakamura AT, Takaki M
(2010) The germination of
seeds of Epiphyllum phyllan-
thus (L.) Haw. (Cactaceae) is
controlled by phytochrome and
by nonphytochrome related pro-
cess. Biota Neotrop. 10: 114 -
119.
Stintzing FC, Carle R (2005) Cactus
stems (Opuntia spp.): A review
on their chemistry, technology,
and uses. Mol. Nutr. Food Res.
49: 175-194.
Stintzing FC, Schieber A, Carle R
(2001) Phytochemical and nutri-
tional significance of cactus
pear. Eur. Food Res. Technol.
212: 396- 407.
Stintzing FC, Herbarch KM, Moss-
hammer MR, Carle R, Yi W,
Sellappan S, Akoh C, Bunch R,
Felker P (2005) Color, betalain
pattern, and antioxidant proper-
ties of cactus pear (Opuntia
spp.) clones. J. Agric. Food
Chem . 53: 442- 451.
Taylor NP, Clark JY (1983) Seed
morphology and classification
in Ferocactus subg. Ferocactus.
Bradleya 1: 3-16 .
Terrazas T, Arias S (2003) Com-
parative stem anatomy in the
subfamily Cactoideae. Bot. Rev.
68: 444-473.
Trujillo AS (1982) Estudio de algu-
nos aspectos ecológicos de
Echinocactus platycanthus LK.
& O. en el estado de San Luis
Potosí. Thesis. ENEP Iztacala,
UNAM. Mexico.
Vega-Villasante FH, Nolasco C,
Montaño Hl, Romero-Schmidt
A, Vega-Villasante E (1996)
Efecto de la temperatura, aci-
dez, iluminación, salinidad,
irradiación solar y humedad
sobre la germinación de semi-
llas de Pachycereus pecten-
aboriginum “cardón barbón”
(Cactaceae). Cact. Suc. Mex.
41: 51-61.
Wybraniec S, Mizrahi Y (2002)
Fruit esh bet acyan in pigments
in Hylocereus cacti. J. Agri c.
Food Chem. 50: 6086-6089.