Content uploaded by Max Semenovich Barash
Author content
All content in this area was uploaded by Max Semenovich Barash
Content may be subject to copyright.
I W VVN U SCIENCEPRESS/JI 1” Ж * в д и |
V NU S cie nce P res s BV
P .O . Bo x 20 73
35 00 G B U tre ch t
T he N eth er lan ds
С 1 984 V N U S cie nc e P re ss BV
Fi rst pu bli she d 1984
ISBN 90-6764-012-3 Volume 3
ISBN 90-6764-009-3 set o f 23 volumes
Al l r ight » re se rve d No p art of thi s p ub lic atio n ma y be
re pr od u ce d, sto red in a ret rie va l sy st em , or tra n sm itt ed , in a ny
fo rm o r b y an y me an s, e le ctr on ic , m ec han ic al, ph oto co pyi ng ,
re co rd ing , o r o th erw is e, wi tho ut th e p ri or per mi ssi on of the
co py rig ht ow ne r.
P rin ted in G re at B rita in b y J. W . A rr ow sm it h L td . Bri stol
CO NTE NTS
P r e fa c e ____________________________________________________________________________________I
Q u a t e r n a r y g e o l o g i c a l p r o b l e m s o f S ib e ri a
M . N . A le x e e v . E . V . D e v y a t k i n , S . A . A rk h ip o v ,
S . A . L a u k h l n . Q . V . G rin e n k o a n d
V . A . K a m a l e td in o v_______________________________________________________________1
T ho p i <n f f e n e - P lo l a to c e n c b o u nd a r y i n t h e
0 a a k a G ro u p , J a p a n
M, I t i h a r u , T. K a n e i and S . Y o sh ik a w a 23
The P l i o c e n e - P l e is t o c e n e b o u nd a r y i n
t e r r e s t r i a l d e p o s i t s o f s o u t h w e s te r n , USA
» . H . L i n d s a v _______________________________________________________________________35
C h r o n o s t r a ti g r a p h i с s c a l e o f th e u p p er
P li o c e n e a nd Q u a te rn a ry ( A n t h ro p o g e n c )
K . V . N i k i f o r o v a , N . V . K i n d and I . I . K r a sn o v 49
P i l l a r s o f t h e Q u a te rn a ry s t r a t ig r a p h y i n
t h e P a n n o n i a n b a s in
А» Bonal____________________________________ 11
S t r a t i g r a p h y o f Q u a te r n a ry o ce a n ic d e p o s i t s
M . S . B a ra s h . O . B . D a itr e n k o . G . K h . K a z a rin a ,
S . B . K ru g l i k o v a a nd V .V . M u k h i n a ______________________________87
B io c h r o n o 1o g y o f t h e I t a l i a n m a r i n e P l i o c e n e
a nd L o w e r P le i s t o c e n e
M . L . C o l a l o n go , G. P a a i n i, 1. R a f f i, D . R io ,
S. S a r t o n i a n d R. S p r o v l e r l ______________________________________1 0 9
vii
C o m p lex p a l e o g e o g r a p h i c a l a tl a s e s - mon o g r a p h s
f o r t h e A n t h r o p o g e n e . and t h e i r p r o g n o s t i c
v a lu e
I . P . G t m Ib o t and A .A . V e l i t c h k o
_________________________12 5
A n t h ro po g on o o f t h o USSR C e n t r a l A s i a .
S t r a t i g r a p h y , c o r r e l a t i o n , p a l e o l i t h
A . B . D o d o n o v a n d V .A . Ra n o v _1 5 5
D e s e rt a n d l o e s s e n v ir o n m e n t . i n C h i n a s in c e
t h e Q u a t e r n a ry
L i u T u n g s h e n g , Dong G ua n g r o n g a nd
An Z h i s h o n g 18 5
P la n a t i o n s u r f a c e s and t h e i r s i g n i fi c a n c e
f o r th e m o r p h o s t r u c t u r a l a n a l y s i s o f v o u n g
p la t f o r m s : c a s e s tu d y B o h e m ia n m a s s i f
J . D eme k 199
So me p e c u l i a r it i e s o f t e c t o n i c m o v e m e n t s and
N . I . N ik o la e v 215
S tr u c t u ra l - g e o d y n a m ic l a y e r i n g o f t h e
l i t h o s p h e r e o f th e n e o t e c t o n i c m o b il e b e l t s
V . G . T r i f o n o v , V . I . M a k a r o v a nd
C.« A . V o s tr i k o v 231
viii
STRATIGRAPHY OF QUATERNARY OCEANIC DEPOSITS
BARASH, M.S., DMITRENKO, O.B., KAZARINA, G.KH.,
KRUGLIKOVA, S.B., MUKHINA, V.V.
P.P.Shirshov Institute of Oceanology, Academy of Sciences
of the USSR, Moscow, USSR.
Different standpoints exist on the position of the
Pliocene-Quaternary boundary varying from 0,6 to 4 m.y.
(1). Lately, most researchers of oceanic sediments use
to place it within the Olduvai paleomagnetic event, at
its top or base, or shift it a bit up- or downward.
Traditional Quaternary stratigraphy based on the histo
ry of land and mountain glaciation in Europe and North
America faces certain difficulties to define the order
and correlation of deposits, to determine their relative
and absolute age and rank of corresponding climatic
fluctuations. Figure 1 presents three versions of the
scale only for the Alpine glaciations. It is clear that
their evaluation coincide by the Holocene duration and,
accordingly, by the upper Wurrn boundary, and are rather
close by the position of the upper Riss boundary. The
same situation is with North European and North American
scales of the Quaternary glaciations. It is obvious that
correlation between regions causes even greater contra
dictions.
The main hope is the use of oceanic sediments as they
preserve records of global-scale events which can be re
constructed by physical and geochemical methods and which
expose continuous sequences of Quaternary deposits. Com
bination of the paleomagnetic method based on the sequence
of the Earth's magnetic field reversals, and of radio-
metric geochronology gives a reference bench-mark for
the stratigraphic levels and subdivisions. For the
Quaternary, such bench-marks are the Brunhes lower
boudary (0.73 m.y.), boundaries of the Jamarillo (0.88
to 0.94 m.y.) and the Olduvai (1.72 to 1.88 m.y.) events
Proceed ings of the 27th Internatio nal
Geological Congre ss. Volum e 3, pp. 87-108
Q UA TER NARY GEO LOGY AND G EO MOR PH OLO GY
© 1984 VN U Scicnce Press
For many decades it was technically difficult to obtain
long cores of oceanic sediments with undisturbed struc
ture, so marine geology studied samples of surface se
diment layer and those of short cores with stratigraphic
duration to several hundreds of thousands years. Paleo
ntologists have formed a concept that no considerable
evolutionary changes of the species happened for the
time represented by the cores and, probably, for the en
tire Quaternary. Therefore, contrast to more ancient
deposits, stratigraphy of Quaternary deposits or, to
be exact, of late Quaternary deposits have been analysed
by climatic-stratigraphy method, mainly by planktonic
foraminifera. Ericson (9,10) pointed out a sequence of
stratigraphic zones by the abundance of warm-water
Globorotalis menardii froup (Fig.l). Though Ericson's
scale is used till now, precision with which its sub
divisions can be identified seems doubtful but for the
uppermost layers.
Establishment of the oxygen-isotope scale and micropleon-
tological paleotemperature analysis is one step further
in the development of climatic stratigraphy. These tech
niques permit not only to sitinguish between warm- and
cold-water stages, but also to estimate quantitatively pa-
leotemperatures of the upper water layer, which, in its
turn, permits to grade climatic stratigraphic subdivisions
to correlate their sequence in various cores, which is
graphically expressed as oxygen-isotope or paleotempera
ture curves.
The oxygen-isotope tchnique is based on the variations in
the isotope composition of the oceanic water oxygen con
nected with the dynamics of land glaciations and on the
water temperature variations recorded in test composition
of species which occurred geologically synchronously (up
to 15 0 0 years) over the entire World ocean. Affected by
both process^g, cold-water stages are characterized by
increase in 0 concentration, while warm-water stages by
its decrease. The sequence of climatic variations recorded
in the ratio of oxygen isotopes in planktonic or bottom
foraminifera tests is free of geographic latitude and
opens the possibility for global stratigraphic division
(16)
88
and correlation of Quaternary deposits.
Precision of the oxygen-isotope method is restricted
by a number of things: bioturbation, partial dissolution
of tests, redeposition processes, etc. Dterete sampling
can lead to some errors in the evaluation of extremes at
"paleotemperature" curves, which might be presented not
by actual extremal values or, sometimes, even omitted
values of 6180 are also affected by local deviation of
water isotopic composition and of temperature regime.
Therefore, for stratigraphic correlation, absolute data
measurements are not so important as the shape of plotted
curves. The oxygen-isotope scale has been worked out
for the entire Quaternary; its subdivisions are correla
ted with the paleomagnetic scale and dated (Fig.l). Its
upper grades well agree with the epochs of land glacia
tions. The oxygen-isotope scale is actively used for the
stratigraphy of oceanic deposits; it is especially produc
tive for the last several hundreds of thousands years.
Elaborated methods of paleotemperature reconstructions
by thanatocoenosis allows to plot the curves similar to
those of the oxygen-isotope one (15,17,18, and other).
The way how the species composition and quantative
properties of bioceonosis and, consequently, of thanato
coenosis in all groups of oceanic plankton varies in res
ponse to climate fluctuations is the basis for plotting
the qualitative and half-quantative "paleoclimatic"
curves (9,10, etc.). Micropaleontological paleotemperature
and paleoclimatic curves and stratigraphic divisions
correspond to the oxygen-isotope ones and are elements
of climate stratigraphy as well.
Age determination and stratigraphic division of sediments
by the oxygen-isotope scale and by paleontological cli
mate stratigraphy is possible only after continuous
sequences. Occurrence of Recent or Holocene sediments
is very important as a datum from which stages are counted
Bioturbation of sediments which levels the contrast peaks
on the reconstructed curves demands the cores with sedi
mentation rate not less than 10 to 15 cm per one thousand
years. Omission of stages and errors in dating are possi
ble in case of a stratigraphic hiatus or a layer with no
carbonaceous fossils fit for the oxygen-isotope analysis,
or in case sampling is insufficiently detailed, or there
occur beds of redeposited sediments. All mentioned things
do not permit to consider all climate stratigraphic me
thods as universal, and so it is expedient to use them
in a combination with others.
All these notes are true for the scale of magnetic
reversals which provides only five reference levels for
the Quaternary, the latest of them (0,73 m.y.) often
goes beyond the stratigraphic duration of the analysed
cores.
The paleomagnetic scale provides a stratigrapher with
only two parameters: direct and inversal polarity, the
climate-stratigraphic scales permit to reconstruct only
temperature fluctuations and variations of oxygen-isotope
composition of water. Thus, they do not deal with elements
of environment, the evolution of which is associated with
irreversible changes, and only such changes, recorded in
sediments, permit to estimate the age precisely.
Irreversible processes include flora and fauna evolution,
that is, appearance of one species and extinction of
others. Corresponding datum levels are the basis for a
stratigraphic division into zones and subzones charac
terized by a set of organic fossils which cannot re-occur
in time and, thus, can mark a definite evolutionary stage.
In a sedimentary sequence, we can distinguish first-appea
rance datum levels (FADs) of various species, last-appea-
rance datum levels (LADs), evolutionary transitions of one
species into another, and acme levels (ALs). Alongside
with levels of evolutionary appearance of species or
their extinction there are levels of migrational appea
rance or extinction caused by change in the areals. As
position of datum levels in each sequence depends on
local climatic and facial conditions they can disagree
with the actual levels of evolutionary appearance and
extinction of species. Therefore, it is of prime impor
tance to use the same scale to perform zonation of
Quarternary and more ancient deposits.
In the review paper (2) the authors distinguish over
30 datum levels. By planktonic foraminifera, they point
out the following datum levels for the late Pliocene and
the entire Quaternary: LAD of Globorotalia miocenica and
LAD of Globorotalia exilis in the tropical Atlantic, 2.2
and 2.0 m.y., respectively; FAD of Globorotalia truncatu-
linoides in the subtropical and temperate Atlantic and
Pacific, direct under the base of the Olduvai event, 1,9
m.y.; LAD of Globigerinoides obllquus and LAD of Globi
gerinoides fistulosus in the tropical and subtropical
Atlantic and Pacific, at the top of the Olduvai (1,7 m.y.)
and a bit higher (1,6 m.y.), respectively; LAD of Globo-
quadrina pseudofoliata in the Indian-Pacific province,
0,22 m.y.
Thompson and Sciarillo (19) point out several datum le
vels in sediments of the equatorial Pacific: FAD of Neo-
globoquadrina eggeri - 1.7 m.y.; FAD of Pulleniatina fi-
nalis, 1.68 m.y.; LAD of Pullentiatina primalis , 1.51 m.y.
LAD of Neogloboquadrina humerosa, 1.15 m.y.; LAD of Pulle
niatina praecursor , 1.00 m.y.; FAD of Globoquadrina con-
glomerata , 0.610 m.y.; LAD of Globorotalia tosaensis,
0,590 m.y.; LAD of pink Globigerinoides ruber, 0.120m.у.
In the sub-Antarctic region, a number of migration le
vels are pointed out which are important, however, for
the regional stratigraphy (2): FAD of Globorotalia trunc-
atulinoides and LAD of Globoratilia crassaformis, between
0.3 and 0.27 m.y. (isotope stage 8); LAD of Globorotalia
puncticulata and FAD of Globorotalia inflata , 0.73 m.y.
In the temporate North Atlantic, sediments of isotope
stage 3 reveal sharp increase in size and number of Glo-
bigerina bulloides (20). Some authors date LAD of Globo
rotalia tumida flexuosa in the Atlantic back to about
0.08 m.y. (stage 5). Detailed analysis of tens of cores
dated by the radio-carbon method showed, however, later
extinction of this species, before or during the maximum
cooling of stage 2, 0.02 to 0.025 m.y. Similar data
were obtained on Globoquadrina hexagona which died out
XnView - [Обозреватель - D:\Mon документы\ 1025 to 0.027 m.y.
Документы\ВСЕФ0Т0\2()12\12\] [e (12) based on plan-
ktonic foraminifera where Quaternary system was ascribed
to one zone of G.truncatulinoides. In the scheme by Blow
(13) this zone was divided into two parts: N 22, for
G.truncatulinoides s.s, and N 23, for Globigerina calida
calida, or Sphaeroidinella dehiscens excavata; the boun
dary between them was dated back to 0.7 to 0.8 m.y. It
was proposed to single out zone N 23 by appearance of
zonal subspecies. These zones were detected by data from
91
numerous DSDP holes.
For the Caribbean Sea sediments, according to several
datum levels partially of migration type, Bolli and
Premoli Silva (14) distinguish five subzones (Fig.l)
traced in sediments of various oceans (21). Wide ap
plication of this scheme seems difficult and hardly
reasonable, at least in its original version. Numerous
subspecies of Globorotalia crassaformis have transitio
nal forms which makes distinct specification of datum
levels by them rather subjective. Species typical of
the upper subzones are rare. Globorotalia fimbriata
occurs in Pre-Holocene deposits, G.tumida flexuosa died
out in the Atlantic later than comes from the scheme.
FAD of G.calida calida is often detected considerably
earlier, about 0.8 m.y.
In the result of detailed analysis of planktonic fora-
minifera test distribution in the cores from Site 516
and 518 drilled during the 72 Leg of "Glomar Challenger"
in the South Atlantic, Rio Grande Rise, the Quaternary
sequence was divided into four biostratigraphic layers
or subzones (15), partially based on the scheme by Bolli
and Pemoli Sliva (14). G.truncatulinoides zone is sub
divided into (upward)(Fig.2): 1) Globorotalia crassa
formis viola layer - the interval of occurrence of index
subspecies, G.truncatulnoides and Globorotalia tosaensis;
2) G.cr. hessi layer - the interval from LAD of C.cr.
viola till appearance of developed species of G. calida
calida. Acme interval of G.cr.hessi; 3) G. calida calida
layer - the interval from FAD of index - subspecies to
FAD of pink Globigerinoides ruber and Globigerina rubes-
cens; 4) pink G.ruber and G. rubescens layer - the inter
val of these species occurrence.
Considering homogeneity of lithological composition and
absence of features of outwashing and redeposition in
Site 516, we can suppose similar or close sedimentation
rates for the Quaternary. Boundaries between layers are
dated back to 1.47, 0.81 and 0.28 m.y. from interpolation
of FAD of G. truncatulinoides accepted as 1.9 m.y.
Proposed division, however, is only of regional value.
If compared with the scheme by Bolli and Premoli Silva
(14), it has certain advantages: rare species and species
92
occurring only in the equatorial belt are excluded as well
as some migration datum levels typical only of the Carib
bean Sea; division of Quaternary system according to this
pattern is more regular; position of 0.81 m.y. - boun
dary corresponds to widely spread and well grouded sup
positions on the location of the boudary between zones
N 22 and N 23 (13).
From Site 516, a sequence of datum levels both evolu
tionary and migration is established: LAD of Globigeri-
noides bollii, 1.92 m.y.; LAD of Sphaeroldlnellopsls
seminulina, Globigerina bulbosa, Globigerinoides obliquus,
1.83 m.y.; FAD of G.cr.hessi, 1.65 m.y.; LAD of Globorota-
lia praehxrsuta, 1.51 m.y.; LAD of Globigerina decoraperta
Globoquadrina acostaensis, Gr. cr. viola.1.47 m.y.; LAD
of G.tosaensis, 1.43 m.y.; FAD of Globorotalia aufracta,
1.40 m.y.; FAD of Globorotalia inflata var., 0.9 m.y.;
LAD of G.cr. hessi, 0.5 m.y.; FAD of G.tumida flexuosa,
0.31 m.y.; FAD of pink G.ruber and G.rubescens,0.28 m.y.;
FAD of Globorotalia hirsuta, about 0.2 m.y.; FAD of Globo
rotalia theyerit 0.09 m.y. (Fig 2). Comparison of levels
with the paleotemperature curve reconstructed by paleonto
logical method (15) for Rio Grande Rise area revealed
that LADs corresponded to periods of cooling.
The following datum levels are detected by calcareous
nannoplankton (2, and others): FAD of Gephyrocapsa aperta,
2.36 m.y.; LAD of Dlscoaster brouwerl, 1.77 m.y.; FAD
of Gephyrocapsa caribbeanica, 1.74 m.y.; FAD of G.oceanica
1.68 m.y.; LAD of Cyclococcolithus macintyrei, 1.62 m.y.;
LAD of Helicopontosphaera sellil, 1.25 m.y.; last domina
tion level of small species of Gephyrocapsa at a distinct
absence of G.oceanica which occurred up- and downward
the sequence, at the top of the Jaramillo event, 0.9 m.y.;
LAD of Pseudoemiliania 1асипоза, 0.474 to 0.458 m.y.
(stage 12); FAD of Emiliania huxleyi, about 0.275 m.y.
(stage 8); beginning of domination of E.huxleyi over
Gcphyrocapsa caribbeanica. about 0.073 (beginning of
stage 4) im temperate latitudes, and about 0.085 (iso
tope substages 5b-5a) in tropical and subtropical lati
tudes .
Several schemes for zonal stratigraphic division of
Quaternary oceanic deposits by calcareous nannoplankton
are proposed from datum levels (22,23,24,25,26). The
93
most detailed scheme is one by Gartner (7 zones).
Distribution analysis of nannoplankton in the Quaternary
sequence from Site 516, "Glomar Challenger", performed
by Dmitrenko, verified the age of some datum levels or
gave close estimates: LAD of Pseudoemlliania lacunosa,
in cold-water stage 12; FAD of Emiliania huxleyi, over
stage 10 (probably, in unrevealed stage 8); LAD of Dis-
coaster brouweri, 1.65 m. y. similar to data by Gartner
(24); FAD of Gephyrocapsa caribbeanica, 1.85 m.y.; FAD
of G.oceanica, 1.8 m.y. These data provide for the pos
sibility to define reliable age of other datum levels by
linear interpolation from FAD of Globorotalia truncatu-
linoides (1.9 m.y.) in the sequence from Site 516. Two
levels were determined considerably higher: LAD of Cy-
clococcolithus macintyrei, 1.16 and LAD of Helicoponto-
sphaera sellii, 0.76 m.y. (stage 16). Besides, in Site
516, additional datum levels are marked: LAD of Cyclococ-
colithus rotulus, 1.56 m.y.; LAD of Umbillcosphaera sibo-
gae and the end of acme of Neospaera coccolithomorpha,
1.16 m.y. (coincides with LAD of Cyclococcolithus macin-
tyrei); LAD of Coccolithus doronicoides, 1.08 m.y.
(in presumed stage 22); LAD of Gephyrocapsa aperta, about
0.51 m.y., clear and sharp, reduction in number from
over 30% of all Coccolithes to 0%; at the same level the
number of G.sinuosa also reduced sharply; FAD of Disco-
sphaera tubifera, 0.47 m.y.
According to enumerated datum levels, nine biostrati-
graphic subdivisions (Fig.2) are detected. Earlier, they
were defined in schemes by various authors (22,24,26).
This sequence exposes combinations of features revealed
in sediments from various regions of the World Ocean and,
therefore, it is possible to trace age correlation of
datum levels and stratigraphic subdivisions and to single
out the most detailed of the proposed schemes for zoning
division which now is only of regional value.
Changes occurred in the composition of Late Pliocene-
Quaternary diatom flora of the World Ocean are detected
by several authors (2,27,28). The following datum levels
were proposed for the tropical Pacific and Indian oceans:
LAD of Thalassiosira convexa and LAD of T.convexa var.
aspinosa, 2.2 m.y., (similar in temperate latitudes);
Г
b e g i n n i n g o f R h i z o s o l e n ia p r a e b e r g o n i i v a r . r o b u s t a
d o m i n a tio n o v e r R . p r a e b e r g o n i i s . s . d i r e c t l y b e f o re t h e
O l d u v a i e v e n t ; FAD o f P s e u d o e u n o tia d o l i o l u s , 1 . 8 7 m .y .
( i n a l l o c e a n s b e tw e e n 4 0°N a n d S ) ; LA D o f R h iz o s o l e n ia
p r a e b e r g o n i i , 1 . 7 2 m . y .; LA D o f R h i z o s o le n i a p r a e b e r g o n i i
v a r . r o b u s t a , 1 . 5 6 m . y . ; F AD o f A s t e ro m p h a lu s h i l to n i a n u s
1 . 4 m . y . ( i s t y p i c a l o f u p w e l lin g r e g i o n s i n t h e e a s t e r n
P a c i f ic ) ; l e v e l o f r e - o c c u r re r .c e o f s i l i c o f l a g e l l a t a
M e so c ena e l l i p t i c a , 1 . 3 m . y . ( o u r o b s e r v a t io n s d e t e c te d
a t w o - f o l d i n c re a s e i n n um b e r o f v a l v e s , t h e a cm e l e v e l
o f t h e g i v e n s p e c i e s c o i n c i d e s w i th th e J a r a m i l l o e v e n t );
LAD o f M e s oc e na e l l i p t i c a a f t e r B u r c k le i s 0 . 7 9 m . y . ( i s o
t o p e s t a g e 2 2 ) , i n som e c a s e s , i n t r o p i c a l a n d t e m p e r a te
r e g i o n s , w e r e c o g n i z e d h i g h e r p o s i t io n o f t h i s l e v e l , t h a t
i s , o n t h e b a se o f t h e p a l e o m a g n e t ic B r u nh e s e p o ch ; t h e
z on e o f s h o r t -t im e d e v e lo p m e n t o f R h i z o s o l e n i a m a t u ja m a l
w h i c h a p p e a re d d i r e c t l y b e f o r e t h e J a r a m i llo e v e n t a n d
d i e d o u t b y i t s t o p ; a cm e b e g i n n i n g o f T h a l a s 3 i o s i r a o e s -
t r u p i i , 0 . 7 4 5 ( s ta g e 2 1 ) , t h e t r o p i c a l P a c i f i c ; LAD o f
N i tz c h i a r e i n h o l d i i , 0 . 6 3 m . y. ( i s o t o p e s t a g e 1 8 ) , b y
o u r d a t a t h e s p e c i e s d i e d o u t i n t h e i n t e r v a l f ro m 0 . 6 t o
0 . 4 m . y . ; a cm e l e v e l o f R o p e r ia t e s s e l a t a v a r . o v a t a , 0 . 6 2
t o 0 . 6 1 m . y . ( s ta g e 1 7 ) i n t h e e q u a t o r i a l r e g i o n , a s a
r u l e i n r e l a t i v e v i c i n i t y o f t h e s h o r e .
I n t h e t r o p i c a l a n d t e m p e r a te P a c i f ic a nd I n d i a n o c e a n s,
w e r e c o g n i z e d a l s o o t h e r c h a n ge s i n t h e c o m p o s i t io n o f
d ia to m f l o r a ( 30 t o 3 2 ) : LA D o f B o g o r o v ia m e d i o p u n c ta ta
w i t h i n i n s i g n i f i c a n t ( 0 . 2 m . y . ) s t r a t i g r a p h i c i n t e r v a l
w h i c h i n c lu d e s t h e P l io c e n e - P l e i s to c e n e b o u n d a r y ; LAD o f
H e m id is c u s o v a l is , b a s e o f t h e E o p l e i s to c e n e , w a s t ra c e d
i n t h e e a s t e r n t r o p i c a l P a c i fi c ; LA D o f T h a l a s 3 i o s i ra p l i -
c a t a ( f o r m a ) , b a se o f t h e E o p l e is to c e n e ( b e lo w 1 . 6 m .y . ) ,
t r o p i c a l r e g i o n ; LAD o f T h a l a s 3 i o s i r a r e g u l a t a , a b o u t 1 . 5
m . y . ( ra r e s p e c i e s ) , f o u n d i n t h e e a s t e r n t r o p i c a l P a c i f ic
a nd I n d i a n o c e a n s; a cm e o f R h i z o s o l e n ia s t y l i f o r m i s , 0 .7 4 5
m .y . , i n t h e e a s t e r n n e a r s h o r e t r o p i c a l P a c i f ic a nd I n d i a n
o c e a n s ; L AD o f N l tz s c h l a f o s s i l i s c o r r e s p o n d s t o t h e B r u h -
n e s b o u n d a r y , s p r e a d f ro m 3 5 °N t o 3 5 °S ; L AD o f N i tz s c h i a
p r o l o n g a t a a n d LAD o f T h a l a s s i o s i r a l e p t o p u s v a r . e l l i p t i
c a , 0 . 6 t o 0 . 5 m . y . ( t r o p i c a l r e g i o n ) ; L AD o f T h a l a s s i o s i
r a p l l c a t a , 0 . 3 5 t o 0 . 3 m . y. ; LA D o f C o s c i n o d is c u s p s e ud o -
l n c e r t u s , 0 . 1 t o 0 . 0 8 m .y.
95
For the Antarctic latitudes the proposed datum levels
are as follows: LAD of Coscinodiscus vulnificus, 1.9 m.y;
LAD of Nitzschla kerguelensis on the base of the Olduvai
event, 1.9 to 1.8 m.y.; LAD of Coscinodiscus kolbei, LAD
of Rhizosolenia barboi, FAD of Coscinodiscus elliptlpora
within the Olduvai event, 1.8 m.y.; FAD of Actinocyclus
actinochilus, 1.6 m.y.; LAD of Coscinodiscus elliptipora
at the Matuyama/Bruhnes boundary, 0.73 m.y.; LAD of Cos
cinodiscus margaritaceus, 0.6 m.y.; acme level of Hemi-
discus karstenli, 0.195 m.y.; LAD of Hemldiscus karstenii,
about 0.15 m.y.
For the northern temperate latitudes the proposed datum
level are: LAD of Rhizosolenia barboi, on the base of the
Olduvai event, 1.85; LAD of Thalasiosira zabelinae, LAD
of Th.usatchevii, LAD of Th. antiqua, LAD of Stephanopy-
xis lnermls, and LAD of S.hornd us , within the Olduvai
event, 1.75 m.y.; FAD of Rhizosolenia curvlrostrls, about
1.5 m.y.; LAD of Actinocyclus oculatus and FAD of A . ocho-
tensis, 0.97 m.y.; LAD of Rhizosolenia curvirostris, about
0.27 m.y. (some authors recognize higher stratigraphic
position of this species, approximately to 0.16 m.y.).
Because of sharp changes in species composition of ty
pical diatom associations, several variants of zonation
scheme are proposed for various biogeographical areas of
the World Ocean.
For the Arctic-boreal Pacific, the zonation scheme by
Barron (28) is used. It is a version of Koizumi scale (93)
detailed for the low Pleistocene interval. Jouse (34) was
the first to detect the sequence of changes in the diatom
composition which was used as a basis for these schemes.
After the scheme by Barron, Pleistocene is subdivided into
the following zones: Actinocyclus oculatus, 1.75 to 0.97
m.y.; Rhizosolenia curvirostris, 0.97 to 0.27 m.y. with
subzones "a", 0.97 to 0.63 m.y., and "b", 0.63 to 0.27
m.y.; Denticulopsis seminae, 0.27 m.y. to the Recent.
For the tropical Pacific and Indian oceans the most
valid scheme is the specified and completed version (30,
32) of the zonation scheme by Burckle (35). According to
this scale Pleistocene can be subdivided into zones of
Nitzschia fossills, 1.87 to 0.7 m.y., and Pseudoeunotia
doliolus, 0.7 m.y. to the Recent. The latter is divided
into the layers with Coscinodiscus pseudoincertus, 0.7
96
t o 0 . 1 o r 0 . 0 8 m . y . , a nd w i t h C o s e i n o d is c u s n o d i - li fe r ,
0 . 1 o r 0 . 0 8 m . y. t o t h e R e c e n t.
F o r t h e A n t a r c t ic a r e a o f t h e W o r ld O c e an , s e v e r a l
v a r i a n t s o f z o n a t io n s ch e m es a r e p r o p o s e d b e c a us e f l o r a
i n t h i s a r e a e x p o s es c o n s i d e r a b l e p r o v i n c i a l v a r i a t i o n s .
T he m o s t w e l l g r o u d e d s ch e m e s ee m s t o b e t h e c o m b in a t io n
o f z o n a t io n s chem es p r o p o se d b y M c C o ll um ( 3 6 ) a n d b y
J o us e ( 3 7 ) . T he f i r s t i s u s e d m o re o f t e n . B y t h i s s ch e m e
P l e i s to c e n e i s d i v id e d i n t o t h r e e z o n e s : R h i z o s o l e n i a b a r -
b o i - N i tz s c h i a k e r g u e l e n s i s , 1 . 8 t o 1 . 6 m . y . . C o s e i n o d is -
c u s e l l i p t i p o r a - A c t in o c y c l u s i n g e n s , 1 . 6 t o 0 . 6 m . y . ,
a nd C o s c i n o d is c u s l e n t i g i n o s u s , 0 . 6 m . y. t o t h e R e c e n t.
G r e a t n u m b e r o f d atu m l e v e l s a nd e v e n t s a r e b a se d o n
r a d i o l a r i a n s ( 3 2 , 3 8 , 4 0 , 4 1 ) . LAD o f c o s m o p o l lth s p e c ie s
A x o pru n um a n g e lin u m ( Cam p, e t C l a r k ) i s r e c o g n iz e d a t
0 . 3 8 t o 0 . 4 1 m . y . ( s ta g e 11 ) a nd i s w i d e l y t ra c e d . L e v e ls
b y o t h e r s p e c i e s a r e o f r e g i o n a l v a l u e .
I n t h e A n t a r c t i c , L A D 's o f t h e f o l lo w i n g s p e c i e s a r e
d e t e c t e d : S t ic h o p o d iu m b i c o n ic u m ( V in a s s a ) ( E u c y r tid iu m
c a l v a l v e r t e n s e ) , 1 . 8 m . y. ( 3 9 ) ; C l a t h r o c y c l a s b i c o r n i s
H a ys, 1 . 7 2 m . y . ; P y l o s p l r a s p . P e t r u s h . , A n t a r c t i s s a
c y l i n d r l c a P e t r u s h . , A c tin o m m a t e t r a r y l a ( H a y s ) , O c to d e n -
d t o n s p . H a y s , S a c c o s p y r is p r a e a n t a r c t ic a P e t r u s h . ,
a b o u t 0 . 7 m . y . ; P r u n o p y le b u s p i n ig e r u m H a y s , P e r ic h l a m i -
d iu m s p . Q P e t r u s h . , a b o u t 0 . 4 m . y . A t a b o u t o . 7 m . y.
e x t i n c t i o n o f S a t u r n a l i s c l r c u l a r l s H c k ., P t e r o c a m u m
t n l o b u m H c k . o c c u r r e d i n t h e A n t a r c t i c , t h o u g h t h e y
o c c u r e v e n a t p r e s e n t i n t h e t r o p i c a l r e g i o n s .
I n t h e n o r t h e r n P a c i f ic , t h e f o l lo w i n g d atu m l e v e l s a n d
e v e n t s a r e r e c o g n i z e d : e v o l u t io n o f S p h a e r o p yle r o b u s t a
K l in g i n t o S p h . l a n g i i D r e y e r , n e a r t h e P l i o c e n e - P l e i s t o -
c e n e b o u n d a ry , a b o u t 1 . 8 m . y . ; LAD o f L a m p r o c y c la s h e t e r o -
p o ro s H a ys a n d F AD o f E u c y r t id i u m m a tu y m ai H a ys , 0 . 9 m . y . ;
LA D o f S t y l a c o n t a r iu m a g u i Io n i u m H a ys, 0 . 3 m . y .
I n t h e n o r t h - e a t e r n P a c i f ic , L AD o f L . h e t e r o p o r o s i s
h i g h e r t h a n FA D o f E . m a t u ya m a l , w h i ch c o r re s p o n d s t o t h e
P I i o c e n e - P l e is t o c e n e b o u n d a ry ( 4 2 ) ; L . h e t e r o p o r o s e v o l v e d
t h e r e i n t o L a m p r o c y r tl s n e o h e t c ro p o r o s K l in g a b o u t 1 . 2
m . y . , i n i t s t u r n , th e l a t t e r e v o l v e d i n t o C o n a ra ch niu m
n i g r i n i a e C a u l e t a t 0 . 7 6 m . y . ( 4 0 ) .
I n t h e n o r t h e r n P a c i f i c , LA D o f A m p h i m e lis s a s e to s a
97
C l e v e a nd L y ch n o ca n iu m g r a n d e C am p, e t C l a r k c a n b e a p p r o
x i m a t e l y d a t e d b a c k t o 0 . 1 a n d 0 . 0 8 m .y . The f i r s t o f the -»
s e s p e c i e s i s a m p h i b o r e a l a n d o c c u r r s e v e n n ow i n t h e b o
r e a l A t l a n t i c a nd A r c t i c , t h e s e c o n d d i e d o u t a t t h e
M i o c e n e - P l io c e n e b o u n d a ry , i n t h e T r o p i c s , a n d i n t h e
P l io c e n e , i n t h e A n t a r d t i c , a nd a n l y i n t h e L a t e P l e i s
t o c e n e , i n t h e n o r t h e r n P a c i f ic ( 4 1 ) .
I n t h e e q u a t o r i a l P a c i fi c a n d I n d i a n o c e a n s , t h e r e c o g
n i z e d d a tu m l e v e l s a n d e v e n t s a r e a s f o l lo w s ( 2 , 4 0 , 4 3 ,
e t c . ) : LAD o f P t e r o c a n iu m p r is m a t iu m R i e d e l , 1 . 6 2 t o 1 . 7 6
m . y . ; e v o l u t io n a r y t r a n s i t i o n o f T h e o c o r y th i u m v e t u lu m
N i g r i n i i n t o T h . tr a c h e l iu m t r a c h e l iu m E h r e n b e rg , 1 . 3 9
t o 1 . 5 7 m . y .; e v o l u t io n a r y t r a n s i t io n o f L . e o h e t e r o p o r o s
i n t o C . n i g r i n i a e , 0 . 9 5 t o 1 . 1 m . y . ; LAD o f A n t h o c y r t id i u m
a n g u la r e N i g r i n i , 0 . 9 2 t o 0 . 9 8 m . y . ; FAD o f C o l lo s p h a e r a
s p . A . J o h n s on , 0 . 6 t o 0 . 6 5 m . y . ; FAD o f C . tu b e r o s a H a e c
k e l , 0 . 3 5 t o 0 . 3 8 m . y . ; e v o l u t io n a r y t r a n s i t i o n o f C o l lo
s p h a e ra s p . A . J oh n s o n i n t o B u c c l n o s p h a e ra l n v a g i n a t a H c k . ,
0 . 1 9 t o 0 . 2 3 m . y .
I n t h e d e p o s i t s o f t h e e a s t e r n t r o p i c a l P a c i f ic G o l l ( 4 4 )
r e c o g n i z e d t h e f o l lo w i n g d a tu m l e v e l s : FA D o f C o l l o s p h a e ra
h u x l e y i H c k . , 1 .7 4 t o 1 . 8 m . y . ; F AD o f N e o s e m a n tis h o f f e r -
n i G o l l , 1 . 5 8 m . y .; L AD o f S p h aeroz o um c r a s s u s G o l l, 1 .2 8
m . y . ; LA D o f A m p h i s p y ris r o g g e n t h e n i G o l l, 0 . 6 8 t o 0 . 6 5
m . y .; F AD o f C o l lo s p h a e r a t u b e r o s a , 0 . 2 m . y . ; FAD o f
B . i n v a g i n a t a , 0 . 1 m . y.
F o r t h e sam e r e g i o n , K r u g l ik o v a ( 3 2 ) r e v e a l e d t h a t F AD s
o f s i n g l e s p e c i e s o f P t e r o c o r y s m i n y to r a x ( N i g r i n i ) a nd
L a m p r o c y c la s m a r i t a l i s v e n t n c o s a N i g r i n i a p p r o x i m a t e ly
c o r re s p o n d t o t h e p o s i t io n o f t h e P l io c e n e - Q u a t e r n a r y
b o u n d a ry ; L AD o f T h . v e tu lu m i n t h i s r e g i o n i s a t a b o u t
0 . 9 m . y . A b u n d a n t a p p e a ra n c e l e v e l s o f P . m i n y t o ra x a nd
L . m a r i t a l i s v e n t r ic o s a a n d F AD o f C a r p oc an iu m p r a e c u rs o ru m
K r u g l ik o v a s t r a t i g r a p h l c a l l y o c c u r r e d a t t h e same l e v e l .
LADs o f A . a n g e lln u m a nd C a r p o c an iu m p r a e c u r s o ru m c o i n c i d e
w i t h LAD o f P e t ic h l a m y d iu m s p . O . P e t r u s h .
A c c o r d i n g t o d a tu m l e v e l s b a s ed o n r a d i o l a r i a n s , Q u a t e r
n a r y d e p o s i ts c a n b e d i v i d e d i n t o t h r e e o r f o u r s t r a t ig r a m
p h l c s u b d i v is i o n s . I n t h e A n t a r c t i c , d e p o s i ts a r e d i v id e d
i n t o t h r e e z on e s ( h o r i z o n s ) ; t h e i r b o u d a r ie s a r e i n g o od
c o r r e l a t i o n : f t, У ,Ф (4 5 ); S a t u r n a l is c i r c u l a r i s , S t y l a t r a c -
t u s u n x v e r s u s ( A . a n g e l i u m ) , A n t a r c t i s s a d e n t l c u l a t a ( 3 8 ) ,
I I I - I ( h o r i z o n s o f s i n g l e z o n e A ) ( 3 9 ) . B o u d a r i e s b e t w e e n
t h e m a r e d a t e d a s 0 . 7 a n d 0 . 4 m . y .
I n t h e N o r t h P a c i f i c , H a y s r e c o g n i z e d t h r e e z o n e s ( 2 ) :
E u c y r t i d i u m m u t u y a m a i , S t y l a t r a c t u s u n i v e r s u s , E u c y r t l d l u m
t u m i d u l u m . B o u n d a r i e s b e t w e e n t h e m a r e o f 0 . 9 a n d 0 . 4 m . y .
B e t w e e n t h e m i d d l e a n d u p p e r z o n e s , K l i n g ( 4 2 ) d i s t i n g u i s
h e d a n a d d i t i o n a l z o n e o f S t y l a c o n t a r i ’ jr i a q u i I o n i u m w i t h
i t s u p p e r b o u n d a r y o f 0 . 3 m . y . A b o v e t h i s b o u d a r y , o n e
m o r e z o n e c a n b e d i s t i n g u i s h e d - L y c h n o c a n i u m g r a n d e , 0 . 1
t o 0 . 0 8 m . y . , b y L A D o f i n d e x - s p e c i e s ( 4 1 ) . W i t h i n t h i s ?
z o n e L A D o f A m p h i m e l i s s a s e t o s a o c c u r s .
F o r t h e t r o p i c a l r e g i o n s , a f o u r - z o n e s c h e m e c a n b e
p r o p o s e d ( 4 3 ) : A n t h o c y r t i d i u m a n g u l a r e , A m p h i r r h o p a l u m
y p s i l o n , C o l l o s p h a e r a t u b e r o s a , B u c c i n o s p h a e r a i n v a g i n a t a ,
b a s a l b o u n d a r i e s b e i n g 1 . 7 , 0 . 9 4 , 0 . 3 7 a n d 0 . 2 1 m . y .
A s t h e e a s t e r n t r o p i c a l P a c i f i c h a s p e c u l i a r r a d i o l a r i a n
f a u n a ( 3 2 ) - m o r e c o l d - w a t e r c o m p o s i t i o n , o f t e n a b s e n c e o f
i n d e x - s p e c i e s p r o p o s e d b y N i g r i n i , o f t e n m o r e w i d e s t r a t i -
g r a p h i c i n t e r v a l s i n s p e c i e s d i s t r i b u t i o n - i t i s im p o s
s i b l e t o u s e t h e s c h e m e b y N i g r i n i i n t h i s r e g i o n . T w o
n e w s c h e m e s a r e p r o p o s e d t o t h i s r e g i o n ( 3 2 , 4 4 ) . G o l l
p r o p o s e d t w o z o n e s : C o l l o s p h a e r a h u x l e y i a n d C o n a r a c h n i u m
n l g r i n a e w i t h t h e b o u d a r y b e t w e e n t h e m o f 0 . 9 m . y .
L e v e l s o f c o n s i d e r a b l e c h a n g e i n t h e e n t i r e f a u n a c h a r a c
t e r a n d a l s o d a t u m l e v e l s o f i n d i v i d u a l s p e c i e s a n d e v o l u
t i o n a r y e v e n t s a r e a c c e p t e d a s a r e f e r e n c e f o r s t r a t i g r a -
p h i c d i v i s i o n , i n t h e s c h e m e b y K r u g l i k o v a .
K r u g l i k o v a d i s t i n g u i s h e d l a y e r s w i t h f a u n a : T h e o c o r y t h i u m
v e t u l u m , C a r p o c a n i u m p r a e c u r s o r u m , P t e r o c o r y s m i n y t o r a x ,
t h e b o u d a r i e s b e t w e e n t h e m b e i n g a p p r o x i m a t e l y 0 . 9 a n d
0 . 4 m . y .
T h u s , m o r e t h a n 1 4 0 d i f f e r e n t l e v e l s a r e d e t e c t e d i n t h e
f o u r g r o u p s o f o c e a n i c m i c r o p l a n k t o n f o r t h e l a s t 2 m . y .
T h e y a r e e v o l u t i o n a r y a n d m i g r a t i o n F A D s a n d L A D s a n d a c m e
l e v e l s . T h e i r q u a n t i t a t i v e d i s t r i b u t i o n o n t i m e s c a l e w i t h
0 . 1 m . y . i n t e r v a l r e v e a l s c o n s i d e r a b l e r e g u l a r i t i e s ( F i g .
3 ) . T h r e e p e a k o f m a x i m u m c h a n g e s i n p l a n k t o n c o m p o s i t io n
c o r r e s p o n d t o t h e b e g i n n i n g o f t h e n o r m a l p o l a r i t y p e r i o d s
( t h e O l d u v a i e v e n t ; 2 3 l e v e l s ; t h e J a r a m i l l o e v e n t , 1 2
l e v e l s ; t h e B r u h n e s e p o c h , 1 7 l e v e l s ) . A f t e r m a x i m u m
c h a n g e s o c c u r r e d a t t h e b a s e o f t h e O l d u v a i , t h e n u m b e r
99
of changes gradually reduced and reached its minimum
(2 levels) in the middle of the inverse polarity, that
is between the Olduvai and Jaramillo events, 1.4 to 1.2 m.
y. Another minimum (2 levels) is recorded also during the
inverse polarity, 0.9 to 0.8 m.y., between the Jaramillo
event and Bruhnes epoch. These data, no doubt revealed
the correlation, probably indirect, between the magnetic
field inversions and development of oceanic microplankton.
This correlation appeared to be more distinct in the
composition of diatoms and radiolarians. We can suppose
that it can be explained either by considerably greater
variety in their species (it is an order higher than in
planktonic foraminiferas and coccolithophorids), or by
siliceous composition of their skbletons.
Maximum of changes observed at the base of the Olduvai
event and its absence at the top of the Olduvai allow to
place the Pliocene-Quaternary boundary at its base.
Position of the second peak at the base of the Bruhnes
epoch verifies biostratigraphic significance of this
level and the right of binomial division of the Quaternary.
Comparatively great number of changes during the Bruhnes
epoch (5 to 10 levels per 0.1 m.y.) can be first explained
by strong climate variations which caused sharp and sig
nificant changes in the oceanic environment.
All datum levels have limited application due to restric
tion of species areals- Besides, chronologic position of
a datum level in a given sequence depends on regional
climatic conditions, that is, they are not chronostrati-
graphic levels and if they are - only within certain
accuracy range. Some shift in levels is possible because
of bioturbation of oceanic sediments and ofhiatuses in
the geological recording. At last, when analysing long se
dimentary cores, especially of those obtained during
sea drilling, it is necessary to consider the probability
of artificial increase of vertical range in species dis
tribution.
Duration of biostratigraphic zones is usually several
hundreds of thousands years. Such degree of accuracy
is insufficient for the Quaternary during which strong
and short variations of physicogeographical conditions
occurred.
Therefore, paleontological methods alone can lead to
100
e r r o r s I n c o r r e l a t i o n o f d e p o s i t s a n d e s t i m a t e s o f t h e i r
a g e .
D e s p i t e g r e a t a c h i e v e m e n t s i n s t r a t i g r a p h i c m e t h o d s
u s e d t o s t u d y Q u a t e r n a r y o c e a n i c d e p o s i t s a n d c e r t a i n m e
r i t s o f e a c h a l l o f t h e m h a v e c o n s i d e r a b l e r e s t r i c t i o n
w h i c h c a n c a u s e s t r a t i g r a p h i c e r r o r s . C e r t a i n l y , w h e n
s u b d i v i d i n g c o n t i n u o u s a n d c o m p l e t e s e q u e n c e s , e s p e c i a l
l y t h o s e o f y o u n g d e p o s i t s , w e c a n o b t a i n r e l i a b l e r e s u l t s
u s i n g o n l y o n e o r t w o m e t h o d s , f o r i n s t a n c e , m i c r o p a l e o n -
t o l o g i c a l p a l e o t e m p e r a t u r e o n e w i t h c o n s i d e r a t i o n o f
l i t h o l o g y . F u r t h e r p r o g r e s s i n Q u a t e r n a r y s t r a t i g r a p h y
i s p o s s i b l e o n l y i n c a s e o f d e v e l o p i n g a l l m e t h o d s a n d
i n c a s e o f t h e i r c o m p r e h e n s i v e u s a g e .
R E F E R E N C E S
1 . N i k i f o r o v a , K . V . C h r o n o s t r a t i g r a p h y o f t h e U p p e r P l i o
c e n e a n d t h e Q u a t e r n a r y . - I n : S t r a t i g r a p h y i n i n v e s t i
g a t i o n s o f t h e G e o l o g i c a l I n s t i t u t e o f t h e A c a d e m y o f
S c i e n c e s o f t h e U S S R . M o s c o w : N a u k a , 1 9 8 0 , p . 2 5 4 - 2 5 8 .
( I n R u s s i a n ) .
2 . B e r g g r e n W . A . , B u r c k l e L . M . , C l t a M . B . , e t a l . T o w a r d s
a Q u a t e r n a r y T i m e S c a l e . - Q u a t e r n a r y R e s . , 1 9 8 0 , v . 1 3 ,
p . 2 7 7 - 3 0 2 .
3 . E m i l i a n l C . P l e i s t o c e n e t e m p e r a t u r e s . - J . G e o l o g y , 1 9 5 5 ,
v . 6 3 , p . 5 3 8 - 5 7 8 .
4 . E m i l i a n i C . P a l e o t e m p e r a t u r e a n a l y s i s o f C a r i b b e a n c o
r e s P 6 3 0 4 - 8 a n d P 6 3 0 4 - 9 a n d a g e n e r a l i z e d t e m p e r a t u r e
c u r v e f o r t h e p a s t 4 2 5 . 0 0 0 y e a r s . - J o u r . G e o l o g y , 1 9 6 6 ,
N 2 , p . 1 0 9 - 1 2 6 .
5 . S h a c k l e t o n N . J . , O p d y k e N . D . O x y g e n I s o t o p e a n d p a l e o -
m a g n e t l c s t r a t i g r a p h y o f E q u a t o r i a l P a c i f i c c o r e s V 2 8 -
2 3 ^ : o x y g e n I s o t o p e t e m p e r a t u r e s a n d I c e v o l u m e s o n a
1 0 y e a r a n d 1 0 y e a r s c a l e . - Q u a t e r n a r y H e s . , 1 9 7 3 ,
v . 3 , p . 3 9 - 5 5 .
6 . V a n D o n k J . 0 r e c o r d o f t h e A t l a n t i c O c e a n f o r t h e
e n t i r e P l e i s t o c e n e E p o c h . - G e o l . S o c . A m e r . M e m . , 1 9 7 6 ,
v . 1 4 5 , p . 1 4 7 - 1 6 4 .
7 . K u k l a G . J . P l e i s t o c e n e L a n d - S e a c o r r e l a t i o n s . I . E u r o p e .
10 1
E a r t h - S c i c n c e R e v ie w , 1 9 77 , v . 1 3 , N 4 , p . 3 0 7 -3 7 4 .
8 . C o oke H . B .S . P l e is t o c e n e c h r o n o lo g y : l o n g o r s h o r t ? -
Q u a t e r n a r y R e s ., 1 9 7 3 , v . 3 , N 2 , p . 2 0 6 -2 2 0 .
9 . E r ic s o n D . B . , E w in g М . , W o l li n G . , H e eze n B . C . A t l a n t i c
d e e p -s e a s e d i m e n t c o r e s . - G e o l . S o c . A m e r . B u l l. , 1 9 6 1 ,
v . 7 2 , N 2, p . 1 9 3 -2 8 6 .
1 0 . E r i c s o n D . B . , W o l li n G . P l e i s to c e n e c l i m a t e s a n d c h r o
n o lo g y I n d e e p -s e a s e d i m e n t s .- S c i e n c e , 1 9 6 8 , v . 1 6 2 ,
N 3 8 59, p . 1 2 2 7 -1 2 3 4 .
1 1 . E r ic s o n D . B . , E w i n g М . , W o l l i n G . P l io c e n e - P l e l s to c e n e
b o u d a r y I n d e e p -s e a s e d i m e n t s . - S c ie n c e , 1 9 6 3 , v . 1 3 9 ,
N 3 5 56, p . 7 2 7 -7 3 7 .
1 2 . B a n n er F . T . , B lo w W . H. P r o g re s s I n p l a n k t o n l c f o r a m i n l -
f e r a l b l o s t r a t l g r a p h y o f t h e N e o g e n e .- N a t u r e , 1 9 6 5 ,v .
2 0 8 , N 5 0 16 , p . 1 1 6 4 -1 16 6 .
1 3 . B lo w W .H . L a t e M i d d le E o c e ne t o R e c e n t p l a n k t o n l c f o r a -
m l n i f e r a l b i o s t r a t i g r a p h y . - I n : B r on nir aa nn a nd H . H .
R enz ( e d s . ) , P r o c . 1 s t . I n t . C o n f . P l a n k t o n l c M i c r o
f o s s i l s , G e n ev a , 1 9 6 7, L e i d e n , 1 9 69 , v . I , p . 1 9 9 -4 2 1 .
1 4 . B o l l I H . M ., P r e m o l l S i lv a I . O l ig o c e n e t o R e c e n t p l a n k -
t o n i c f o r a m i n i fe r a a nd s t r a t i g r a p h y o f t h e L e g 1 5 s i t e s
I n t h e C a r ib b e a n S e a . I n : E d g a r N . T . , S a u n d e rs J . B . e t
a l . I n i t . R e p o r ts D SDP , 1 9 7 3 , v . 1 5 , p . 4 7 5 - 4 9 8 .
1 5 . B a ra s h M . S . , O s k ln a N . S . , B ly um N .S . Q u a t e r n a ry b l o
s t r a t l g r a p h y a nd s u r f a c e p a l e o te m p e r a t u r e s b y m eans o f
p l a n k t o n l c f o r a m l n l f e r s , S i t e s 5 1 6 a n d 5 1 8 , DSD P L eg
7 2 . - I n : B a r k e r P . F . , C a r ls o n R . L . e t a l . I n t t . R e p o r ts
D SDP, 1 9 8 3 , v . 7 2 .
1 6 .M a n k ln e n E . A . , D a r ly m p l e G . B . R e v is ed g e o m a g n e tic p o l a
r i t y e v e n t . - E a r t h a n d P l a n e t . S c . L e t t . , 1 9 79 , v . 1 9 , p .
4 4 3 - 4 5 2 .
1 7 . B a ra s h M .S . T he p l a n k t o n i c f o r a m i n i fe r s I n t h e s e d i
m e n ts o f t h e N o r th A t l a n t i c . M osco w : N a u k a , 1 9 7 0 ,1 0 3 p .
1 8 . C l i n e R . M . , H a ys J . D . I n v e s t i g a t i o n o f L a t e Q u a t e rn a ry
P a le o c e a n o g ra p h y a n d P a l e o c l im a t o l o g y . - G e o l.S o c .A m e r .
M e m ., 1 9 7 6 , v .1 4 5 , p . 1 - 4 6 9 .
1 9 .T h o m p so n P . R . , S c l a r l l l o J . R . P l a n k t o n l c f o r a m l n l f e r a l
b l o s t r a t l g r a p h y I n t h e E q u a t o r i a l P a c i f ic . - N a t u r e , 1 978,
V .2 76.N 5 68 3, p . 2 9-33 .
2 0 . B a ra s h M .S . T he v e r t i c a l a n d h o r i z o n t a l d i s t r i b u t i o n
o f p l a n k t o n l c f o r a m i n i f e r a i n Q u a t e r n a r y s e d im e n t s o f
th e A t l a n t i c O c e a n .- I n : B . M . F u n n e l l a n d W . R .R le d e l
102
(eds.). The Micropaleontology of Oceans.L., 1971, p.
433-442.
21.Krasheninnikov V.A. Cenozoic scale of the continents
and oceans (in Russian).- In: Stratigraphy in investi
gations of the Geological Institute of the Academy of
Sciences of USSR. Moscow: Nauka, 1980, p.162-206.
22.Hay W.W., Mohler H.P., Roth P.H., Schmidt R.R., Bou
dreaux J.E. Calcareous Nannoplankton zonation of the
Cenozoic of the Gulf Coast and Caribbean-Anti 1lean
area, and transocanic correlation.- Trans. Gulf Coast
Assoc, of Geol.Soc., 1967, v.67, p.428-480.
23.Martini E., Worley T. Standard Neogene Calcareous nan
noplankton zonation.- Nature, 1970, v.225, p.290-298.
24.Gartner I. Calcareous nannofossil biostratigraphy and
revised zonation of the Pleistocene.-Marine Micropale
ontology, 1977, N2,p.1-25.
25.Bukry D. Biostratigraphy of Cenozoic marine sediments
by calcareous NannofossiIs.-Micropaleontology, 1978,.
V.24, N1, p.44-60.
26.0kada H., Bukry D. Supplemaentary Modification and
Introduction of Code Numbers to the Low-Latitude
Coccolith biostratigraphic zonation (Bukry, 1973;1975).
Marine Micropaleontology, 1980, N5, p.321-325.
27.Burckle L.H., Trainer I. Middle and Late Pliocene dia
tom datum levels from the Central Pacific.- Micropale
ontology, 1979, v.25, p. 281-293.
28.Barron J.A. Late Cenozoic diatom biostratigraphy and
paleoceanology of the middle-latitude estern North
Pacific, Deep Sea Drilling Project, Leg 63.- In: Yeats,
R., Haq B.U., et al. Init. Reports DSDP, 1981, v.63,
p.507-536.
29.Weaver F.M., Gombos A.M. Southern High-Latitude Diatom
biostratigraphy.-SEPM Special Publication, 1981, N 32,
p. 445-470.
30.Kazarina G.Kh. Diatoms in the Upper Mtocene-Pleistocene
sediments of the east tropical region of the Indian
Ocean (in Russian).- In:Marine micropaleontology. Mos
cow: Nauka, 1978, p.5-18.
31.Jouse A.P., Kazarina G.Kh., Mukhina V.V. The most spe
cific features in distribution of Diatoms in Pliocene
and Pleistocene deposits of the Middle American Trench
off Guatemala.- In: Aubouin J.( von Huene R., et al.
103
I n i t . R e p o r t s D S D P , 1 9 8 2 , v . 6 7 , p . 4 5 5 - 4 7 1 .
3 2 . K r a s h e n l n n l k o v B . A . , K a z a r i n a G . K h . , K r u g l i k o v a S . B . ,
M u k h i n a V . V . , U s h a k o v a M . G . S t r a t i g r a p h y o f t h e P l i o
c e n e a n d Q u a t e r n a r y s e d i m e n t s o f t h e E a s t P a c i f i c R i s e
a n d G a l a p a g o s s p r e a d i n g C e n t e r o n t h e b a s e o f p l a n k t o -
n i c m l c r o o r g a n i s m a ( i n R u s s i a n ) . - I n : Q u e s t i o n s o f m i
c r o p a l e o n t o l o g y , v . 2 6 , M o s c o w : N a u k a , 1 9 8 3 .
3 3 . K o i z u m i I . L a t e C e n o z o i c d i a t o m b i o s t r a t i g r a p h y i n t h e
c i r c u m - N o r t h P a c i f i c r e g i o n . - G e o l . S o c . J a p a n J . , 1 9 7 5 ,
v . 8 1 , N 1 0 , p . 6 1 1 - 6 2 7 .
3 4 . J o u s e A . P . D i a t o m s i n t h e s e d i m e n t s o f P l e i s t o c e n e a n d
L a t e P l i o c e n e o f t h e B o r e a l z o n e o f t h e P a c i f i c O c e a n
( i n R u s s i a n ) . - I n : M i c r o p a l e o n t o l o g y a n d o r g a n o g e n o u s
s e d i m e n t a t i o n i n t h e O c e a n s . M o s c o w : N a u k a , 1 9 6 9 , p . 5 - 2 7 .
3 5 . B u r c k l e L . H . , O p d y k e N . D . L a t e N e o g e n e d i a t o m c o r r e l a
t i o n s I n t h e c l r c u m - P a c l f l c . - P r o c . 1 s t I n t e r n . C o n g r . o n
P a c i f i c N e o g e n e s t r a t i g r a p h y . T o k y o , 1 9 7 7 , p . 2 5 5 - 2 8 4 .
3 6 . M c C o l l u m D . W . D i a t o m s t r a t i g r a p h y o f t h e S o u t h e r n
O c e a n . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t . R e p o r t s
D S D P , 1 9 7 5 , v . 2 8 , p . 5 1 5 - 5 7 2 .
3 7 . J o u B e A . P . , P e t r u s h e v s k a y a M . G . D i a t o m s a n d R a d i o l a r l -
a n s I n t h e c o r e s t . 2 5 6 " O B " ( S o u t h e r n o c e a n ) ; e s s a y o f
b l o s t r a t l g r a p h l c c o r r e l a t i o n ( i n R u s s i a n ) . - I n : T h e
M i c r o p a l e o n t o l o g y o f O c e a n a a n d S e a s . M o s c o w : N a u k a ,
1 9 7 4 , p . 3 - 1 3 .
3 8 . C h e n P . A n t a r c t i c R a d i o l a r i a , L e g 2 8 , D e e p S e a D r i l l i n g
P r o j e c t . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t .
R e p o r t s D S D P , 1 9 7 5 , v . 2 8 , p . 4 3 7 - 5 1 3 .
3 9 . P e r t u s h e v s k a y a M . G . C e n o z o i c r a d i o l a r l a n s o f t h e A n t
a r c t i c , L e g 2 9 , D S D P . - I n : K e n n e t t J . P . , H o u t z R . E . ,
e t a l . I n i t . R e p o r t s D S D P , 1 9 7 5 , v . 2 9 , p . 5 4 1 - 6 7 6 .
4 0 . J o h n s o n D . A . , K n o l l A . H . A b s o l u t e a g e s o f Q u a t e r n a r y
r a d i o l a r i a n d a t u m l e v e l s i n t h e e q u a t o r i a l P a c i f i c . -
Q u a t e r n a r y R e s . , 1 9 7 5 , v . 5 , p . 9 9 - 1 1 0 .
4 1 . K r u g l i k o v a S . B . R a d i o l a r i a i n t h e L o w e r - P l e i s t o c e n e
s e d i m e n t s o f t h e B o r e a l a n d N o r t h S u b t r o p i c a l z o n e s
o f t h e P a c i f i c O c e a n ( i n R u s s i a n ) . - O c e a n o l o g y , 1 9 7 6 ,
v . X V I , N 1 , p . 1 1 3 - 1 1 7 .
4 2 . K l l n g S . A . R a d i o l a r i a f r o m t h e e a s t e r n n o r t h P a c i f i c
D e e p S e a D r i l l i n g P r o j e c t , L e g . 1 8 . - I n : K u l m L . D . , v o n
H u e n e , e t a l . I n i t . R e p o r t s D S D P , 1 9 7 3 , v . 1 8 , p . 6 1 7 - 6 7 1
104
4 3 . N i g r i n i С . A . R a d l o l a r ia n z o n es i n t h e Q u a te rn a ry o f
t h e e q u a t o r i a l P a c i f ic O c e a n .- I n : F u n n e l B .M . a n d
R i e d e l W .R . ( e d s . ) . T he M i c r o p a l e o n t o l o g y o f o c e a n s ,
L . , 1 9 7 1, p . 4 4 3 -4 6 1 .
4 4 . G o l l R .M . P l io c e n e - P l e is t o c e n e r a d i o l a r i a n s fro m t h e
E a s t P a c i f ic R i s e a n d t h e G a l a p a g os s p r e a d in g c e n t e r ,
D ee p S e a D r i l l i n g P r o j e c t , L e g 5 4 . - I n : R o s e n da h l B . R . ,
H e k i n ia n R . , e t a l . I n i t . R e p o r t s D SD P, 1 9 80 , v . 5 4 ,
p . 4 2 5 -4 5 3 .
4 5 . H a ys J . D . R a d i o l a r la a nd L a t e T e r t ia r y a nd Q u a t e r n a r y
h i s t o r y o f A n t a r c t i c s e a s . - In : B i o l . A n t a r c t i c S e a s . ,
W a s h., 1 9 65 , v . 2 , . p . 1 2 4 -1 8 4 .
105