Conference PaperPDF Available

BARASH M.S., DMITRENKO O.B., KAZARINA G.Kh., KRUGLIKOVA S.B.,MUKHINA V.V., STRATIGRAPHY OF QUATERNARY OCEANIC DEPOSITS

Authors:

Abstract and Figures

BARASH M.S., DMITRENKO O.B., KAZARINA G.Kh., KRUGLIKOVA S.B.,MUKHINA V.V., STRATIGRAPHY OF QUATERNARY OCEANIC DEPOSITS Quaternary oceanic deposits is the most suitable object for perform¬ing Quaternary stratigraphy as they often contain continuous record of all environmental changes. For this purpose several methods are used: paleomagnetic, oxygen-isotope, micropaleontological climate stratigraphic and paleotemperature, and also age estimates and zona- tion subdivision on the basis of evolutionary changes in fauna and flora composition. Magnetic-reversal scale distinguishes only five levels the upper one (the Bruhnes boundary, 0.73 m.y.) often being beyond stratigraphic limits of analysed cores. Oxygen-isotope and all climate stratigraphic methods, including micropaleontological paleotemperature one, can be used only for complete sequences with high sedimentation rates and good reservation of micropaleontological units, without redeposition, with high frequency of sampling. In case one of the requirements is not observed considerable stratigraphic errors cam occur. Evolutionary changes in oceanic microplankton composition - appear¬ance and extinction of species - correlated with geochronological scale allow to detect datum levels. 140 datum levels, migration including, are recognized in four microplankton groups (foraminifera, coccolithophorids, diatoms and radiolarians) for 2 my. Correlation is established between changes and geomagnetic field inversions. The greatest frequency of changes is recorded at the base of the Olduvai event (23 levels /0.1 m.y.) and at the base of the Bruhnes epoch (17 levels /0.1 m.y.) which supports the position of the Pliocene- Quaternary boundary at the base of the Olduvai and supports the division of the Quaternary into two parts. Datum levels are limited in space and, probably, globally diachronous. The accuracy of bio- stratigraphic zonation (usually, hundreds of thousands years) is not sufficient for the Quaternary which is characterized by strong and short changes in the environment. Despite distinct achievements in methods of stratigraphical division of Quaternary oceanic deposits each of them is considerably limited. Further progress in Quaternary stratigraphy is possible only in case all methods are developed and used comprehensively.
No caption available
… 
No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
I W VVN U SCIENCEPRESS/JI 1 Ж * в д и |
V NU S cie nce P res s BV
P .O . Bo x 20 73
35 00 G B U tre ch t
T he N eth er lan ds
С 1 984 V N U S cie nc e P re ss BV
Fi rst pu bli she d 1984
ISBN 90-6764-012-3 Volume 3
ISBN 90-6764-009-3 set o f 23 volumes
Al l r ight » re se rve d No p art of thi s p ub lic atio n ma y be
re pr od u ce d, sto red in a ret rie va l sy st em , or tra n sm itt ed , in a ny
fo rm o r b y an y me an s, e le ctr on ic , m ec han ic al, ph oto co pyi ng ,
re co rd ing , o r o th erw is e, wi tho ut th e p ri or per mi ssi on of the
co py rig ht ow ne r.
P rin ted in G re at B rita in b y J. W . A rr ow sm it h L td . Bri stol
CO NTE NTS
P r e fa c e ____________________________________________________________________________________I
Q u a t e r n a r y g e o l o g i c a l p r o b l e m s o f S ib e ri a
M . N . A le x e e v . E . V . D e v y a t k i n , S . A . A rk h ip o v ,
S . A . L a u k h l n . Q . V . G rin e n k o a n d
V . A . K a m a l e td in o v_______________________________________________________________1
T ho p i <n f f e n e - P lo l a to c e n c b o u nd a r y i n t h e
0 a a k a G ro u p , J a p a n
M, I t i h a r u , T. K a n e i and S . Y o sh ik a w a 23
The P l i o c e n e - P l e is t o c e n e b o u nd a r y i n
t e r r e s t r i a l d e p o s i t s o f s o u t h w e s te r n , USA
» . H . L i n d s a v _______________________________________________________________________35
C h r o n o s t r a ti g r a p h i с s c a l e o f th e u p p er
P li o c e n e a nd Q u a te rn a ry ( A n t h ro p o g e n c )
K . V . N i k i f o r o v a , N . V . K i n d and I . I . K r a sn o v 49
P i l l a r s o f t h e Q u a te rn a ry s t r a t ig r a p h y i n
t h e P a n n o n i a n b a s in
А» Bonal____________________________________ 11
S t r a t i g r a p h y o f Q u a te r n a ry o ce a n ic d e p o s i t s
M . S . B a ra s h . O . B . D a itr e n k o . G . K h . K a z a rin a ,
S . B . K ru g l i k o v a a nd V .V . M u k h i n a ______________________________87
B io c h r o n o 1o g y o f t h e I t a l i a n m a r i n e P l i o c e n e
a nd L o w e r P le i s t o c e n e
M . L . C o l a l o n go , G. P a a i n i, 1. R a f f i, D . R io ,
S. S a r t o n i a n d R. S p r o v l e r l ______________________________________1 0 9
vii
C o m p lex p a l e o g e o g r a p h i c a l a tl a s e s - mon o g r a p h s
f o r t h e A n t h r o p o g e n e . and t h e i r p r o g n o s t i c
v a lu e
I . P . G t m Ib o t and A .A . V e l i t c h k o
_________________________12 5
A n t h ro po g on o o f t h o USSR C e n t r a l A s i a .
S t r a t i g r a p h y , c o r r e l a t i o n , p a l e o l i t h
A . B . D o d o n o v a n d V .A . Ra n o v _1 5 5
D e s e rt a n d l o e s s e n v ir o n m e n t . i n C h i n a s in c e
t h e Q u a t e r n a ry
L i u T u n g s h e n g , Dong G ua n g r o n g a nd
An Z h i s h o n g 18 5
P la n a t i o n s u r f a c e s and t h e i r s i g n i fi c a n c e
f o r th e m o r p h o s t r u c t u r a l a n a l y s i s o f v o u n g
p la t f o r m s : c a s e s tu d y B o h e m ia n m a s s i f
J . D eme k 199
So me p e c u l i a r it i e s o f t e c t o n i c m o v e m e n t s and
N . I . N ik o la e v 215
S tr u c t u ra l - g e o d y n a m ic l a y e r i n g o f t h e
l i t h o s p h e r e o f th e n e o t e c t o n i c m o b il e b e l t s
V . G . T r i f o n o v , V . I . M a k a r o v a nd
C A . V o s tr i k o v 231
viii
STRATIGRAPHY OF QUATERNARY OCEANIC DEPOSITS
BARASH, M.S., DMITRENKO, O.B., KAZARINA, G.KH.,
KRUGLIKOVA, S.B., MUKHINA, V.V.
P.P.Shirshov Institute of Oceanology, Academy of Sciences
of the USSR, Moscow, USSR.
Different standpoints exist on the position of the
Pliocene-Quaternary boundary varying from 0,6 to 4 m.y.
(1). Lately, most researchers of oceanic sediments use
to place it within the Olduvai paleomagnetic event, at
its top or base, or shift it a bit up- or downward.
Traditional Quaternary stratigraphy based on the histo
ry of land and mountain glaciation in Europe and North
America faces certain difficulties to define the order
and correlation of deposits, to determine their relative
and absolute age and rank of corresponding climatic
fluctuations. Figure 1 presents three versions of the
scale only for the Alpine glaciations. It is clear that
their evaluation coincide by the Holocene duration and,
accordingly, by the upper Wurrn boundary, and are rather
close by the position of the upper Riss boundary. The
same situation is with North European and North American
scales of the Quaternary glaciations. It is obvious that
correlation between regions causes even greater contra
dictions.
The main hope is the use of oceanic sediments as they
preserve records of global-scale events which can be re
constructed by physical and geochemical methods and which
expose continuous sequences of Quaternary deposits. Com
bination of the paleomagnetic method based on the sequence
of the Earth's magnetic field reversals, and of radio-
metric geochronology gives a reference bench-mark for
the stratigraphic levels and subdivisions. For the
Quaternary, such bench-marks are the Brunhes lower
boudary (0.73 m.y.), boundaries of the Jamarillo (0.88
to 0.94 m.y.) and the Olduvai (1.72 to 1.88 m.y.) events
Proceed ings of the 27th Internatio nal
Geological Congre ss. Volum e 3, pp. 87-108
Q UA TER NARY GEO LOGY AND G EO MOR PH OLO GY
© 1984 VN U Scicnce Press
For many decades it was technically difficult to obtain
long cores of oceanic sediments with undisturbed struc
ture, so marine geology studied samples of surface se
diment layer and those of short cores with stratigraphic
duration to several hundreds of thousands years. Paleo
ntologists have formed a concept that no considerable
evolutionary changes of the species happened for the
time represented by the cores and, probably, for the en
tire Quaternary. Therefore, contrast to more ancient
deposits, stratigraphy of Quaternary deposits or, to
be exact, of late Quaternary deposits have been analysed
by climatic-stratigraphy method, mainly by planktonic
foraminifera. Ericson (9,10) pointed out a sequence of
stratigraphic zones by the abundance of warm-water
Globorotalis menardii froup (Fig.l). Though Ericson's
scale is used till now, precision with which its sub
divisions can be identified seems doubtful but for the
uppermost layers.
Establishment of the oxygen-isotope scale and micropleon-
tological paleotemperature analysis is one step further
in the development of climatic stratigraphy. These tech
niques permit not only to sitinguish between warm- and
cold-water stages, but also to estimate quantitatively pa-
leotemperatures of the upper water layer, which, in its
turn, permits to grade climatic stratigraphic subdivisions
to correlate their sequence in various cores, which is
graphically expressed as oxygen-isotope or paleotempera
ture curves.
The oxygen-isotope tchnique is based on the variations in
the isotope composition of the oceanic water oxygen con
nected with the dynamics of land glaciations and on the
water temperature variations recorded in test composition
of species which occurred geologically synchronously (up
to 15 0 0 years) over the entire World ocean. Affected by
both process^g, cold-water stages are characterized by
increase in 0 concentration, while warm-water stages by
its decrease. The sequence of climatic variations recorded
in the ratio of oxygen isotopes in planktonic or bottom
foraminifera tests is free of geographic latitude and
opens the possibility for global stratigraphic division
(16)
88
and correlation of Quaternary deposits.
Precision of the oxygen-isotope method is restricted
by a number of things: bioturbation, partial dissolution
of tests, redeposition processes, etc. Dterete sampling
can lead to some errors in the evaluation of extremes at
"paleotemperature" curves, which might be presented not
by actual extremal values or, sometimes, even omitted
values of 6180 are also affected by local deviation of
water isotopic composition and of temperature regime.
Therefore, for stratigraphic correlation, absolute data
measurements are not so important as the shape of plotted
curves. The oxygen-isotope scale has been worked out
for the entire Quaternary; its subdivisions are correla
ted with the paleomagnetic scale and dated (Fig.l). Its
upper grades well agree with the epochs of land glacia
tions. The oxygen-isotope scale is actively used for the
stratigraphy of oceanic deposits; it is especially produc
tive for the last several hundreds of thousands years.
Elaborated methods of paleotemperature reconstructions
by thanatocoenosis allows to plot the curves similar to
those of the oxygen-isotope one (15,17,18, and other).
The way how the species composition and quantative
properties of bioceonosis and, consequently, of thanato
coenosis in all groups of oceanic plankton varies in res
ponse to climate fluctuations is the basis for plotting
the qualitative and half-quantative "paleoclimatic"
curves (9,10, etc.). Micropaleontological paleotemperature
and paleoclimatic curves and stratigraphic divisions
correspond to the oxygen-isotope ones and are elements
of climate stratigraphy as well.
Age determination and stratigraphic division of sediments
by the oxygen-isotope scale and by paleontological cli
mate stratigraphy is possible only after continuous
sequences. Occurrence of Recent or Holocene sediments
is very important as a datum from which stages are counted
Bioturbation of sediments which levels the contrast peaks
on the reconstructed curves demands the cores with sedi
mentation rate not less than 10 to 15 cm per one thousand
years. Omission of stages and errors in dating are possi
ble in case of a stratigraphic hiatus or a layer with no
carbonaceous fossils fit for the oxygen-isotope analysis,
or in case sampling is insufficiently detailed, or there
linoides in the subtropical and temperate Atlantic and
Pacific, direct under the base of the Olduvai event, 1,9
m.y.; LAD of Globigerinoides obllquus and LAD of Globi
gerinoides fistulosus in the tropical and subtropical
Atlantic and Pacific, at the top of the Olduvai (1,7 m.y.)
and a bit higher (1,6 m.y.), respectively; LAD of Globo-
quadrina pseudofoliata in the Indian-Pacific province,
0,22 m.y.
Thompson and Sciarillo (19) point out several datum le
vels in sediments of the equatorial Pacific: FAD of Neo-
globoquadrina eggeri - 1.7 m.y.; FAD of Pulleniatina fi-
nalis, 1.68 m.y.; LAD of Pullentiatina primalis , 1.51 m.y.
LAD of Neogloboquadrina humerosa, 1.15 m.y.; LAD of Pulle
niatina praecursor , 1.00 m.y.; FAD of Globoquadrina con-
glomerata , 0.610 m.y.; LAD of Globorotalia tosaensis,
0,590 m.y.; LAD of pink Globigerinoides ruber, 0.120m.у.
In the sub-Antarctic region, a number of migration le
vels are pointed out which are important, however, for
the regional stratigraphy (2): FAD of Globorotalia trunc-
atulinoides and LAD of Globoratilia crassaformis, between
0.3 and 0.27 m.y. (isotope stage 8); LAD of Globorotalia
puncticulata and FAD of Globorotalia inflata , 0.73 m.y.
In the temporate North Atlantic, sediments of isotope
stage 3 reveal sharp increase in size and number of Glo-
bigerina bulloides (20). Some authors date LAD of Globo
rotalia tumida flexuosa in the Atlantic back to about
0.08 m.y. (stage 5). Detailed analysis of tens of cores
dated by the radio-carbon method showed, however, later
extinction of this species, before or during the maximum
cooling of stage 2, 0.02 to 0.025 m.y. Similar data
were obtained on Globoquadrina hexagona which died out
XnView - бозреватель - D:\Mon документы\ 1025 to 0.027 m.y.
ДокументыСЕФ0Т0\2()12\12\] [e (12) based on plan-
ktonic foraminifera where Quaternary system was ascribed
to one zone of G.truncatulinoides. In the scheme by Blow
(13) this zone was divided into two parts: N 22, for
G.truncatulinoides s.s, and N 23, for Globigerina calida
calida, or Sphaeroidinella dehiscens excavata; the boun
dary between them was dated back to 0.7 to 0.8 m.y. It
was proposed to single out zone N 23 by appearance of
zonal subspecies. These zones were detected by data from
91
numerous DSDP holes.
For the Caribbean Sea sediments, according to several
datum levels partially of migration type, Bolli and
Premoli Silva (14) distinguish five subzones (Fig.l)
traced in sediments of various oceans (21). Wide ap
plication of this scheme seems difficult and hardly
reasonable, at least in its original version. Numerous
subspecies of Globorotalia crassaformis have transitio
nal forms which makes distinct specification of datum
levels by them rather subjective. Species typical of
the upper subzones are rare. Globorotalia fimbriata
occurs in Pre-Holocene deposits, G.tumida flexuosa died
out in the Atlantic later than comes from the scheme.
FAD of G.calida calida is often detected considerably
earlier, about 0.8 m.y.
In the result of detailed analysis of planktonic fora-
minifera test distribution in the cores from Site 516
and 518 drilled during the 72 Leg of "Glomar Challenger"
in the South Atlantic, Rio Grande Rise, the Quaternary
sequence was divided into four biostratigraphic layers
or subzones (15), partially based on the scheme by Bolli
and Pemoli Sliva (14). G.truncatulinoides zone is sub
divided into (upward)(Fig.2): 1) Globorotalia crassa
formis viola layer - the interval of occurrence of index
subspecies, G.truncatulnoides and Globorotalia tosaensis;
2) G.cr. hessi layer - the interval from LAD of C.cr.
viola till appearance of developed species of G. calida
calida. Acme interval of G.cr.hessi; 3) G. calida calida
layer - the interval from FAD of index - subspecies to
FAD of pink Globigerinoides ruber and Globigerina rubes-
cens; 4) pink G.ruber and G. rubescens layer - the inter
val of these species occurrence.
Considering homogeneity of lithological composition and
absence of features of outwashing and redeposition in
Site 516, we can suppose similar or close sedimentation
rates for the Quaternary. Boundaries between layers are
dated back to 1.47, 0.81 and 0.28 m.y. from interpolation
of FAD of G. truncatulinoides accepted as 1.9 m.y.
Proposed division, however, is only of regional value.
If compared with the scheme by Bolli and Premoli Silva
(14), it has certain advantages: rare species and species
92
occurring only in the equatorial belt are excluded as well
as some migration datum levels typical only of the Carib
bean Sea; division of Quaternary system according to this
pattern is more regular; position of 0.81 m.y. - boun
dary corresponds to widely spread and well grouded sup
positions on the location of the boudary between zones
N 22 and N 23 (13).
From Site 516, a sequence of datum levels both evolu
tionary and migration is established: LAD of Globigeri-
noides bollii, 1.92 m.y.; LAD of Sphaeroldlnellopsls
seminulina, Globigerina bulbosa, Globigerinoides obliquus,
1.83 m.y.; FAD of G.cr.hessi, 1.65 m.y.; LAD of Globorota-
lia praehxrsuta, 1.51 m.y.; LAD of Globigerina decoraperta
Globoquadrina acostaensis, Gr. cr. viola.1.47 m.y.; LAD
of G.tosaensis, 1.43 m.y.; FAD of Globorotalia aufracta,
1.40 m.y.; FAD of Globorotalia inflata var., 0.9 m.y.;
LAD of G.cr. hessi, 0.5 m.y.; FAD of G.tumida flexuosa,
0.31 m.y.; FAD of pink G.ruber and G.rubescens,0.28 m.y.;
FAD of Globorotalia hirsuta, about 0.2 m.y.; FAD of Globo
rotalia theyerit 0.09 m.y. (Fig 2). Comparison of levels
with the paleotemperature curve reconstructed by paleonto
logical method (15) for Rio Grande Rise area revealed
that LADs corresponded to periods of cooling.
The following datum levels are detected by calcareous
nannoplankton (2, and others): FAD of Gephyrocapsa aperta,
2.36 m.y.; LAD of Dlscoaster brouwerl, 1.77 m.y.; FAD
of Gephyrocapsa caribbeanica, 1.74 m.y.; FAD of G.oceanica
1.68 m.y.; LAD of Cyclococcolithus macintyrei, 1.62 m.y.;
LAD of Helicopontosphaera sellil, 1.25 m.y.; last domina
tion level of small species of Gephyrocapsa at a distinct
absence of G.oceanica which occurred up- and downward
the sequence, at the top of the Jaramillo event, 0.9 m.y.;
LAD of Pseudoemiliania 1асипоза, 0.474 to 0.458 m.y.
(stage 12); FAD of Emiliania huxleyi, about 0.275 m.y.
(stage 8); beginning of domination of E.huxleyi over
Gcphyrocapsa caribbeanica. about 0.073 (beginning of
stage 4) im temperate latitudes, and about 0.085 (iso
tope substages 5b-5a) in tropical and subtropical lati
tudes .
Several schemes for zonal stratigraphic division of
Quaternary oceanic deposits by calcareous nannoplankton
are proposed from datum levels (22,23,24,25,26). The
93
most detailed scheme is one by Gartner (7 zones).
Distribution analysis of nannoplankton in the Quaternary
sequence from Site 516, "Glomar Challenger", performed
by Dmitrenko, verified the age of some datum levels or
gave close estimates: LAD of Pseudoemlliania lacunosa,
in cold-water stage 12; FAD of Emiliania huxleyi, over
stage 10 (probably, in unrevealed stage 8); LAD of Dis-
coaster brouweri, 1.65 m. y. similar to data by Gartner
(24); FAD of Gephyrocapsa caribbeanica, 1.85 m.y.; FAD
of G.oceanica, 1.8 m.y. These data provide for the pos
sibility to define reliable age of other datum levels by
linear interpolation from FAD of Globorotalia truncatu-
linoides (1.9 m.y.) in the sequence from Site 516. Two
levels were determined considerably higher: LAD of Cy-
clococcolithus macintyrei, 1.16 and LAD of Helicoponto-
sphaera sellii, 0.76 m.y. (stage 16). Besides, in Site
516, additional datum levels are marked: LAD of Cyclococ-
colithus rotulus, 1.56 m.y.; LAD of Umbillcosphaera sibo-
gae and the end of acme of Neospaera coccolithomorpha,
1.16 m.y. (coincides with LAD of Cyclococcolithus macin-
tyrei); LAD of Coccolithus doronicoides, 1.08 m.y.
(in presumed stage 22); LAD of Gephyrocapsa aperta, about
0.51 m.y., clear and sharp, reduction in number from
over 30% of all Coccolithes to 0%; at the same level the
number of G.sinuosa also reduced sharply; FAD of Disco-
sphaera tubifera, 0.47 m.y.
According to enumerated datum levels, nine biostrati-
graphic subdivisions (Fig.2) are detected. Earlier, they
were defined in schemes by various authors (22,24,26).
This sequence exposes combinations of features revealed
in sediments from various regions of the World Ocean and,
therefore, it is possible to trace age correlation of
datum levels and stratigraphic subdivisions and to single
out the most detailed of the proposed schemes for zoning
division which now is only of regional value.
Changes occurred in the composition of Late Pliocene-
Quaternary diatom flora of the World Ocean are detected
by several authors (2,27,28). The following datum levels
were proposed for the tropical Pacific and Indian oceans:
LAD of Thalassiosira convexa and LAD of T.convexa var.
aspinosa, 2.2 m.y., (similar in temperate latitudes);
Г
b e g i n n i n g o f R h i z o s o l e n ia p r a e b e r g o n i i v a r . r o b u s t a
d o m i n a tio n o v e r R . p r a e b e r g o n i i s . s . d i r e c t l y b e f o re t h e
O l d u v a i e v e n t ; FAD o f P s e u d o e u n o tia d o l i o l u s , 1 . 8 7 m .y .
( i n a l l o c e a n s b e tw e e n 4 0°N a n d S ) ; LA D o f R h iz o s o l e n ia
p r a e b e r g o n i i , 1 . 7 2 m . y .; LA D o f R h i z o s o le n i a p r a e b e r g o n i i
v a r . r o b u s t a , 1 . 5 6 m . y . ; F AD o f A s t e ro m p h a lu s h i l to n i a n u s
1 . 4 m . y . ( i s t y p i c a l o f u p w e l lin g r e g i o n s i n t h e e a s t e r n
P a c i f ic ) ; l e v e l o f r e - o c c u r re r .c e o f s i l i c o f l a g e l l a t a
M e so c ena e l l i p t i c a , 1 . 3 m . y . ( o u r o b s e r v a t io n s d e t e c te d
a t w o - f o l d i n c re a s e i n n um b e r o f v a l v e s , t h e a cm e l e v e l
o f t h e g i v e n s p e c i e s c o i n c i d e s w i th th e J a r a m i l l o e v e n t );
LAD o f M e s oc e na e l l i p t i c a a f t e r B u r c k le i s 0 . 7 9 m . y . ( i s o
t o p e s t a g e 2 2 ) , i n som e c a s e s , i n t r o p i c a l a n d t e m p e r a te
r e g i o n s , w e r e c o g n i z e d h i g h e r p o s i t io n o f t h i s l e v e l , t h a t
i s , o n t h e b a se o f t h e p a l e o m a g n e t ic B r u nh e s e p o ch ; t h e
z on e o f s h o r t -t im e d e v e lo p m e n t o f R h i z o s o l e n i a m a t u ja m a l
w h i c h a p p e a re d d i r e c t l y b e f o r e t h e J a r a m i llo e v e n t a n d
d i e d o u t b y i t s t o p ; a cm e b e g i n n i n g o f T h a l a s 3 i o s i r a o e s -
t r u p i i , 0 . 7 4 5 ( s ta g e 2 1 ) , t h e t r o p i c a l P a c i f i c ; LAD o f
N i tz c h i a r e i n h o l d i i , 0 . 6 3 m . y. ( i s o t o p e s t a g e 1 8 ) , b y
o u r d a t a t h e s p e c i e s d i e d o u t i n t h e i n t e r v a l f ro m 0 . 6 t o
0 . 4 m . y . ; a cm e l e v e l o f R o p e r ia t e s s e l a t a v a r . o v a t a , 0 . 6 2
t o 0 . 6 1 m . y . ( s ta g e 1 7 ) i n t h e e q u a t o r i a l r e g i o n , a s a
r u l e i n r e l a t i v e v i c i n i t y o f t h e s h o r e .
I n t h e t r o p i c a l a n d t e m p e r a te P a c i f ic a nd I n d i a n o c e a n s,
w e r e c o g n i z e d a l s o o t h e r c h a n ge s i n t h e c o m p o s i t io n o f
d ia to m f l o r a ( 30 t o 3 2 ) : LA D o f B o g o r o v ia m e d i o p u n c ta ta
w i t h i n i n s i g n i f i c a n t ( 0 . 2 m . y . ) s t r a t i g r a p h i c i n t e r v a l
w h i c h i n c lu d e s t h e P l io c e n e - P l e i s to c e n e b o u n d a r y ; LAD o f
H e m id is c u s o v a l is , b a s e o f t h e E o p l e i s to c e n e , w a s t ra c e d
i n t h e e a s t e r n t r o p i c a l P a c i fi c ; LA D o f T h a l a s 3 i o s i ra p l i -
c a t a ( f o r m a ) , b a se o f t h e E o p l e is to c e n e ( b e lo w 1 . 6 m .y . ) ,
t r o p i c a l r e g i o n ; LAD o f T h a l a s 3 i o s i r a r e g u l a t a , a b o u t 1 . 5
m . y . ( ra r e s p e c i e s ) , f o u n d i n t h e e a s t e r n t r o p i c a l P a c i f ic
a nd I n d i a n o c e a n s; a cm e o f R h i z o s o l e n ia s t y l i f o r m i s , 0 .7 4 5
m .y . , i n t h e e a s t e r n n e a r s h o r e t r o p i c a l P a c i f ic a nd I n d i a n
o c e a n s ; L AD o f N l tz s c h l a f o s s i l i s c o r r e s p o n d s t o t h e B r u h -
n e s b o u n d a r y , s p r e a d f ro m 3 5 °N t o 3 5 °S ; L AD o f N i tz s c h i a
p r o l o n g a t a a n d LAD o f T h a l a s s i o s i r a l e p t o p u s v a r . e l l i p t i 
c a , 0 . 6 t o 0 . 5 m . y . ( t r o p i c a l r e g i o n ) ; L AD o f T h a l a s s i o s i 
r a p l l c a t a , 0 . 3 5 t o 0 . 3 m . y. ; LA D o f C o s c i n o d is c u s p s e ud o -
l n c e r t u s , 0 . 1 t o 0 . 0 8 m .y.
95
For the Antarctic latitudes the proposed datum levels
are as follows: LAD of Coscinodiscus vulnificus, 1.9 m.y;
LAD of Nitzschla kerguelensis on the base of the Olduvai
event, 1.9 to 1.8 m.y.; LAD of Coscinodiscus kolbei, LAD
of Rhizosolenia barboi, FAD of Coscinodiscus elliptlpora
within the Olduvai event, 1.8 m.y.; FAD of Actinocyclus
actinochilus, 1.6 m.y.; LAD of Coscinodiscus elliptipora
at the Matuyama/Bruhnes boundary, 0.73 m.y.; LAD of Cos
cinodiscus margaritaceus, 0.6 m.y.; acme level of Hemi-
discus karstenli, 0.195 m.y.; LAD of Hemldiscus karstenii,
about 0.15 m.y.
For the northern temperate latitudes the proposed datum
level are: LAD of Rhizosolenia barboi, on the base of the
Olduvai event, 1.85; LAD of Thalasiosira zabelinae, LAD
of Th.usatchevii, LAD of Th. antiqua, LAD of Stephanopy-
xis lnermls, and LAD of S.hornd us , within the Olduvai
event, 1.75 m.y.; FAD of Rhizosolenia curvlrostrls, about
1.5 m.y.; LAD of Actinocyclus oculatus and FAD of A . ocho-
tensis, 0.97 m.y.; LAD of Rhizosolenia curvirostris, about
0.27 m.y. (some authors recognize higher stratigraphic
position of this species, approximately to 0.16 m.y.).
Because of sharp changes in species composition of ty
pical diatom associations, several variants of zonation
scheme are proposed for various biogeographical areas of
the World Ocean.
For the Arctic-boreal Pacific, the zonation scheme by
Barron (28) is used. It is a version of Koizumi scale (93)
detailed for the low Pleistocene interval. Jouse (34) was
the first to detect the sequence of changes in the diatom
composition which was used as a basis for these schemes.
After the scheme by Barron, Pleistocene is subdivided into
the following zones: Actinocyclus oculatus, 1.75 to 0.97
m.y.; Rhizosolenia curvirostris, 0.97 to 0.27 m.y. with
subzones "a", 0.97 to 0.63 m.y., and "b", 0.63 to 0.27
m.y.; Denticulopsis seminae, 0.27 m.y. to the Recent.
For the tropical Pacific and Indian oceans the most
valid scheme is the specified and completed version (30,
32) of the zonation scheme by Burckle (35). According to
this scale Pleistocene can be subdivided into zones of
Nitzschia fossills, 1.87 to 0.7 m.y., and Pseudoeunotia
doliolus, 0.7 m.y. to the Recent. The latter is divided
into the layers with Coscinodiscus pseudoincertus, 0.7
96
t o 0 . 1 o r 0 . 0 8 m . y . , a nd w i t h C o s e i n o d is c u s n o d i - li fe r ,
0 . 1 o r 0 . 0 8 m . y. t o t h e R e c e n t.
F o r t h e A n t a r c t ic a r e a o f t h e W o r ld O c e an , s e v e r a l
v a r i a n t s o f z o n a t io n s ch e m es a r e p r o p o s e d b e c a us e f l o r a
i n t h i s a r e a e x p o s es c o n s i d e r a b l e p r o v i n c i a l v a r i a t i o n s .
T he m o s t w e l l g r o u d e d s ch e m e s ee m s t o b e t h e c o m b in a t io n
o f z o n a t io n s chem es p r o p o se d b y M c C o ll um ( 3 6 ) a n d b y
J o us e ( 3 7 ) . T he f i r s t i s u s e d m o re o f t e n . B y t h i s s ch e m e
P l e i s to c e n e i s d i v id e d i n t o t h r e e z o n e s : R h i z o s o l e n i a b a r -
b o i - N i tz s c h i a k e r g u e l e n s i s , 1 . 8 t o 1 . 6 m . y . . C o s e i n o d is -
c u s e l l i p t i p o r a - A c t in o c y c l u s i n g e n s , 1 . 6 t o 0 . 6 m . y . ,
a nd C o s c i n o d is c u s l e n t i g i n o s u s , 0 . 6 m . y. t o t h e R e c e n t.
G r e a t n u m b e r o f d atu m l e v e l s a nd e v e n t s a r e b a se d o n
r a d i o l a r i a n s ( 3 2 , 3 8 , 4 0 , 4 1 ) . LAD o f c o s m o p o l lth s p e c ie s
A x o pru n um a n g e lin u m ( Cam p, e t C l a r k ) i s r e c o g n iz e d a t
0 . 3 8 t o 0 . 4 1 m . y . ( s ta g e 11 ) a nd i s w i d e l y t ra c e d . L e v e ls
b y o t h e r s p e c i e s a r e o f r e g i o n a l v a l u e .
I n t h e A n t a r c t i c , L A D 's o f t h e f o l lo w i n g s p e c i e s a r e
d e t e c t e d : S t ic h o p o d iu m b i c o n ic u m ( V in a s s a ) ( E u c y r tid iu m
c a l v a l v e r t e n s e ) , 1 . 8 m . y. ( 3 9 ) ; C l a t h r o c y c l a s b i c o r n i s
H a ys, 1 . 7 2 m . y . ; P y l o s p l r a s p . P e t r u s h . , A n t a r c t i s s a
c y l i n d r l c a P e t r u s h . , A c tin o m m a t e t r a r y l a ( H a y s ) , O c to d e n -
d t o n s p . H a y s , S a c c o s p y r is p r a e a n t a r c t ic a P e t r u s h . ,
a b o u t 0 . 7 m . y . ; P r u n o p y le b u s p i n ig e r u m H a y s , P e r ic h l a m i -
d iu m s p . Q P e t r u s h . , a b o u t 0 . 4 m . y . A t a b o u t o . 7 m . y.
e x t i n c t i o n o f S a t u r n a l i s c l r c u l a r l s H c k ., P t e r o c a m u m
t n l o b u m H c k . o c c u r r e d i n t h e A n t a r c t i c , t h o u g h t h e y
o c c u r e v e n a t p r e s e n t i n t h e t r o p i c a l r e g i o n s .
I n t h e n o r t h e r n P a c i f ic , t h e f o l lo w i n g d atu m l e v e l s a n d
e v e n t s a r e r e c o g n i z e d : e v o l u t io n o f S p h a e r o p yle r o b u s t a
K l in g i n t o S p h . l a n g i i D r e y e r , n e a r t h e P l i o c e n e - P l e i s t o -
c e n e b o u n d a ry , a b o u t 1 . 8 m . y . ; LAD o f L a m p r o c y c la s h e t e r o -
p o ro s H a ys a n d F AD o f E u c y r t id i u m m a tu y m ai H a ys , 0 . 9 m . y . ;
LA D o f S t y l a c o n t a r iu m a g u i Io n i u m H a ys, 0 . 3 m . y .
I n t h e n o r t h - e a t e r n P a c i f ic , L AD o f L . h e t e r o p o r o s i s
h i g h e r t h a n FA D o f E . m a t u ya m a l , w h i ch c o r re s p o n d s t o t h e
P I i o c e n e - P l e is t o c e n e b o u n d a ry ( 4 2 ) ; L . h e t e r o p o r o s e v o l v e d
t h e r e i n t o L a m p r o c y r tl s n e o h e t c ro p o r o s K l in g a b o u t 1 . 2
m . y . , i n i t s t u r n , th e l a t t e r e v o l v e d i n t o C o n a ra ch niu m
n i g r i n i a e C a u l e t a t 0 . 7 6 m . y . ( 4 0 ) .
I n t h e n o r t h e r n P a c i f i c , LA D o f A m p h i m e lis s a s e to s a
97
C l e v e a nd L y ch n o ca n iu m g r a n d e C am p, e t C l a r k c a n b e a p p r o 
x i m a t e l y d a t e d b a c k t o 0 . 1 a n d 0 . 0 8 m .y . The f i r s t o f the -»
s e s p e c i e s i s a m p h i b o r e a l a n d o c c u r r s e v e n n ow i n t h e b o 
r e a l A t l a n t i c a nd A r c t i c , t h e s e c o n d d i e d o u t a t t h e
M i o c e n e - P l io c e n e b o u n d a ry , i n t h e T r o p i c s , a n d i n t h e
P l io c e n e , i n t h e A n t a r d t i c , a nd a n l y i n t h e L a t e P l e i s 
t o c e n e , i n t h e n o r t h e r n P a c i f ic ( 4 1 ) .
I n t h e e q u a t o r i a l P a c i fi c a n d I n d i a n o c e a n s , t h e r e c o g 
n i z e d d a tu m l e v e l s a n d e v e n t s a r e a s f o l lo w s ( 2 , 4 0 , 4 3 ,
e t c . ) : LAD o f P t e r o c a n iu m p r is m a t iu m R i e d e l , 1 . 6 2 t o 1 . 7 6
m . y . ; e v o l u t io n a r y t r a n s i t i o n o f T h e o c o r y th i u m v e t u lu m
N i g r i n i i n t o T h . tr a c h e l iu m t r a c h e l iu m E h r e n b e rg , 1 . 3 9
t o 1 . 5 7 m . y .; e v o l u t io n a r y t r a n s i t io n o f L . e o h e t e r o p o r o s
i n t o C . n i g r i n i a e , 0 . 9 5 t o 1 . 1 m . y . ; LAD o f A n t h o c y r t id i u m
a n g u la r e N i g r i n i , 0 . 9 2 t o 0 . 9 8 m . y . ; FAD o f C o l lo s p h a e r a
s p . A . J o h n s on , 0 . 6 t o 0 . 6 5 m . y . ; FAD o f C . tu b e r o s a H a e c 
k e l , 0 . 3 5 t o 0 . 3 8 m . y . ; e v o l u t io n a r y t r a n s i t i o n o f C o l lo
s p h a e ra s p . A . J oh n s o n i n t o B u c c l n o s p h a e ra l n v a g i n a t a H c k . ,
0 . 1 9 t o 0 . 2 3 m . y .
I n t h e d e p o s i t s o f t h e e a s t e r n t r o p i c a l P a c i f ic G o l l ( 4 4 )
r e c o g n i z e d t h e f o l lo w i n g d a tu m l e v e l s : FA D o f C o l l o s p h a e ra
h u x l e y i H c k . , 1 .7 4 t o 1 . 8 m . y . ; F AD o f N e o s e m a n tis h o f f e r -
n i G o l l , 1 . 5 8 m . y .; L AD o f S p h aeroz o um c r a s s u s G o l l, 1 .2 8
m . y . ; LA D o f A m p h i s p y ris r o g g e n t h e n i G o l l, 0 . 6 8 t o 0 . 6 5
m . y .; F AD o f C o l lo s p h a e r a t u b e r o s a , 0 . 2 m . y . ; FAD o f
B . i n v a g i n a t a , 0 . 1 m . y.
F o r t h e sam e r e g i o n , K r u g l ik o v a ( 3 2 ) r e v e a l e d t h a t F AD s
o f s i n g l e s p e c i e s o f P t e r o c o r y s m i n y to r a x ( N i g r i n i ) a nd
L a m p r o c y c la s m a r i t a l i s v e n t n c o s a N i g r i n i a p p r o x i m a t e ly
c o r re s p o n d t o t h e p o s i t io n o f t h e P l io c e n e - Q u a t e r n a r y
b o u n d a ry ; L AD o f T h . v e tu lu m i n t h i s r e g i o n i s a t a b o u t
0 . 9 m . y . A b u n d a n t a p p e a ra n c e l e v e l s o f P . m i n y t o ra x a nd
L . m a r i t a l i s v e n t r ic o s a a n d F AD o f C a r p oc an iu m p r a e c u rs o ru m
K r u g l ik o v a s t r a t i g r a p h l c a l l y o c c u r r e d a t t h e same l e v e l .
LADs o f A . a n g e lln u m a nd C a r p o c an iu m p r a e c u r s o ru m c o i n c i d e
w i t h LAD o f P e t ic h l a m y d iu m s p . O . P e t r u s h .
A c c o r d i n g t o d a tu m l e v e l s b a s ed o n r a d i o l a r i a n s , Q u a t e r
n a r y d e p o s i ts c a n b e d i v i d e d i n t o t h r e e o r f o u r s t r a t ig r a m
p h l c s u b d i v is i o n s . I n t h e A n t a r c t i c , d e p o s i ts a r e d i v id e d
i n t o t h r e e z on e s ( h o r i z o n s ) ; t h e i r b o u d a r ie s a r e i n g o od
c o r r e l a t i o n : f t, У ,Ф (4 5 ); S a t u r n a l is c i r c u l a r i s , S t y l a t r a c -
t u s u n x v e r s u s ( A . a n g e l i u m ) , A n t a r c t i s s a d e n t l c u l a t a ( 3 8 ) ,
I I I - I ( h o r i z o n s o f s i n g l e z o n e A ) ( 3 9 ) . B o u d a r i e s b e t w e e n
t h e m a r e d a t e d a s 0 . 7 a n d 0 . 4 m . y .
I n t h e N o r t h P a c i f i c , H a y s r e c o g n i z e d t h r e e z o n e s ( 2 ) :
E u c y r t i d i u m m u t u y a m a i , S t y l a t r a c t u s u n i v e r s u s , E u c y r t l d l u m
t u m i d u l u m . B o u n d a r i e s b e t w e e n t h e m a r e o f 0 . 9 a n d 0 . 4 m . y .
B e t w e e n t h e m i d d l e a n d u p p e r z o n e s , K l i n g ( 4 2 ) d i s t i n g u i s
h e d a n a d d i t i o n a l z o n e o f S t y l a c o n t a r i ’ jr i a q u i I o n i u m w i t h
i t s u p p e r b o u n d a r y o f 0 . 3 m . y . A b o v e t h i s b o u d a r y , o n e
m o r e z o n e c a n b e d i s t i n g u i s h e d - L y c h n o c a n i u m g r a n d e , 0 . 1
t o 0 . 0 8 m . y . , b y L A D o f i n d e x - s p e c i e s ( 4 1 ) . W i t h i n t h i s ?
z o n e L A D o f A m p h i m e l i s s a s e t o s a o c c u r s .
F o r t h e t r o p i c a l r e g i o n s , a f o u r - z o n e s c h e m e c a n b e
p r o p o s e d ( 4 3 ) : A n t h o c y r t i d i u m a n g u l a r e , A m p h i r r h o p a l u m
y p s i l o n , C o l l o s p h a e r a t u b e r o s a , B u c c i n o s p h a e r a i n v a g i n a t a ,
b a s a l b o u n d a r i e s b e i n g 1 . 7 , 0 . 9 4 , 0 . 3 7 a n d 0 . 2 1 m . y .
A s t h e e a s t e r n t r o p i c a l P a c i f i c h a s p e c u l i a r r a d i o l a r i a n
f a u n a ( 3 2 ) - m o r e c o l d - w a t e r c o m p o s i t i o n , o f t e n a b s e n c e o f
i n d e x - s p e c i e s p r o p o s e d b y N i g r i n i , o f t e n m o r e w i d e s t r a t i -
g r a p h i c i n t e r v a l s i n s p e c i e s d i s t r i b u t i o n - i t i s im p o s
s i b l e t o u s e t h e s c h e m e b y N i g r i n i i n t h i s r e g i o n . T w o
n e w s c h e m e s a r e p r o p o s e d t o t h i s r e g i o n ( 3 2 , 4 4 ) . G o l l
p r o p o s e d t w o z o n e s : C o l l o s p h a e r a h u x l e y i a n d C o n a r a c h n i u m
n l g r i n a e w i t h t h e b o u d a r y b e t w e e n t h e m o f 0 . 9 m . y .
L e v e l s o f c o n s i d e r a b l e c h a n g e i n t h e e n t i r e f a u n a c h a r a c
t e r a n d a l s o d a t u m l e v e l s o f i n d i v i d u a l s p e c i e s a n d e v o l u
t i o n a r y e v e n t s a r e a c c e p t e d a s a r e f e r e n c e f o r s t r a t i g r a -
p h i c d i v i s i o n , i n t h e s c h e m e b y K r u g l i k o v a .
K r u g l i k o v a d i s t i n g u i s h e d l a y e r s w i t h f a u n a : T h e o c o r y t h i u m
v e t u l u m , C a r p o c a n i u m p r a e c u r s o r u m , P t e r o c o r y s m i n y t o r a x ,
t h e b o u d a r i e s b e t w e e n t h e m b e i n g a p p r o x i m a t e l y 0 . 9 a n d
0 . 4 m . y .
T h u s , m o r e t h a n 1 4 0 d i f f e r e n t l e v e l s a r e d e t e c t e d i n t h e
f o u r g r o u p s o f o c e a n i c m i c r o p l a n k t o n f o r t h e l a s t 2 m . y .
T h e y a r e e v o l u t i o n a r y a n d m i g r a t i o n F A D s a n d L A D s a n d a c m e
l e v e l s . T h e i r q u a n t i t a t i v e d i s t r i b u t i o n o n t i m e s c a l e w i t h
0 . 1 m . y . i n t e r v a l r e v e a l s c o n s i d e r a b l e r e g u l a r i t i e s ( F i g .
3 ) . T h r e e p e a k o f m a x i m u m c h a n g e s i n p l a n k t o n c o m p o s i t io n
c o r r e s p o n d t o t h e b e g i n n i n g o f t h e n o r m a l p o l a r i t y p e r i o d s
( t h e O l d u v a i e v e n t ; 2 3 l e v e l s ; t h e J a r a m i l l o e v e n t , 1 2
l e v e l s ; t h e B r u h n e s e p o c h , 1 7 l e v e l s ) . A f t e r m a x i m u m
c h a n g e s o c c u r r e d a t t h e b a s e o f t h e O l d u v a i , t h e n u m b e r
99
of changes gradually reduced and reached its minimum
(2 levels) in the middle of the inverse polarity, that
is between the Olduvai and Jaramillo events, 1.4 to 1.2 m.
y. Another minimum (2 levels) is recorded also during the
inverse polarity, 0.9 to 0.8 m.y., between the Jaramillo
event and Bruhnes epoch. These data, no doubt revealed
the correlation, probably indirect, between the magnetic
field inversions and development of oceanic microplankton.
This correlation appeared to be more distinct in the
composition of diatoms and radiolarians. We can suppose
that it can be explained either by considerably greater
variety in their species (it is an order higher than in
planktonic foraminiferas and coccolithophorids), or by
siliceous composition of their skbletons.
Maximum of changes observed at the base of the Olduvai
event and its absence at the top of the Olduvai allow to
place the Pliocene-Quaternary boundary at its base.
Position of the second peak at the base of the Bruhnes
epoch verifies biostratigraphic significance of this
level and the right of binomial division of the Quaternary.
Comparatively great number of changes during the Bruhnes
epoch (5 to 10 levels per 0.1 m.y.) can be first explained
by strong climate variations which caused sharp and sig
nificant changes in the oceanic environment.
All datum levels have limited application due to restric
tion of species areals- Besides, chronologic position of
a datum level in a given sequence depends on regional
climatic conditions, that is, they are not chronostrati-
graphic levels and if they are - only within certain
accuracy range. Some shift in levels is possible because
of bioturbation of oceanic sediments and ofhiatuses in
the geological recording. At last, when analysing long se
dimentary cores, especially of those obtained during
sea drilling, it is necessary to consider the probability
of artificial increase of vertical range in species dis
tribution.
Duration of biostratigraphic zones is usually several
hundreds of thousands years. Such degree of accuracy
is insufficient for the Quaternary during which strong
and short variations of physicogeographical conditions
occurred.
Therefore, paleontological methods alone can lead to
100
e r r o r s I n c o r r e l a t i o n o f d e p o s i t s a n d e s t i m a t e s o f t h e i r
a g e .
D e s p i t e g r e a t a c h i e v e m e n t s i n s t r a t i g r a p h i c m e t h o d s
u s e d t o s t u d y Q u a t e r n a r y o c e a n i c d e p o s i t s a n d c e r t a i n m e 
r i t s o f e a c h a l l o f t h e m h a v e c o n s i d e r a b l e r e s t r i c t i o n
w h i c h c a n c a u s e s t r a t i g r a p h i c e r r o r s . C e r t a i n l y , w h e n
s u b d i v i d i n g c o n t i n u o u s a n d c o m p l e t e s e q u e n c e s , e s p e c i a l 
l y t h o s e o f y o u n g d e p o s i t s , w e c a n o b t a i n r e l i a b l e r e s u l t s
u s i n g o n l y o n e o r t w o m e t h o d s , f o r i n s t a n c e , m i c r o p a l e o n -
t o l o g i c a l p a l e o t e m p e r a t u r e o n e w i t h c o n s i d e r a t i o n o f
l i t h o l o g y . F u r t h e r p r o g r e s s i n Q u a t e r n a r y s t r a t i g r a p h y
i s p o s s i b l e o n l y i n c a s e o f d e v e l o p i n g a l l m e t h o d s a n d
i n c a s e o f t h e i r c o m p r e h e n s i v e u s a g e .
R E F E R E N C E S
1 . N i k i f o r o v a , K . V . C h r o n o s t r a t i g r a p h y o f t h e U p p e r P l i o
c e n e a n d t h e Q u a t e r n a r y . - I n : S t r a t i g r a p h y i n i n v e s t i 
g a t i o n s o f t h e G e o l o g i c a l I n s t i t u t e o f t h e A c a d e m y o f
S c i e n c e s o f t h e U S S R . M o s c o w : N a u k a , 1 9 8 0 , p . 2 5 4 - 2 5 8 .
( I n R u s s i a n ) .
2 . B e r g g r e n W . A . , B u r c k l e L . M . , C l t a M . B . , e t a l . T o w a r d s
a Q u a t e r n a r y T i m e S c a l e . - Q u a t e r n a r y R e s . , 1 9 8 0 , v . 1 3 ,
p . 2 7 7 - 3 0 2 .
3 . E m i l i a n l C . P l e i s t o c e n e t e m p e r a t u r e s . - J . G e o l o g y , 1 9 5 5 ,
v . 6 3 , p . 5 3 8 - 5 7 8 .
4 . E m i l i a n i C . P a l e o t e m p e r a t u r e a n a l y s i s o f C a r i b b e a n c o
r e s P 6 3 0 4 - 8 a n d P 6 3 0 4 - 9 a n d a g e n e r a l i z e d t e m p e r a t u r e
c u r v e f o r t h e p a s t 4 2 5 . 0 0 0 y e a r s . - J o u r . G e o l o g y , 1 9 6 6 ,
N 2 , p . 1 0 9 - 1 2 6 .
5 . S h a c k l e t o n N . J . , O p d y k e N . D . O x y g e n I s o t o p e a n d p a l e o -
m a g n e t l c s t r a t i g r a p h y o f E q u a t o r i a l P a c i f i c c o r e s V 2 8 -
2 3 ^ : o x y g e n I s o t o p e t e m p e r a t u r e s a n d I c e v o l u m e s o n a
1 0 y e a r a n d 1 0 y e a r s c a l e . - Q u a t e r n a r y H e s . , 1 9 7 3 ,
v . 3 , p . 3 9 - 5 5 .
6 . V a n D o n k J . 0 r e c o r d o f t h e A t l a n t i c O c e a n f o r t h e
e n t i r e P l e i s t o c e n e E p o c h . - G e o l . S o c . A m e r . M e m . , 1 9 7 6 ,
v . 1 4 5 , p . 1 4 7 - 1 6 4 .
7 . K u k l a G . J . P l e i s t o c e n e L a n d - S e a c o r r e l a t i o n s . I . E u r o p e .
10 1
E a r t h - S c i c n c e R e v ie w , 1 9 77 , v . 1 3 , N 4 , p . 3 0 7 -3 7 4 .
8 . C o oke H . B .S . P l e is t o c e n e c h r o n o lo g y : l o n g o r s h o r t ? -
Q u a t e r n a r y R e s ., 1 9 7 3 , v . 3 , N 2 , p . 2 0 6 -2 2 0 .
9 . E r ic s o n D . B . , E w in g М . , W o l li n G . , H e eze n B . C . A t l a n t i c
d e e p -s e a s e d i m e n t c o r e s . - G e o l . S o c . A m e r . B u l l. , 1 9 6 1 ,
v . 7 2 , N 2, p . 1 9 3 -2 8 6 .
1 0 . E r i c s o n D . B . , W o l li n G . P l e i s to c e n e c l i m a t e s a n d c h r o 
n o lo g y I n d e e p -s e a s e d i m e n t s .- S c i e n c e , 1 9 6 8 , v . 1 6 2 ,
N 3 8 59, p . 1 2 2 7 -1 2 3 4 .
1 1 . E r ic s o n D . B . , E w i n g М . , W o l l i n G . P l io c e n e - P l e l s to c e n e
b o u d a r y I n d e e p -s e a s e d i m e n t s . - S c ie n c e , 1 9 6 3 , v . 1 3 9 ,
N 3 5 56, p . 7 2 7 -7 3 7 .
1 2 . B a n n er F . T . , B lo w W . H. P r o g re s s I n p l a n k t o n l c f o r a m i n l -
f e r a l b l o s t r a t l g r a p h y o f t h e N e o g e n e .- N a t u r e , 1 9 6 5 ,v .
2 0 8 , N 5 0 16 , p . 1 1 6 4 -1 16 6 .
1 3 . B lo w W .H . L a t e M i d d le E o c e ne t o R e c e n t p l a n k t o n l c f o r a -
m l n i f e r a l b i o s t r a t i g r a p h y . - I n : B r on nir aa nn a nd H . H .
R enz ( e d s . ) , P r o c . 1 s t . I n t . C o n f . P l a n k t o n l c M i c r o 
f o s s i l s , G e n ev a , 1 9 6 7, L e i d e n , 1 9 69 , v . I , p . 1 9 9 -4 2 1 .
1 4 . B o l l I H . M ., P r e m o l l S i lv a I . O l ig o c e n e t o R e c e n t p l a n k -
t o n i c f o r a m i n i fe r a a nd s t r a t i g r a p h y o f t h e L e g 1 5 s i t e s
I n t h e C a r ib b e a n S e a . I n : E d g a r N . T . , S a u n d e rs J . B . e t
a l . I n i t . R e p o r ts D SDP , 1 9 7 3 , v . 1 5 , p . 4 7 5 - 4 9 8 .
1 5 . B a ra s h M . S . , O s k ln a N . S . , B ly um N .S . Q u a t e r n a ry b l o 
s t r a t l g r a p h y a nd s u r f a c e p a l e o te m p e r a t u r e s b y m eans o f
p l a n k t o n l c f o r a m l n l f e r s , S i t e s 5 1 6 a n d 5 1 8 , DSD P L eg
7 2 . - I n : B a r k e r P . F . , C a r ls o n R . L . e t a l . I n t t . R e p o r ts
D SDP, 1 9 8 3 , v . 7 2 .
1 6 .M a n k ln e n E . A . , D a r ly m p l e G . B . R e v is ed g e o m a g n e tic p o l a 
r i t y e v e n t . - E a r t h a n d P l a n e t . S c . L e t t . , 1 9 79 , v . 1 9 , p .
4 4 3 - 4 5 2 .
1 7 . B a ra s h M .S . T he p l a n k t o n i c f o r a m i n i fe r s I n t h e s e d i 
m e n ts o f t h e N o r th A t l a n t i c . M osco w : N a u k a , 1 9 7 0 ,1 0 3 p .
1 8 . C l i n e R . M . , H a ys J . D . I n v e s t i g a t i o n o f L a t e Q u a t e rn a ry
P a le o c e a n o g ra p h y a n d P a l e o c l im a t o l o g y . - G e o l.S o c .A m e r .
M e m ., 1 9 7 6 , v .1 4 5 , p . 1 - 4 6 9 .
1 9 .T h o m p so n P . R . , S c l a r l l l o J . R . P l a n k t o n l c f o r a m l n l f e r a l
b l o s t r a t l g r a p h y I n t h e E q u a t o r i a l P a c i f ic . - N a t u r e , 1 978,
V .2 76.N 5 68 3, p . 2 9-33 .
2 0 . B a ra s h M .S . T he v e r t i c a l a n d h o r i z o n t a l d i s t r i b u t i o n
o f p l a n k t o n l c f o r a m i n i f e r a i n Q u a t e r n a r y s e d im e n t s o f
th e A t l a n t i c O c e a n .- I n : B . M . F u n n e l l a n d W . R .R le d e l
102
(eds.). The Micropaleontology of Oceans.L., 1971, p.
433-442.
21.Krasheninnikov V.A. Cenozoic scale of the continents
and oceans (in Russian).- In: Stratigraphy in investi
gations of the Geological Institute of the Academy of
Sciences of USSR. Moscow: Nauka, 1980, p.162-206.
22.Hay W.W., Mohler H.P., Roth P.H., Schmidt R.R., Bou
dreaux J.E. Calcareous Nannoplankton zonation of the
Cenozoic of the Gulf Coast and Caribbean-Anti 1lean
area, and transocanic correlation.- Trans. Gulf Coast
Assoc, of Geol.Soc., 1967, v.67, p.428-480.
23.Martini E., Worley T. Standard Neogene Calcareous nan
noplankton zonation.- Nature, 1970, v.225, p.290-298.
24.Gartner I. Calcareous nannofossil biostratigraphy and
revised zonation of the Pleistocene.-Marine Micropale
ontology, 1977, N2,p.1-25.
25.Bukry D. Biostratigraphy of Cenozoic marine sediments
by calcareous NannofossiIs.-Micropaleontology, 1978,.
V.24, N1, p.44-60.
26.0kada H., Bukry D. Supplemaentary Modification and
Introduction of Code Numbers to the Low-Latitude
Coccolith biostratigraphic zonation (Bukry, 1973;1975).
Marine Micropaleontology, 1980, N5, p.321-325.
27.Burckle L.H., Trainer I. Middle and Late Pliocene dia
tom datum levels from the Central Pacific.- Micropale
ontology, 1979, v.25, p. 281-293.
28.Barron J.A. Late Cenozoic diatom biostratigraphy and
paleoceanology of the middle-latitude estern North
Pacific, Deep Sea Drilling Project, Leg 63.- In: Yeats,
R., Haq B.U., et al. Init. Reports DSDP, 1981, v.63,
p.507-536.
29.Weaver F.M., Gombos A.M. Southern High-Latitude Diatom
biostratigraphy.-SEPM Special Publication, 1981, N 32,
p. 445-470.
30.Kazarina G.Kh. Diatoms in the Upper Mtocene-Pleistocene
sediments of the east tropical region of the Indian
Ocean (in Russian).- In:Marine micropaleontology. Mos
cow: Nauka, 1978, p.5-18.
31.Jouse A.P., Kazarina G.Kh., Mukhina V.V. The most spe
cific features in distribution of Diatoms in Pliocene
and Pleistocene deposits of the Middle American Trench
off Guatemala.- In: Aubouin J.( von Huene R., et al.
103
I n i t . R e p o r t s D S D P , 1 9 8 2 , v . 6 7 , p . 4 5 5 - 4 7 1 .
3 2 . K r a s h e n l n n l k o v B . A . , K a z a r i n a G . K h . , K r u g l i k o v a S . B . ,
M u k h i n a V . V . , U s h a k o v a M . G . S t r a t i g r a p h y o f t h e P l i o
c e n e a n d Q u a t e r n a r y s e d i m e n t s o f t h e E a s t P a c i f i c R i s e
a n d G a l a p a g o s s p r e a d i n g C e n t e r o n t h e b a s e o f p l a n k t o -
n i c m l c r o o r g a n i s m a ( i n R u s s i a n ) . - I n : Q u e s t i o n s o f m i 
c r o p a l e o n t o l o g y , v . 2 6 , M o s c o w : N a u k a , 1 9 8 3 .
3 3 . K o i z u m i I . L a t e C e n o z o i c d i a t o m b i o s t r a t i g r a p h y i n t h e
c i r c u m - N o r t h P a c i f i c r e g i o n . - G e o l . S o c . J a p a n J . , 1 9 7 5 ,
v . 8 1 , N 1 0 , p . 6 1 1 - 6 2 7 .
3 4 . J o u s e A . P . D i a t o m s i n t h e s e d i m e n t s o f P l e i s t o c e n e a n d
L a t e P l i o c e n e o f t h e B o r e a l z o n e o f t h e P a c i f i c O c e a n
( i n R u s s i a n ) . - I n : M i c r o p a l e o n t o l o g y a n d o r g a n o g e n o u s
s e d i m e n t a t i o n i n t h e O c e a n s . M o s c o w : N a u k a , 1 9 6 9 , p . 5 - 2 7 .
3 5 . B u r c k l e L . H . , O p d y k e N . D . L a t e N e o g e n e d i a t o m c o r r e l a
t i o n s I n t h e c l r c u m - P a c l f l c . - P r o c . 1 s t I n t e r n . C o n g r . o n
P a c i f i c N e o g e n e s t r a t i g r a p h y . T o k y o , 1 9 7 7 , p . 2 5 5 - 2 8 4 .
3 6 . M c C o l l u m D . W . D i a t o m s t r a t i g r a p h y o f t h e S o u t h e r n
O c e a n . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t . R e p o r t s
D S D P , 1 9 7 5 , v . 2 8 , p . 5 1 5 - 5 7 2 .
3 7 . J o u B e A . P . , P e t r u s h e v s k a y a M . G . D i a t o m s a n d R a d i o l a r l -
a n s I n t h e c o r e s t . 2 5 6 " O B " ( S o u t h e r n o c e a n ) ; e s s a y o f
b l o s t r a t l g r a p h l c c o r r e l a t i o n ( i n R u s s i a n ) . - I n : T h e
M i c r o p a l e o n t o l o g y o f O c e a n a a n d S e a s . M o s c o w : N a u k a ,
1 9 7 4 , p . 3 - 1 3 .
3 8 . C h e n P . A n t a r c t i c R a d i o l a r i a , L e g 2 8 , D e e p S e a D r i l l i n g
P r o j e c t . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t .
R e p o r t s D S D P , 1 9 7 5 , v . 2 8 , p . 4 3 7 - 5 1 3 .
3 9 . P e r t u s h e v s k a y a M . G . C e n o z o i c r a d i o l a r l a n s o f t h e A n t 
a r c t i c , L e g 2 9 , D S D P . - I n : K e n n e t t J . P . , H o u t z R . E . ,
e t a l . I n i t . R e p o r t s D S D P , 1 9 7 5 , v . 2 9 , p . 5 4 1 - 6 7 6 .
4 0 . J o h n s o n D . A . , K n o l l A . H . A b s o l u t e a g e s o f Q u a t e r n a r y
r a d i o l a r i a n d a t u m l e v e l s i n t h e e q u a t o r i a l P a c i f i c . -
Q u a t e r n a r y R e s . , 1 9 7 5 , v . 5 , p . 9 9 - 1 1 0 .
4 1 . K r u g l i k o v a S . B . R a d i o l a r i a i n t h e L o w e r - P l e i s t o c e n e
s e d i m e n t s o f t h e B o r e a l a n d N o r t h S u b t r o p i c a l z o n e s
o f t h e P a c i f i c O c e a n ( i n R u s s i a n ) . - O c e a n o l o g y , 1 9 7 6 ,
v . X V I , N 1 , p . 1 1 3 - 1 1 7 .
4 2 . K l l n g S . A . R a d i o l a r i a f r o m t h e e a s t e r n n o r t h P a c i f i c
D e e p S e a D r i l l i n g P r o j e c t , L e g . 1 8 . - I n : K u l m L . D . , v o n
H u e n e , e t a l . I n i t . R e p o r t s D S D P , 1 9 7 3 , v . 1 8 , p . 6 1 7 - 6 7 1
104
4 3 . N i g r i n i С . A . R a d l o l a r ia n z o n es i n t h e Q u a te rn a ry o f
t h e e q u a t o r i a l P a c i f ic O c e a n .- I n : F u n n e l B .M . a n d
R i e d e l W .R . ( e d s . ) . T he M i c r o p a l e o n t o l o g y o f o c e a n s ,
L . , 1 9 7 1, p . 4 4 3 -4 6 1 .
4 4 . G o l l R .M . P l io c e n e - P l e is t o c e n e r a d i o l a r i a n s fro m t h e
E a s t P a c i f ic R i s e a n d t h e G a l a p a g os s p r e a d in g c e n t e r ,
D ee p S e a D r i l l i n g P r o j e c t , L e g 5 4 . - I n : R o s e n da h l B . R . ,
H e k i n ia n R . , e t a l . I n i t . R e p o r t s D SD P, 1 9 80 , v . 5 4 ,
p . 4 2 5 -4 5 3 .
4 5 . H a ys J . D . R a d i o l a r la a nd L a t e T e r t ia r y a nd Q u a t e r n a r y
h i s t o r y o f A n t a r c t i c s e a s . - In : B i o l . A n t a r c t i c S e a s . ,
W a s h., 1 9 65 , v . 2 , . p . 1 2 4 -1 8 4 .
105
ResearchGate has not been able to resolve any citations for this publication.
Article
The development of Cenozoic and Mesozoic southern high-latitude diatom biostratigraphy over the past 15 years is summarized with emphasis on advancements resulting from deep-sea drilling in the Antarctic and Sub-Antarctic regions. Regional differences in diatom distribution and occurrence in Neogene sediments recovered at DSDP Sites 266 and 278 are compared. Spatial and temporal variance in species are discussed. A regionally applicable Neogene diatom zonation is proposed. The biostratigraphic framework consists of five previously defined and six modified zones from DSDP Legs 28 and 29 reports. In addition, five new zones are proposed. The paper provides the datums for geochronologic subdivision and the correlation of epoch boundaries in Sites 266 and 278, floral references for all stratigraphically significant species, and a comprehensive bibliography on southern Ocean diatoms.-from Authors
Article
Calcareous nannofossils have been established as a fundamental means by which biostratigraphic correlation of Cenozoic marine sediment can be made. They are commonly present in cool-water areas and are especially diverse and consistently present in warm-water areas. The characteristic rapid evolution, abundance, and solution resistance of certain distinctive genera such as Discoaster and Sphenolithus permit the recognition of up to 56 Cenozoic zonal units in tropical areas. Diminishing diversity and generally shallower calcite-compensation depths reduce the resolution of the zonation in nontropical areas, most notably during the Neogene. Ocean-circulation patterns and plate-tectonic motions affect the geographic limits of nannofossil zonation.
Article
Sixteen diatom datum levels from the Middle and Late Pliocene of the central Pacific are ranked and related to the paleomagnetic reversal record and the oxygen isotope record. The datum levels and their positions relative to the paleomagnetic record are as follows: (1) first appearance of Thalassiosira convexa in the upper part of the Gilbert; (2) disappearance of T. convexa in the lower part of the Gauss; (3) recurrence of T. convexa in the Mammoth Event of the Gauss; (4) first appearance of Rhizosolenia praebergonii in the normal event between the Mammoth and Kaena Events; (5) last appearance of Nitzschia jouseae in the upper part of the Gauss; (6) first appearance of R. praebergonii var. robusta in the lower part of the Matuyama; (7) recurrence of Coscinodiscus nodulifer var. cyclopus in the lower part of the Matuyama; (8 and 9) last appearance of T. convexa and T. convexa var. aspinosa in the lower part of the Matuyama; (10) last appearance of C. nodulifer var. cyclopus; (11) change in dominance between R. praebergonii and R. praebergonii var. robusta below the Olduvai Event; (12) recurrence of C. nodulifer var. cyclopus just below the Olduvai Event; (13) final occurrence of C. nodulifer var. cyclopus just below the Olduvai Event; (14) final occurrence of R. praebergonii in the lower part of the Olduvai; (15) first occurrence of Pseudoeunotia doliolus in the mid-part of the Olduvai Event; (16) final occurrence of R. praebergonii var. robusta just above the Olduvai Event. When these data are related to the oxygen isotope record it becomes apparent that climatic fluctuations are an important arbiter of diatom first and last appearances. A new variety, Rhizosolenia praebergonii var. robusta, is named.
Article
CALCAREOUS nannoplankton are minute algae which occur, together with other flagellates important for the food-chain, in present day oceans. Much more common in Tertiary and Cretaceous marine environments, they contributed high percentages of skeletal remains to the sediments of these periods, as shown by the ``White Chalk'' of the Upper Cretaceous in northern Europe and many deep sea samples of Tertiary age.
Article
Deep Sea Drilling Project sites 154A, 206, and 289 yielded reasonably complete Pleistocene sections of deep-sea sediments in which a good to excellent succession of calcareous nannofossils is present. A detailed study of the nannofossils from the above three sections and an evaluation of data from several piston cores have resulted in a revised zonation of the Pleistocene in which seven zones are recognized. A reasonably rigorous chronology is established for this zonal succession by correlating all possible biostratigraphic datum levels with magnetic stratigraphy in the Pacific and with paleoclimatic fluctuations in the Pacific and the Caribbean. The ages for intermediate levels are interpolated. From youngest to oldest the proposed zones for the Pleistocene and the absolute ages for their limits are as follows: View Within ArticleAll of the above zones except one span time periods of 0.3 m.y. or less. The mid-PleistocenePseudoemiliania lacunosa Zone extends over a time interval of nearly 0.5 m.y. For the most part the marker species are cosmopolitan forms which have considerable latitudinal range, and are useful in hemipelagic as well as in oceanic Pleistocene strata.
Cenozoic scale of the continents and oceans (in Russian)-In: Stratigraphy in investi­ gations of the Geological Institute of the Academy of Sciences of USSR
  • V A Krasheninnikov
Krasheninnikov V.A. Cenozoic scale of the continents and oceans (in Russian).-In: Stratigraphy in investi­ gations of the Geological Institute of the Academy of Sciences of USSR. Moscow: Nauka, 1980, p.162-206.
Late Cenozoic diatom biostratigraphy and paleoceanology of the middle-latitude estern North Pacific, Deep Sea Drilling Project, Leg 63
  • J A Barron
Barron J.A. Late Cenozoic diatom biostratigraphy and paleoceanology of the middle-latitude estern North Pacific, Deep Sea Drilling Project, Leg 63.-In: Yeats, R., Haq B.U., et al. Init. Reports DSDP, 1981, v.63, p.507-536.
  • V A Krasheninnikov
  • W W Cenozoichay
  • H P Mohler
  • P H Roth
  • R R Schmidt
Krasheninnikov V.A. Cenozoic scale of the continents and oceans (in Russian).-In: Stratigraphy in investi­ gations of the Geological Institute of the Academy of Sciences of USSR. Moscow: Nauka, 1980, p.162-206. 22.Hay W.W., Mohler H.P., Roth P.H., Schmidt R.R., B dreaux J.E. Calcareous Nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Anti 1lean area, and transocanic correlation.-Trans. Gulf Coast Assoc, of Geol.Soc., 1967, v.67, p.428-480.