BookPDF Available

Speciation and Its Consequences

Authors:
Sorry I do not have PDFs of my book publications!
John A. Endler
... The most comprehensive studies of C. calceolus are those of Devillers-Terschuren (1999) and Kull (1999), and highlight several biological factors that may have contributed to the decline of the species, for example limited pollinator availability (Nilsson, 1979), low fruit-set and low recruitment from seeds, which can be interconnected. The deceptive pollination system is generally associated with low fruitset (Gill, 1989;Neiland & Wilcock, 1998), and implies that pollinators tend to abandon clumps when they discover sexual deception, promoting outcrossing (Jers akov a, Johnson, & Kindlmann, 2006;Tremblay, Ackerman, Zimmerman, & Calvo, 2005;Whitehead, Linde, & Peakall, 2015). Some authors suggest that late-acting self-incompatibility leads to low fruit-set in the species (Pedersen, Rasmussen, Kahandawala, & Fay, 2012 and references therein; Husband & Schemske, 1996), although this aspect has not been thoroughly investigated. ...
Article
Full-text available
The split between conservation science and real-world application is an ongoing issue despite several calls for unification. Researchers are empowered to partially bridge the research-implementation gap by making their findings more accessible. Cypripedium calceolus is the most recognizable orchid of the European flora, and is currently facing habitat change and fragmentation, in addition to threats from collectors and illegal traders. Although several studies have focused on the ecological and genetic features of the species, a comprehensive account of how such aspects can be translated into concrete conservation recommendations is still missing. In this study, we describe microsatellite genetic variation in 188 individuals from different Italian populations of C. calceolus. Our results indicate the need for immediate conservation action for the most isolated populations in the Central Apennines and northwestern Italy. Although our genetic findings are specific to the Italian populations, our aim is to review ecological and population genetic aspects in C. calceolus and their implications for conservation against the existing threats. Therefore, our detailed guidelines for translocation, habitat management and post-translocation monitoring can be used to inform conservation strategies in threatened populations of C. calceolus across its range.
... While this could be the raison d'être for accepting BSC, we would argue that, precisely because of its longevity and popularity, BSC needs to be regularly and rigorously tested. After all, doubts have been constantly expressed [7,[29][30][31][32][33] while the textbooks continue to put BSC at the center of evolutionary biology [13,34]. ...
Article
Full-text available
Habenaria is one of the largest terrestrial genera in the family Orchidaceae. Most field studies on Habenaria species with greenish–white and nocturnal scented flowers are pollinated by nocturnal hawkmoths and settling moths. However, H. rhodocheila presents reddish flowers lacking a detectable scent and fails to fit the moth pollination syndrome. We investigated the pollinators, breeding system, and functional traits of H. rhodocheila in South China and found that two diurnal swallowtail butterflies Papilio helenus and Papilio nephelus (Papilionidae) were the effective pollinators. When butterflies foraged for nectar in the spur, the pollinia became attached between the palpi. A triangular projected median rostellar lobe was found at the entrance (sinus) of the spur of H. rhodocheila. This lobe divided the spur opening into two entrances forcing butterflies to enter their proboscides through the left or right side. When the projection of median rostellar lobe was removed, the site of pollinium attachment changed to the eyes of the butterflies, leading to a higher rate of pollinium removal but lower rate of pollinium deposition. Our quartz glass cylinder choice experiment suggested that visual rather than olfactory cues provided the major stimuli for butterflies to locate these flowers. Hand pollination experiments suggested this species was self‐compatible but pollinator‐dependent. However, the proportion of seeds with large embryos produced in self‐pollinated fruits was significantly lower than in cross‐pollinated fruits, indicating a significant inbreeding depression. Unlike many other orchid species, fruit set was higher than rates of pollinium removal, indicating a high level of pollination efficiency in a species with friable pollinia. Shifts from moth to butterfly pollination in the genus Habenaria parallel other orchid lineages providing insights into the potential for pollinator‐mediated floral trait selection.
Article
There is little evidence from nature that divergent natural selection is crucial to speciation. However, divergent selection is implicated if traits conferring adaptation to alternative environments also form the basis of reproductive isolation. We tested the importance of body size differences to premating isolation between two sympatric sticklebacks. The species differ greatly in size, and several lines of evidence indicate that this difference is an adaptation to alternative foraging habitats. Strong assortative mating was evident in laboratory trials, but a few hybridization events occurred. Probability of interspecific mating was strongly correlated with body size: interspecific spawning occurred only between the largest individuals of the smaller species and the smallest individuals of the larger species. Probability of spawning between similar-sized individuals from different species was comparable to spawning rates within species. Disruption of mating between individuals from different species can be traced to increased levels of male aggression and decreased levels of male courtship as size differences increased between paired individuals. Interspecific mate preferences in sympatric sticklebacks appears to be dominated by body size, implicating natural selection in the origin of species.
Article
The importance of sympatric speciation remains controversial. An empirical observation frequently offered in its support is the occurrence of sister taxa living in sympatry but using different resources. To examine the possibility of sympatric differentiation in producing such cases, I measured genetic, behavioral, and demographic differentiation between populations of the tropical sponge-dwelling shrimp Synalpheus brooksi occupying two alternate host species on three reefs in Caribbean Panama. This species belongs to an apparently monophyletic group of ≥ 30 species of mostly obligate, host-specific sponge-dwellers, many of which occur in sympatry. Demographic data demonstrated the potential for disruptive selection imposed by the two host species: shrimp demes from the sponge Agelas clathrodes were consistently denser, poorer in mature females, more heavily parasitized by branchial bopyrid isopods, and less parasitized by thoracic isopods, than conspecific shrimp from the sponge Spheciospongia vesparium. Laboratory assays demonstrated divergence in host preference: shrimp on all three reefs tended to choose their native sponge species more often than did conspecific shrimp from the other host. Because S. brooksi mates within the host, this habitat selection should foster assortative mating by host species. A hierarchical survey of protein-electrophoretic variation also supported host-mediated divergence, revealing the following: (1) shrimp from the two hosts are conspecific, as evidenced by absence of fixed allelic differences at any of nine allozyme loci scored; (2) strong genetic subdivision among populations of this philopatric shrimp on reefs separated by 1-3 km; and (3) significant host-associated genetic differentiation within two of the three reefs. Finally, intersexual aggression (a proxy for mating incompatibility) between shrimp from different host species was significantly elevated on the one reef where host-associated genetic differences were strongest, demonstrating concordance between genetic and behavioral estimates of divergence. Adjacent reefs appear to be semi-independent sites of host-associated differentiation, as evidenced by differences in the degree of host-associated behavioral and genetic differentiation, and in the specific loci involved, on different reefs. In philopatric organisms with highly subdivided populations, such as S. brooksi, resource-associated differentiation can occur independently in different populations, thus providing multiple "experiments" in differentiation and resulting in a mosaic pattern of polymorphism as reflected by neutral genetic markers. Several freshwater fishes, an amphipod, and a snail similarly show independent but remarkably convergent patterns of resource-associated divergence in different conspecific populations, often in the absence of obvious spatial barriers. In each case, substantial differentiation has occurred in the face of continuing gene flow.
Article
The cyprinid fishes, Notropis cornutus and N. chrysocephalus, hybridize in a long, narrow zone in the midwestern United States. To quantify the extent of introgression of genetic markers outside of this zone, samples were collected along transects starting near the region of contact (as defined by morphological characters), followed by samples progressively more distant. Diagnostic allozymic and mitochondrial DNA (mtDNA) restriction site markers were used to estimate the extent of introgression outside of the zone, while polymorphic allozyme and mtDNA markers were used to evaluate the potential for gene flow among populations within transects. Analysis of populations from the northern transect provided evidence for differentiation of populations for some of the markers; however, on average, enough gene flow has occurred to overcome substantial differentiation. Introgressed mtDNA and allozyme haplotypes were rare and found only in the population closest to the contact zone. The rarity of introgressed alleles in the more northern populations is consistent with the recent origin of these populations after the Wisconsin glaciation (less than 12,000 years bp) and/or selection maintaining the northern boundary of the contact zone. Analysis of populations from the southern transect revealed evidence for population subdivision but no evidence for introgression at the diagnostic allozyme loci; however, nearly all individuals from this transect possessed introgressed mtDNA haplotypes, with samples furthest from the contact zone exhibiting the highest frequencies of introgression. Patterns of variation for one of the polymorphic allozyme markers (Est-A) and introgressed mtDNAs were highly correlated, suggesting that allozymic heterogeneity at this locus is also the result of introgression. The most likely explanation for these data is that these introgressed haplotypes are indicators of a more southern position of the contact zone during the Pleistocene, with the contact zone shifting northward with the recession of the glacial front. Such movement implicates selection in the maintenance of distributional limits of these species, and hence, the width and position of the contact zone.
Article
Full-text available
In this study we used reciprocal rearing experiments to test the hypothesis that there is a genetic basis for the adaptive differences in host-use traits among host-associated soapberry bug populations (described in Carroll and Boyd 1992). These experiments were conducted on two host races from Florida, in which differences in beak length and development were found between natural populations on a native host plant species and those on a recently introduced plant species (colonized mainly post-1950). Performance was generally superior on the host species from which each lab population originated (i.e., on the "Home" host species): in analysis of variance, there was significant population-by-host interaction for size, development time, and growth rate. These results indicate that the population differences in nature are evolved rather than host induced. Increased performance on the introduced host was accompanied by reduced performance on the native host, a pattern that could theoretically promote further differentiation between the host races.
Article
Many studies have documented the existence of genotype-environment interaction (GEI) for traits closely related to fitness in natural populations. A type of GEI that is commonly observed is changes in the fitness ranking of genetic groups (families, clones, or inbred lines) in different environments. We refer to such changes in ranking as crossing of reaction norms for fitness. A common interpretation of crossing of reaction norms for fitness is that selection favors different alleles in the different environments (i.e., that "trade-offs" exist). If this is the case, selection could maintain genetic variation, and even lead to reproductive isolation between subpopulations using different environments. Even if the same alleles are favored in every environment, however, deleterious mutations that vary in the magnitude of their effect depending on environment could cause reaction norms for fitness to cross. If deleterious mutations with environment-dependent effects are responsible for maintaining much of the variation leading to crossing of reaction norms for fitness in natural populations, it should be possible to observe crossing of reaction norms for fitness among otherwise genetically identical lines bearing newly arisen spontaneous mutations. We examined the contribution of new mutations to GEI for fitness in Drosophila melanogaster. Eighteen lines were derived from a common, highly inbred base stock, and maintained at a population size of 10 pairs for over 200 generations, to allow them to accumulate spontaneous mutations. Because of the small population size of the lines, selection against mildly deleterious mutations should have been relatively ineffective. The lines were tested for productivity (number of surviving adult progeny from a standard number of parents) in five different environmental treatments, comprising different food media, temperatures, and levels of competition. The lines showed highly significant GEI for productivity, owing largely to considerable changes in ranking in the different environments. We conclude that mutations that are deleterious on average, but whose quantitative effects depend on environment, could be responsible for maintaining much of the variation leading to crossing of reaction norms for fitness that has been observed in samples of D. melanogaster from the wild.
Article
Full-text available
Morphological variation of snails from the genus Trochulus is so huge that their taxonomy is unclear. The greatest variability concerns forms hispidus and sericeus/plebeius, which are often considered as separate species. To evidence the species barriers, we carried out crossbreeding experiments between these two sympatric morphs. Moreover, we compared the shell morphology of laboratory-bred offspring with their wild parents to test if the variation can be explained by the phenotypic plasticity model. We found that the two Trochulus morphs show no reproductive barriers. The fecundity rates, the mean clutch size and F1 viability observed for all crosses were not significantly different. In hybrid crosses (in F2 generation), we also recorded reproduction compatibility, similar fecundity and hatching success as in their parents. Accordingly, phylogenetic analyses revealed the significant grouping of sequences from these different morphs and supported no constrains in reproduction between them. Comparison of shell morphology between wild and laboratory samples showed that various characters appeared highly plastic. The average shell shape of the hispidus morph changed significantly from flat with wide umbilicus to elevated with narrower umbilicus such as in the sericeus/plebeius morph. All these findings indicate that the examined morphs do not represent separate biological species and the evolutionary process is not advanced enough to separate their genetic pool. Therefore, phenotypic plasticity has played a significant role in the evolution of Trochulus shell polymorphism. The two morphs can evolve independently in separate phylogenetic lineages under the influence of local environmental conditions.
Article
Full-text available
Any biological species of biparental organisms necessarily includes, and is fundamentally dependent on, sign processes between individuals. In this case, the natural category of the species is based on family resemblances (in the Wittgensteinian sense), which is why a species is not a natural kind. We describe the mechanism that generates the family resemblance. An individual recognition window and biparental reproduction almost suffice as conditions to produce species naturally. This is due to assortativity of mating which is not based on certain individual traits, but on the difference between individuals. The biosemiotic model described here explains what holds a species together. It also implies that boundaries of a species are fundamentally fuzzy, and that character displacement occurs in case of sympatry. Speciation is a special case of discretisation that is an inevitable result of any communication system in work. The biosemiotic mechanism provides the conditions and communicative restrictions for the origin and persistence of diversity in the realm of living (communicative and semiotic) systems.
ResearchGate has not been able to resolve any references for this publication.