Lysophosphatidic Acid Mediates Myeloid Differentiation within the Human Bone Marrow Microenvironment

University of Manitoba, Canada
PLoS ONE (Impact Factor: 3.23). 05/2013; 8(5):e63718. DOI: 10.1371/journal.pone.0063718
Source: PubMed


Lysophosphatidic acid (LPA) is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP) than either multipotent Hematopoietic Stem/Progenitor Cells (HSPC) or Common Lymphoid Progenitors (CLP) suggesting that LPA acts on committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone marrow sections showed that PPAP2A, (the enzyme which degrades LPA) was highly expressed in the osteoblastic niche but not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA) was expressed in perivascular regions of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow marrow.

Download full-text


Available from: Sofie Cardinal, Apr 27, 2014
  • Source
    • "During hematopoiesis, LPA regulates the invasion of primary hematopoietic stem cells (HSCs) into the stromal layer [19]. Additionally, LPA has been reported to mediate myeloid differentiation in human bone marrow micro-environment [20]. Of note, is our previous study that demonstrated the regulation of erythroid differentiation through activation of the LPA receptor 3 (LPA 3 ) [21]. "

    Full-text · Article · May 2015 · Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
  • Source
    • "Nowadays, primary culture of chondrocytes derived from normal human articular cartilage is also commercially available for researches. Several studies have revealed that LPA mediates myeloid differentiation within the human bone marrow microenvironment [13] and stimulates osteogenesis [14], cell proliferation [15], and migration [16] and inhibits apoptosis [17] in chondrocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA) has been found to mediate myeloid differentiation, stimulate osteogenesis, alter cell proliferation and migration, and inhibit apoptosis in chondrocytes. The effect of LPA on the angiogenic capability of chondrocytes is not clear. This study aimed to investigate its effect on the angiogenic capability of human chondrocytes and the underlying mechanism of these effects. Human chondrocyte cell line, CHON-001, commercialized human chondrocytes (HC) derived from normal human articular cartilage, and human vascular endothelial cells (HUVECs) were used as cell models in this study. The angiogenic capability of chondrocytes was determined by capillary tube formation, monolayer permeability, cell migration, and cell proliferation. An angiogenesis protein array kit was used to evaluate the secretion of angiogenic factors in conditioned medium. Angiogenin, insulin-like growth factor-binding protein 1 (IGFBP-1), interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) mRNA and protein expressions were evaluated by Q-RT-PCR and EIA, respectively. LPA receptor (LPAR) expression was determined by RT-PCR. Signaling pathways were clarified using inhibitors, Western blot analysis, and reporter assays. The LPA treatment promoted the angiogenic capability of CHON-001 cells and HC, resulting in enhanced HUVEC capillary tube formation, monolayer permeability, migration, and cell growth. Angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF mRNA and protein expressions were significantly enhanced in LPA-treated chondrocytes. LPA2, 3, 4 and 6 were expressed in CHON-001 and HC cells. Pretreatment with the Gi/o type G protein inhibitor, pertussis toxin (PTX), and the NF-kB inhibitor, PDTC, significantly inhibited LPA-induced angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF expressions in chondrocytes. The PTX pretreatment also inhibited LPA-mediated NF-kB activation, suggesting the presence of active Gi/NF-kB signaling in CHON-001 and HC cells. The effect of LPA on the angiogenesis-inducing capacity of chondrocytes may be due to the increased angiogenesis factor expression via the Gi/NF-kB signaling pathway.
    Full-text · Article · Jul 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
    No preview · Article · Feb 2014 · FEBS letters
Show more