Virtual Neck Exploration for Parathyroid Adenomas A First Step Toward Minimally Invasive Image-Guided Surgery

IRCAD/Institut Hospitalo Universitaire, Strasbourg, France.
JAMA SURGERY (Impact Factor: 3.94). 03/2013; 148(3):232-8; discussion 238. DOI: 10.1001/jamasurg.2013.739
Source: PubMed


To evaluate the performance of 3-dimensional (3D) virtual neck exploration (VNE) as a modality for preoperative localization of parathyroid adenomas in primary hyperparathyroidism and assess the feasibility of using augmented reality to guide parathyroidectomy as a step toward minimally invasive imageguided surgery.
Enhanced 3D rendering methods can be used to transform computed tomographic scan images into a model for 3D VNE. In addition to a standard imaging modality, 3D VNE was performed in all patients and used to preoperatively plan minimally invasive parathyroidectomy. All preoperative localization studies were analyzed for their sensitivity, specificity, positive predictive value, and negative predictive value for the correct side of the adenoma(s) (lateralization) and the correct quadrant of the neck (localization). The 3D VNE model was used to generate intraoperative augmented reality in 3 cases.
Tertiary care center.
A total of 114 consecutive patients with primary hyperparathyroidism were included from January 8, 2008, through July 26, 2011.
The accuracy of 3D VNE in lateralization and localization was 77.2% and 64.9%, respectively. Virtual neck exploration had superior sensitivity to ultrasonography (P.001), sestamibi scanning (P=.07), and standard computed tomography (P.001). Use of the 3D model for intraoperative augmented reality was feasible.
3-Dimensional VNE is an excellent tool in preoperative localization of parathyroid adenomas with sensitivity, specificity, and diagnostic accuracy commensurate with accepted first-line imaging modalities. The added value of 3D VNE includes enhanced preoperative planning and intraoperative augmented reality to enable less-invasive image-guided surgery.

1 Follower
6 Reads

  • No preview · Article · Mar 2013 · JAMA SURGERY
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of this study was to assess the accuracy of a novel imaging modality, three-dimensional (3D) metabolic and radiologic gathered evaluation (MeRGE), for localizing parathyroid adenomas (PAs). Methods: Consecutive patients presenting with primary hyperparathyroidism who underwent both thin-slice cervical computed tomography (CT) and (99m)Tc-sestamibi (MIBI) scanning were included. 3D-CT reconstruction was obtained using VR-RENDER, which was used to perform 3D virtual neck exploration (3D-VNE). The MIBI scan was then fused with the 3D reconstruction to obtain 3D-MeRGE. Sensitivity, specificity, and accuracy were assessed. Parathyroid gland volume and preoperative parathormone (PTH) levels were analyzed as predictive factors of correct localization (i.e., correct quadrant). Results: A total of 108 cervical quadrants (27 patients) were analyzed. Sensitivities were 79.31, 75.86, 65.51, and 58.61 % with 3D-MeRGE, 3D-VNE, MIBI, and CT, respectively. Specificity was highest with CT (94.93 %) followed by 3D-VNE (92.4 %). MIBI and 3D-MeRGE had the same specificity (88.6 %). 3D-MeRGE and 3D-VNE achieved higher accuracy than MIBI or CT alone. Mean PTH values were significantly higher in patients with lesions that were correctly identified (true positive, TP) than in those whose lesions were missed (false negative, FN) with 3D-VNE (219.60 ± 212.77 vs. 98.75 ± 12.76 pg/ml; p = 0.01) and 3D-MeRGE (217.69 ± 213.76 vs. 09.75 ± 20.48 pg/ml; p = 0.02). The mean parathyroid gland volume difference between TP and FN was statistically significant with all modalities except CT. Conclusions: 3D-MeRGE and 3D-VNE showed high accuracy for localization of PAs. 3D-MeRGE performed better than MIBI or CT alone for detecting small adenomas and those with a low PTH level.
    No preview · Article · Apr 2013 · World Journal of Surgery
  • [Show abstract] [Hide abstract]
    ABSTRACT: The minimally invasive surgeon cannot use 'sense of touch' to orientate surgical resection, identifying important structures (vessels, tumors, etc.) by manual palpation. Robotic research has provided technology to facilitate laparoscopic surgery; however, robotics has yet to solve the lack of tactile feedback inherent to keyhole surgery. Misinterpretation of the vascular supply and tumor location may increase the risk of intraoperative bleeding and worsen dissection with positive resection margins. Augmented reality (AR) consists of the fusion of synthetic computer-generated images (three-dimensional virtual model) obtained from medical imaging preoperative work-up and real-time patient images with the aim of visualizing unapparent anatomical details. In this article, we review the most common modalities used to achieve surgical navigation through AR, along with a report of a case of robotic duodenopancreatectomy using AR guidance complemented with the use of fluorescence guidance. The presentation of this complex and high-technology case of robotic duodenopancreatectomy, and the overview of current technology that has made it possible to use AR in the operating room, highlights the needs for further evolution and the windows of opportunity to create a new paradigm in surgical practice.
    No preview · Article · Mar 2014 · Surgical Endoscopy
Show more