Nonrandom sister chromatid segregation of sex chromosomes in Drosophila male germline stem cells

Life Sciences Institute, Center for Stem Cell Biology, Department of Cell and Developmental Biology, School of Medicine, Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA, .
Chromosome Research (Impact Factor: 2.48). 05/2013; 21(3):243-54. DOI: 10.1007/s10577-013-9353-0
Source: PubMed


Sister chromatids are the product of DNA replication, which is assumed to be a very precise process. Therefore, sister chromatids should be exact copies of each other. However, reports have indicated that sister chromatids are segregated nonrandomly during cell division, suggesting that sister chromatids are not the same, although their DNA sequences are the same. Researchers have speculated that stem cells may retain template strands to avoid replication-induced mutations. An alternative proposal is that cells may segregate distinct epigenetic information carried on sister chromatids. Recently, we found that Drosophila male germline stem cells segregate sister chromatids of X and Y chromosomes with a strong bias. We discuss this finding in relation to existing models for nonrandom sister chromatid segregation.

Download full-text


Available from: Yukiko Yamashita
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has long been known that epigenetic changes are inheritable. However, except for DNA methylation, little is known about the molecular mechanisms of epigenetic inheritance. Many types of stem cells undergo asymmetric cell divisions to generate self-renewed stem cells and daughter cells committed for differentiation. Still, whether and how stem cells retain their epigenetic memory remain questions to be elucidated. During the asymmetric division of Drosophila male germline stem cell (GSC), our recent studies revealed that the preexisting histone 3 (H3) are selectively segregated to the GSC, whereas newly synthesized H3 deposited during DNA replication are enriched in the differentiating daughter cell. We propose a two-step model to explain this asymmetric histone distribution. First, prior to mitosis, preexisting histones and newly synthesized histones are differentially distributed at two sets of sister chromatids. Next, during mitosis, the set of sister chromatids that mainly consist of preexisting histones are segregated to GSCs, while the other set of sister chromatids enriched with newly synthesized histones are partitioned to the daughter cell committed for differentiation. In this review, we apply current knowledge about epigenetic inheritance and asymmetric cell division to inform our discussion of potential molecular mechanisms and the cellular basis underlying this asymmetric histone distribution pattern. We will also discuss whether this phenomenon contributes to the maintenance of stem cell identity and resetting chromatin structure in the other daughter cell for differentiation.
    Full-text · Article · May 2013 · Chromosome Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
    No preview · Article · Jan 2014 · Cellular and Molecular Life Sciences CMLS
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Apr 2015 · Biochimica et Biophysica Acta