Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

College of Pharmacy, Howard University, 2300 4th street NW, Washington, District of Columbia 20059. .
Current topics in medicinal chemistry (Impact Factor: 3.4). 05/2013; 13(11). DOI: 10.2174/15680266113139990039
Source: PubMed


Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson's disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities.

Download full-text


Available from: Xiang Simon Wang, Jan 31, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rhythmic opening and tightly closing of cardiac valve leaflets are cardiac cyclic events imposing to blood a unidirectional course along the vascular tree. Drugs with 5-HT2B agonism properties can seriously compromise this critical biological function for hemodynamic efficiency because their intrinsic pro-fibrotic effects make valvular coaptation blood regurgitant. Cardiac valve anatomy, physiology and pathology as well 5-HT2B receptor properties (coupling, effects mediated, biased agonism) are briefly exposed. Approaches to unveil 5-HT2B receptor liability of drug candidates are detailed. In silico computational models can speedily probe molecules for chemical signatures signaling 5-HT2B receptor affinity. In vitro radioligand competition assays allow quantifying receptor binding capacity (Ki, IC50), the pharmacological nature (agonism, antagonism) of which can be ascertained from cytosolic second messenger (inositol phosphates, Ca(++), MAPK2) changes. Potencies calculated from the latter readouts may show variability since they are readout and experimental condition (e.g., receptor density level of cell material expressing human 5-HT2B receptors) dependent. The in vivo valvulopathy effects of 5-HT2B receptor agonists can be assessed by echocardiographic measurements and valve histology in rats chronically treated with the candidate drug. Finally, safety margins calculated from nonclinical and clinical data are appraised in terms of the readout, usefulness and scientific reliability. The Safety Pharmacology toolbox for uncovering 5-HT2B receptor agonism liability of candidate drugs needs meticulous optimization and validation of all its (in silico, in vitro and in vivo) components to perfect human predictability power. In particular, since 5-HT2B receptor agonism is biased in nature, the most predictive readout(s) of valvular liability should be identified and prioritized in keeping with best scientific practice teachings.
    Full-text · Article · Dec 2013 · Journal of pharmacological and toxicological methods
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluoxetine and other serotonin-specific re-uptake inhibitors (SSRIs) are generally thought to owe their therapeutic potency to inhibition of the serotonin transporter (SERT). However, research in our laboratory showed that it affects, with relatively high affinity the 5-HT2B receptor in cultured astrocytes; this finding was confirmed by independent observations showing that fluoxetine loses its ability to elicit SSRI-like responses in behavioral assays in mice in which the 5-HT2B receptor was knocked-out genetically or inhibited pharmacologically. All clinically used SSRIs are approximately equipotent towards 5-HT2B receptors and exert their effect on cultured astrocytes at concentrations similar to those used clinically, a substantial difference from their effect on SERT. We have demonstrated up-regulation and editing of astrocytic genes for ADAR2, the kainate receptor GluK2, cPLA2 and the 5-HT2B receptor itself after chronic treatment of cultures, which do not express SERT and after treatment of mice (expressing SERT) for 2 weeks with fluoxetine, followed by isolation of astrocytic and neuronal cell fractionation. Affected genes were identical in both experimental paradigms. Fluoxetine treatment also altered Ca2+ homeostatic cascades, in a specific way that differs from that seen after treatment with the anti-bipolar drugs carbamazepine, lithium, or valproic acid. All changes occurred after a lag period similar to what is seen for fluoxetine’s clinical effects, and some of the genes were altered in the opposite direction by mild chronic inescapable stress, known to cause anhedonia, a component of major depression. In the anhedonic mice these changes were reversed by treatment with SSRIs.
    Full-text · Article · Jul 2014 · Current Neuropharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: This is a report on a 2-day joint meeting between the British Society of Toxicological Pathology (BSTP) and the Safety Pharmacology Society (SPS) held in the UK in November 2013. Drug induced adverse effects on the cardiovascular system are associated with the attrition of more marketed and candidate drugs than any other safety issue. The objectives of this meeting were to foster inter-disciplinary approaches to address cardiovascular risk assessment, improve understanding of the respective disciplines, and increase awareness of new technologies. These aims were achieved. This well attended meeting covered both 'purely functional' cardiovascular adverse effects of drugs (e.g., electrophysiological and haemodynamic changes) as well as adverse effects encompassing both functional and pathological changes. Most of the presentations focused on nonclinical safety data, with information on translation to human where known. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Jun 2015 · Journal of pharmacological and toxicological methods
Show more