ArticlePDF Available

Wicked Problems: Modelling Social Messes with Morphological Analysis


Abstract and Figures

If you work in an organisation that deals with social, commercial or financial planning – or any type of public policy planning – then you've got wicked problems. You may not call them by this name, but you know what they are. They are those complex, ever changing societal and organisa-tional planning problems that you haven't been able to treat with much success, because they won't keep still. They're messy, devious, and they fight back when you try to deal with them. This paper describes the notion of wicked problems (WPs) as put forward by Rittel & Webber in their land-mark article "Dilemmas in a General Theory of Planning" (1973). It presents the ten criteria they use to characterise WPS, and describes how General Morphological Analysis (GMA) can be used to model and analyse such problem complexes.
Content may be subject to copyright.
Acta Morphologica Generalis AMG Vol.2 No.1 (2013)
© Swedish Morphological Society ISSN 2001-2241
Wicked Problems
Modelling Social Messes with Morphological Analysis
Tom Ritchey
Swedish Morphological Society
(© 2005, revised 2013)
If you work in an organisation that deals with social, commercial or financial planning or any
type of public policy planning then you’ve got wicked problems. You may not call them by this
name, but you know what they are. They are those complex, ever changing societal and organisa-
tional planning problems that you haven’t been able to treat with much success, because they won’t
keep still. They’re messy, devious, and they fight back when you try to deal with them. This paper
describes the notion of wicked problems (WPs) as put forward by Rittel & Webber in their land-
mark article “Dilemmas in a General Theory of Planning(1973). It presents the ten criteria they
use to characterise WPS, and describes how General Morphological Analysis (GMA) can be used to
model and analyse such problem complexes.
Keywords: Wicked problems, general morphological analysis, policy analysis, Horst Rittel
Introduction: What are “wicked problems”?
In 1973, Horst Rittel and Melvin Webber, both urban planners at the University of Berkley in Cali-
fornia, wrote an article for Policy Sciences with an astounding title: “Dilemmas in a General Theory
of Planning”. In this article, the authors observed that there is a whole realm of social and organisa-
tional planning problems that cannot be successfully treated with traditional linear, analytical (sys-
tems-engineering-like) approaches. They called these wicked problems, in contrast to tame problems.
At first glance, it is not self-evident what is actually meant by this term. Both the words “wicked”
and “problem” need to be qualified: Problems are “wicked” not in the sense of being “evil”, but in
that they are seriously devious and can have (nasty) unintended consequences for the planners who
try to do something about them. Furthermore, as a decision maker, whatever decision you make, a
good portion of the stakeholders involved (often a majority of them!) are going to want your head on
a block!
Also, wicked problems are not actually “problems” in the sense of having well defined and stable
problem statements. They are too messy for this, which is why they have also been called social
messes and unstructured reality (Ackoff, 1974; Horn, 2001).
One need only read Rittel & Webber’s wonderfully provocative abstract in order to understand how
politically un-correct their article was at the time:
This is a revised and extended version of an earlier article (2005) based on a lecture given at the Royal Institute of Tech-
nology (KTH) in Stockholm, 2004.
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
“The search for scientific bases for confronting problems of social policy is bound to fail,
because of the nature of these problems. They are “wicked” problems, whereas science has de-
veloped to deal with “tame” problems. Policy problems cannot be definitively described.
Moreover, in a pluralistic society there is nothing like the undisputable public good; there is no
objective definition of equity; policies that respond to social problems cannot be meaningfully
correct or false; and it makes no sense to talk about “optimal” solutions to social problems
unless severe qualifications are imposed first. Even worse, there are no “solutions” in the sense
of definitive and objective answers.” (Rittel & Webber, 1973, Abstract.)
Some say that we are wiser today, and less susceptible to the belief that complex social planning
problems can be “solved” by linear methods akin to engineering solutions. I am not so sure about
this. In any event, it is instructive to look at the original formulation of the distinction between
“wicked” and “tame” problems.
First, let’s look at some of the things that characterise a tame problem. A tame problem
has a relatively well-defined and stable problem statement.
has a definite stopping point, i.e. we know when a solution is reached.
has a solution which can be objectively evaluated as being right or wrong.
belongs to a class of similar problems which can be solved in a similar manner.
has solutions which can be tried and abandoned.
Wicked problems are completely different. Wicked problems are ill-defined, ambiguous and associ-
ated with strong moral, political and professional issues. Since they are strongly stakeholder depend-
ent, there is often little consensus about what the problem is, let alone how to deal with it. Above all,
wicked problems won’t keep still: they are sets of complex, interacting issues evolving in a dynamic
social context. Often, new forms of wicked problems emerge as a result of trying to understand and
treat one of them.
“The classical systems approach … is based on the assumption that a planning project can be
organized into distinct phases: ‘understand the problems’, ‘gather information,’ ‘synthesize
information and wait for the creative leap,’ ‘work out solutions’ and the like. For wicked
problems, however, this type of scheme does not work. One cannot understand the problem
without knowing about its context; one cannot meaningfully search for information without
the orientation of a solution concept; one cannot first understand, then solve.” (Rittel & Web-
ber, 1973, p. 161.)
The most evident, and important, wicked problems are complex, long-term social and organisational
planning problems. Examples:
How should we fight the “War on Terrorism?”
How should scientific and technological development be governed?
What is a good national immigration policy?
How do we get genuine democracies to emerge from authoritarian regimes?
How should we deal with crime and violence in our schools?
How should our organisation develop in the face of an increasingly uncertain future?
In his work on “Wicked Problems and Social Complexity” (2001), Jeff Conklin writes:
“… there are two common organizational coping mechanisms that are routinely applied to
wicked problems: studying the problem, and taming it.
While studying a novel and complex problem is natural and important, it is an approach that will
run out of gas quickly if the problem is wicked. Pure study amounts to procrastination, because lit-
tle can be learned about a wicked problem by objective data gathering and analysis. Wicked prob-
lems demand an opportunity-driven approach; they require making decisions, doing experiments,
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
launching pilot programs, testing prototypes, and so on. Study alone leads to more study, and re-
sults in the condition known as ‘analysis paralysis,’ a Catch 22 in which we can’t take action until
we have more information, but we can’t get more information until someone takes action. …
... attempting to tame a wicked problem, while appealing in the short run, fails in the long run. The
wicked problem simply reasserts itself, perhaps in a different guise, as if nothing had been done.
Or, worse, sometimes the tame solution exacerbates the problem.” (p. 10f.)
Of course, problems are “wicked” and “tame” only a potiori. In practice there is a sort of gliding
scale between tameness and wickedness. There is, however, a set of pretty clear criteria for judging
the degree of wickedness (so to speak) associated with complex social and organisational planning
problems. We will look at Rittel and Webber’s ten criteria shortly.
Also, the “problem” that the concept of wicked problems addresses did not suddenly emerge in the
late 1960‘s and early 1970’s. WPs are about people, vested interests and politics. As such, they are as
old as human society itself. So, why did a number of different policy researchers start fussing about
this issue all at the same time – in the late 1960’s?
During a presentation of General Morphological Analysis (GMA) in the 1990’s, I naively put this
question to a group of U.S. security specialists (see Ritchey, 2011). They practically fell off their
chairs with laughter! What was going on? The Vietnam War was going on, along with the “War on
Poverty” and the “War on Drugs”. All of these “wars” were essentially managed (badly) like huge
engineering projects, and all ultimately bogged down or went seriously wrong. Also “going on”, as a
reaction to government policy (or lack thereof), were the Civil Rights Movement, the anti-war
demonstrations and the general baby boomer “revolution”.
It is no wonder that academics representing social planners and policy professionals sought a new
awareness and new modes of explanation. As Rittel & Webber put it in 1973 (I paraphrase): The
“publics” are not going to take it any longer, and planners are going to be held accountable for what
they do, or don’t do. (Wouldn’t that have been nice?)
So what is the problem that the term “wicked problem” addresses? The common sense approach to
WPs is fairly straight forward: As stated above, WPs are about people – the most “complex adaptive
systems” that we know of. They are subjective problems. Everything that has to do with people and
society is ultimately subjective. Above all, WPs are about people as stakeholders: competing and
cooperating, vying for position, willing to reflect, and to change their positions on the basis of this
self-reflection. This is why such problems do not have stable problem formulations; do not have pre-
defined solution concepts; and why their course of development cannot be predicted. This is also
why attempting to causally model or simulate the paths of development of such problem complexes
is often worse than useless.
Finally, I want to at least mention an issue that has begun to be a problem in itself: namely, that the
term “wicked problem” is currently being transformed from a management science and design theo-
retical term d’art into a media buzzword and piece of consultancy jargon that has lost its original
meaning. This is especially the case since the 2008 “credit crunch”, where we find quick-fix policy
consultants and self-help management gurus telling us how they can “solve your wicked problems”.
This only shows that these individuals have, at best, missed the point.
Ten Criteria for Wicked Problems
Rittel and Webber characterise wicked problems by the following 10 criteria. (It has been pointed
out that some of these criteria are closely related or have a high degree overlap, and that they should
therefore be condensed into four or five more general criteria. I think that this is a mistake, and that
we should treat these criteria as 10 heuristic perspectives which will help us better understand the
nature of such complex social planning issues.)
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
1. There is no definite formulation of a wicked problem.
“The information needed to understand the problem depends upon one’s idea for solving it. This is
to say: in order to describe a wicked problem in sufficient detail, one has to develop an exhaustive
inventory for all the conceivable solutions ahead of time.” [This seemingly incredible criterion is in
fact treatable. See below.]
2. Wicked problems have no stopping rules.
In solving a tame problem, “… the problem-solver knows when he has done his job. There are crite-
ria that tell when the solution, or a solution, has been found”. With wicked problems you never come
to a “final”, “complete” or “fully correct” solution since you have no objective criteria for such.
The problem is continually evolving and mutating. You stop when you run out of resources, when a
result is subjectively deemed “good enough” or when we feel “we’ve done what we can…”
3. Solutions to wicked problems are not true-or-false, but better or worse.
The criteria for judging the validity of a “solution” to a wicked problem are strongly stakeholder
dependent. However, the judgments of different stakeholders …“are likely to differ widely to accord
with their group or personal interests, their special value-sets, and their ideological predilections.”
Different stakeholders see different solutions as simply better or worse.
4. There is no immediate and no ultimate test of a solution to a wicked problem.
“… any solution, after being implemented, will generate waves of consequences over an extended
virtually an unbounded – period of time. Moreover, the next day’s consequences of the solution may
yield utterly undesirable repercussions which outweigh the intended advantages or the advantages
accomplished hitherto.”
5. Every solution to a wicked problem is a “one-shot operation”; because there is no opportu-
nity to learn by trial-and-error, every attempt counts significantly.
“… every implemented solution is consequential. It leaves “traces” that cannot be undone And
every attempt to reverse a decision or correct for the undesired consequences poses yet another set of
wicked problems … .”
6. Wicked problems do not have an enumerable (or an exhaustively describable) set of poten-
tial solutions, nor is there a well-described set of permissible operations that may be incorpo-
rated into the plan.
“There are no criteria which enable one to prove that all the solutions to a wicked problem have been
identified and considered. It may happen that no solution is found, owing to logical inconsistencies
in the ‘picture’ of the problem.”
7. Every wicked problem is essentially unique.
“There are no classes of wicked problems in the sense that the principles of solution can be devel-
oped to fit all members of that class.” …Also, …”Part of the art of dealing with wicked problems is
the art of not knowing too early which type of solution to apply.” [Note: this is very important point.
See below.]
8. Every wicked problem can be considered to be a symptom of another [wicked] problem.
Also, many internal aspects of a wicked problem can be considered to be symptoms of other internal
aspects of the same problem. A good deal of mutual and circular causality is involved, and the prob-
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
lem has many causal levels to consider. Complex judgements are required in order to determine an
appropriate level of abstraction needed to define the problem
9. The causes of a wicked problem can be explained in numerous ways. The choice of explana-
tion determines the nature of the problem’s resolution.
“There is no rule or procedure to determine the ‘correct’ explanation or combination of [explanations
for a wicked problem]. The reason is that in dealing with wicked problems there are several more
ways of refuting a hypothesis than there are permissible in the [e.g. physical] sciences.”
10. [With wicked problems,] the planner has no right to be wrong.
In “hard” science, the researcher is allowed to make hypotheses that are later refuted. Indeed, it is
just such hypothesis generation and refutation that is a primary motive force behind scientific devel-
opment (Ritchey, 1991). One is not penalised for making hypotheses that turn out to be wrong. “In
the world of … wicked problems no such immunity is tolerated. Here the aim is not to find the truth,
but to improve some characteristic of the world where people live. Planners are liable for the conse-
quences of the actions they generate …”
Modelling Wicked Problems with General Morphological Analysis
How, then, does one work with wicked problems? Some 20 years after Rittel & Webber wrote their
article, Jonathan Rosenhead (1996), of the London School of Economics, presented the following
criteria for dealing with complex social planning problems – criteria that were clearly influenced by
the ideas presented by Rittel & Webber.
accommodate multiple alternative perspectives rather than prescribe single solutions
function through group interaction and iteration rather than back office calculations
generate ownership of the problem formulation through transparency
facilitate a graphical (visual) representation for the systematic, group exploration of a solution space
focus on relationships between discrete alternatives rather than continuous variables
concentrate on possibility rather than probability
Group facilitated, computer-aided General Morphological Analysis (GMA) is fully attuned to these
criteria. Developed in the middle of the 1990s, GMA was designed as a non-quantified problem
structuring method (PSM), which results in an inference model which strives to represent the total
problem space, and as many of the potential solution concepts to the given problem as possible
(Ritchey, 2002). This, in itself, goes a long way in satisfying Rittel and Webber’s first, seemingly
incredible, criterion (see below).
As a process, GMA goes through a number of iterative steps or phases which represent cycles of
analysis and synthesis the basic method for developing (scientific) models (Ritchey, 1991). The
analysis phase begins by identifying and defining the most important dimensions of the problem
complex to be investigated. Each of these dimensions is then given a range of relevant (discrete)
values or conditions. Together, these make up the variables or parameters of the problem complex. A
morphological field is constructed by setting the parameters against each other, in parallel columns,
representing an n-dimensional configuration space. A particular constructed “field configuration” is
designated by selecting a single value from each of the variables. This marks out a particular state or
(formal) solution within the problem complex.
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
The morphological field represents the total “problem space”, and can contain many thousands – or
even hundreds of thousands of possible (formal) solutions. A proper “solution space” is synthe-
sized by a process of internal cross-consistency assessment (CCA). All of the parameter values in the
morphological field are compared with one another, pair-wise, in the manner of a cross-impact ma-
trix. As each pair of conditions is examined, a judgment is made as to whether – or to what extent –
the pair can coexist, i.e. represent a consistent relationship. Note that there is no reference here to
causality or probability, but only to possibility through mutual consistency. Using this technique, a
typical morphological field can be reduced by 90% or more, depending on the nature of the problem.
When this solution space (or outcome space) is synthesized, the resultant morphological field be-
comes an inference model, in which any parameter (or multiple parameters) can be selected as "in-
put", and any others as "output". Thus, with computer support, the field can be turned into a virtual
laboratory with which one can designate initial conditions and examine alternative solutions, or con-
versely, designate alternative solutions in order to find the conditions that could generate such solu-
Figure 1. One of the morphological models developed for the project “Governance of Science and Technology De-
velopment”. Comparison of two profiles shown: “Patents and Market dominated” and “Science shops and Efficiency
Since I argue that group facilitated GMA is attuned to the methodological issues of wicked prob-
lems, let us see how GMA stacks to some Rittel & Webber’s criteria:
Criterion #1:“... in order to describe a wicked problem in sufficient detail, one has to develop an
exhaustive inventory for all the conceivable solutions ahead of time.”
Done properly, GMA results in an inference model which strives to represent the total problem
space, and as many of the potential solutions to the given problem complex as possible. This goes a
long way in satisfying this seemingly incredible criterion. The idea is to “play” with the inference
model in order to allow stakeholders to better understand the problem space and the possible conse-
quences of alternative decisions/actions. We literally build up an inventory of all possible solution
concepts, in order to help us better understand what the actual problem is.
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
Criterion #3: Different stakeholders …"are likely to differ widely to accord with their group or per-
sonal interests, their special value-sets, and their ideological predilections."
The process of creating morphological inference models through facilitated group workshops is as
important as the end-product - i.e. the model itself. As many stakeholders as possible should be en-
gaged in the work, in order to create a common terminology, common problem concept and common
modelling framework. Principal stakeholders and subject specialists should therefore be brought
together in a series of workshops to collectively 1) structure as much of the problem space as possi-
ble, 2) synthesize solution spaces, 3) explore multiple solutions on the basis of different drivers and
interests and 4) analyse stakeholder structures. The different stakeholders do not have to agree on a
single, common solution, but must be encouraged to understand each other's positions and contexts.
This last point is crucial. Consensus means “general agreement or concord” within a group. Facilita-
tors usually differentiate between first-order and second-order consensus. The normal first-order
form is that of gaining a common standpoint or agreeing upon a common solution. This is seldom the
case with stakeholder groups working with wicked problems. So-called second order consensus is
when stakeholders in a group learn to accept each other’s specific stakeholder positions – on the
basis of understanding the reasons for these positions. (This is called “position analysis” in Swedish,
and is a discipline in itself.)
Criterion #7 ...part of the art of dealing with wicked problems is the art of not knowing too early
which type of solution to apply.
In GMA we call this "remaining in the mess", i.e. keeping one's options open long enough to explore
as many relationships in the problem topology as possible, before starting to formulate solutions.
This can be a frustrating process for inveterate "problem solvers", but is an absolutely necessary
procedure when modelling wicked problems.
Criterion #8: Every wicked problem can be considered to be a symptom of another [wicked] prob-
With a morphological inference model, one can treat any particular parameter or “issue” as the start-
ing point, driver or “independent” variable. This allows one to change perspectives and treat differ-
ent issues as both causes and effects. Everything is connected, which is what both wicked problems
and GMA is all about.
Criterion #10: [With wicked problems,] the planner has no right to be wrong.
Not only should planners be part of the GMA modelling and shaping process, but also the potential
“consumers” or “victims” of said planning. GMA allows for – almost insists upon – this type of
stakeholder participation. (For a discussion of this facilitation principle, see Ritchey, 2011).
References and further reading
Ackoff, R (1974). Redefining the Future. Wiley: London.
Conklin, J. (2001). “Wicked Problems and Social Complexity.” CogNexus Institute.
Horn, R (2001). Knowledge Mapping for Complex Social Messes. A presentation to the “Foundations in the
Knowledge Economy” at the David and Lucile Packard Foundation.
Ritchey, T. (1991). “Analysis and Synthesis - On Scientific Method based on a Study by Bernhard Riemann”.
Syst Res 8(4):21-41. (Revised 1996) [Online]. Available from the World Wide Web:
T. Ritchey / Acta Morphologica Generalis Vol. 2. No. 1 (2013)
Ritchey, T. (1998). "Morphological Analysis - A general method for non-quantified modelling". Adapted from
a paper presented at the 16th Euro Conference on Operational Analysis. [Online]. Available from the World
Wide Web:
Ritchey, T. (2002). “Modelling Complex Socio-Technical Systems using Morphological Analysis.” Adapted
from an address to the Swedish Parliamentary IT Commission, Stockholm, December 2002. [Online]. Avail-
able from the World Wide Web:
Ritchey, T. (2003) “MA/Carma– Advanced Computer Support for Morphological Analysis”. (Available for
download at:
Ritchey, T. (2005) "Futures Studies using Morphological Analysis". Adapted from an article for the UN Uni-
versity Millennium Project: Futures Research Methodology Series (Available for download at:
Ritchey, T. (2006a) "Problem Structuring using Computer-Aided Morphological Analysis". Journal of the
Operational Research Society, Special Issue on Problem Structuring Methods, (2006) 57, 792–801. (Available
for download at:
Ritchey, T. (2006b) "Modelling Multi-Hazard Disaster Reduction Strategies with Computer- Aided Morpho-
logical Analysis". Reprint from the Proceedings of the 3rd International ISCRAM Conference, Newark, May
2006. (Available for download at:
Ritchey, T. (2009) Developing Scenario Laboratories with Computer-Aided Morphological Analysis
Presented at the 14th International Command and Control Research and Technology Symposium, Washington
DC. (Available for download at:
Ritchey, T. (2011) Wicked Problems – Social Messes: Decision support Modelling with Morphological Analy-
sis. Berlin: Springer. (See description at:
Ritchey, T. (1012). "Outline for a Morphology of Modelling Methods: Contribution to a General
Theory of Modelling". Acta Morphologica Generalis, Vol 1, No. 1 ). (Available at:
Rittel, H. (1972). "On the Planning Crisis: Systems Analysis of the 'First and Second Generations'".
Bedriftsøkonomen, Nr. 8.
Rittel, H., and Webber, M. (1973). “Dilemmas in a General Theory of Planning”. Policy Sciences, Vol. 4, pp
155-169. Elsevier Scientific Publishing Company, Inc: Amsterdam.
Rosenhead, J. (1996). What's the problem? An introduction to problem structuring methods. Interfaces
The author: Tom Ritchey is a former Research Director for the Institution for Technology Foresight and
Assessment at the Swedish National Defence Research Agency in Stockholm. He is a methodologist and
facilitator who works primarily with non-quantified decision support modelling -- especially with General
Morphological Analysis (GMA), Bayesian Networks (BN) and Multi-Criteria Decision support. Since
1995 he has directed more than 100 projects involving computer aided GMA for Swedish government
agencies, national and international NGOs and private companies. He is the founder of the Swedish Mor-
phological Society and Director of Ritchey Consulting LLC, Stockholm.
Acta Morphologica Generalis (AMG) is the online journal of the Swedish Morphologica Society. Works
published by AMG are licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License. View a copy of this license at:
... Several methods have been put forward to tackle wicked problems, including authoritative, competitive, and collaborative strategies [173], as well as an approach based on managed networks [174]. Some make use of issue mapping and visual language [175][176][177]. While these proposals are interesting and help find solutions to wicked problems, none of them constitute a fundamental breakthrough in social sciences, which only proves that human skill and intuition is very difficult to replace. ...
Full-text available
The main objective of this paper is to demonstrate that the energy transition as part of prosumer capitalism is a socio-economic process whose complexity increases over time, which makes it an example of a super wicked problem. It comprises many new phenomena emerging spontaneously, and often unpredictably, in the energy markets. The main contemporary challenge involves such an energy sector transformation which will prevent climate change and will ensure the sustainable development of the global economy. However, this requires solving a large number of sub-problems in areas such as legislation, energy distribution, democracy, and cybersecurity. Therefore, this is a multidisciplinary issue. Moreover, the situation is complicated by the frequently omitted fact that energy transition is not part of the standard capitalism model, extensively described in handbooks and scientific literature, but it is conducted as part of a new economic system—prosumer capitalism, which has not been properly explored yet. However, a solution to this super wicked problem has to be found soon, as the energy system may be threatened with complexity catastrophe, which denotes exceeding the upper complexity limit associated with the breakdown of its adaptability. Therefore, developing effective techniques for alleviating the complexity catastrophe, including redefining the change management and complexity management methods to the global scale, becomes the top priority among the tasks faced by science.
... Secondly, learners were introduced to the Morphological Analysis (MA) technique, which was proposed by the Swiss astrophysicist, Fritz Zwicky, in the late 40s and later published as a book in the late 60s. As the MA techniques is a systematic approach to a complex problem, it has been one of the techniques that are widely used across many disciplines, particularly in addressing wicked problems (interested readers are referred to Ritchey (2011)). MA provides a thinking framework by breaking down complex problems into their dimensions and parameters, through which possible configurations (of the solutions) can be visually seen within this framework. ...
Full-text available
Party Card Games (PCG), though not originally developed for language teaching purposes, can be creatively re-purposed for teaching language. This paper demonstrates the creative use of a party card game, called The Big Idea, to suit the needs of an in-company training course for Business English. This course was designed based on the Problem-based learning (PBL) pedagogy, which has been shown in literature to benefit learners in many aspects, including improving creative and critical thinking, problem solving skills, as well as verbal ability, in addition to the most important dimension of content knowledge acquisition. In language classrooms, the PBL design of a course has also been shown to be effective in enhancing students’ communicative skills and in sustaining their motivation to learn. In this paper, we will showcase an innovative integration of a PBL design into a workplace training course for Business English through the utilization of a party card game that is highly relevant to the context of business.
... Others discuss how blockchain can help deliver socially and environmentally beneficial outcomes, framed in terms of the UN's Sustainable Development Goals (Adams et al. 2018), or even how it can be used to tackle wicked problems (Kewell 2017). These are characterized by being hard to frame and not having definitive solutions due to incomplete, contradictory, and changing requirements (Rittel and Webber 1973;Ritchey 2013;Concklin 2006). Classic examples include climate change, drug trafficking, homelessness, and social injustice. ...
Full-text available
Conference Paper
Blockchain technology is a very promising disruptive technology with the potential to address problems that afflict our society, making it more inclusive, fair, and resilient. However, on the other hand, there are some notorious cases of using blockchain-based cryptocurrencies for money laundering, human trafficking, and financing criminal activities. The current paper commences a research effort aiming to better understand how blockchains can be used for good. The goal is to develop a conceptual framework based on a literature review covering the Blockchain for Good (B4G) domain. The main steps of the research process are presented and discussed in the paper. The proposed framework will illustrate the complex and multifaceted role of blockchain in improving social welfare, and it will be useful in guiding research efforts, formulating actionable advice, and promoting the B4G domain.
... This reflection suggests that 'not' labelling people as 'hard to reach' is vital, as is designing services with those who have lived experience of feelings excluded, so that services do not entrench this exclusion. It also appears that the 'wicked' social problems described here, which have no easy solutions (Ritchey, 2013), require collaborative problem solving. The UK government has recognised that it cannot solve social problems alone and has called for the voluntary sector's help in ameliorating 'a range of burning injustices and entrenched social challenges' including criminal justice and social care (HM Government, 2018, p. 18). Figure 1: Life Jacket. ...
Lived experience leadership is part of a broader international trend towards service user involvement in public services yet little is known about services developed and delivered by people with lived experience of the criminal justice system. Our innovative study, coproduced by two formerly imprisoned community practitioners and an academic researcher, aims to amplify the voices of people delivering and using a lived experience-led crime prevention project. Using photovoice methods, in which people use cameras to document their realities and advocate for change, we explore the potential of lived experience leadership to drive individual and social change. Some of the compelling images produced by the group are showcased, revealing how in contexts of suffering, social exclusion and negative expectations, forms of inclusive, loving, hopeful community praxis can be impactful. We conclude that allegiances between community practitioners and social workers could begin to disrupt harmful and oppressive structures and create locally led, hope-filled service provision. To broker such allied practices, we include a self-audit for social and community workers, inviting reflections focused on this ambitious goal.
The preceding chapters have illustrated that CBRNE in an uncertain world presents growing challenges for Nation States not only from a defence perspective but increasingly from a security and resilience one.
Sustainable use of energy sources is one of the most important issues in modern society and therefore of great importance in the built environment. Construction installations account for approximately 36% of total energy consumption and consume on average 25% more energy due to inefficiency. There is a large unused potential of energy management systems, which can potentially achieve 20–30 PJ final savings through application in non-residential construction already in a small country like the Netherlands.A good design is important but also maintaining performance and condition in operation over the years. Most buildings have many problems with comfort and indoor air quality. The maintenance of the installations is more action oriented than performance oriented, which means that the costs are higher and the number of malfunctions and nuisances for the user higher. Therefore, it is important to detect deviations as soon as possible with continuous commissioning, so that there is constant monitoring of all circumstances and error detection in combination with a diagnosis.The European Commission has adopted the revised European Energy Performance of Buildings Directive (EPBD III) with the aim of improving the energy efficiency of buildings, thereby reducing energy consumption. The directive was implemented in Dutch laws and regulations on March 10, 2020. The EPBD III prescribes system requirements for improving the energy performance of technical building systems. The current building management systems cannot comply with this. Data is produced and (sometimes) shown in graphs, but analysis thereof is missing and is not automated; interfaces to inform and support the administrator in his decisions are very limited.The energy transition requires more optimally functioning installations that use less energy. Users want healthier and more productive climate conditions. The complexity of the installations increases sharply and therefore the necessary experience and knowledge to solve problems. There is a growing shortage of experienced people who are able to analyse this data. Therefore, it is becoming increasingly important to develop systems to automate these continuous monitoring, error detection and diagnostic functions.It is important to improve and safeguard the methods for data analysis and control related to GBS and measurement and control systems of installations and to develop suitable algorithms based on big data analytics and machine learning.KeywordsNet zeroEnergy consumptionClimate goalsCO2 emissionHVACRIBAIntegral designMorphological chartOrientationIEAStakeholdersBuilt environment
Squatting and the State offers a new theoretical and methodological approach for analyzing state response to squatting, homelessness, empty land, and housing. Embedded in local, national, and transnational contexts, and reaching beyond conventional property theories, this important work sets out a fresh analytical paradigm for understanding the deep, interlocking problems facing not just the traditional 'victims' of narratives about homelessness and squatting but also a variety of other participants in these conflicts. Against the backdrop of economic, social, and political crises, Squatting and the State offers readers important insights about the changing natures of property, investment, housing, communities, and the multi-level state, and describes the implications of these changes for how we think and talk about property in law.
Este artículo explora el uso de los procesos, métodos y pedagogía del diseño para promover la inclusión social y el pluralismo entre los jóvenes. Argumenta que el enfoque del diseño, impulsado por la detección de oportunidades, combinado con el razonamiento y el pensamiento abductivo es más adecuado para abordar problemas intrincados que son inciertos, ambiguos y en constante evolución, como la exclusión, el sesgo, la discriminación y el odio. Además, analiza el trabajo de una iniciativa de impacto social impulsada por el diseño con sede en los Estados Unidos, que utiliza el diseño y la facilitación creativa para desarrollar programas destinados a cultivar una cultura de inclusión en las escuelas y las aulas. Este artículo destaca el uso de las estrategias sistémicas e individuales de comportamiento para el cambio a través de; 1) desarrollar módulos de aprendizaje, 2) cultivar competencias pluralistas en los estudiantes, y 3) desarrollar capacidades para los educadores, proporcionando herramientas de facilitación y capacitación para la implementación a escala. Probado con más de 100 estudiantes y seis institutos educativos, el artículo se refiere a la medición y el impacto de los módulos de aprendizaje.
This manuscript details a critical reflection on how Design Science Research (DSR) was applied to the guided development and implementation of a strategy formulation process for a civic tech project called MobiSAM, which was executed in a marginalized local government context. It also demonstrates how the application of DSR is augmented by Soft Systems Methodology (SSM), to ensure that the unstructured properties typically present in multi‐stakeholder deliberation (required in civic tech project strategizing) are accounted for in the strategy formulation exercise. To underpin this critical reflection on the emergence and application of the civic tech project strategy framework (the artifact), pragmatist interpretivism is employed. This qualitative paradigm underpinning the critical reflection supports better understanding of strategy related challenges primarily through participant observation and interviews with actors in the civic tech context. The findings reveal that for an unstructured problem like civic tech project strategizing, SSM is particularly instrumental to the application of four DSR guidelines, namely—problem relevance, design evaluation, research contribution and communication of DSR.
Full-text available
Metagovernance is a governance framework that has been develop as an approach that stablishes horizontal networks of stakeholders with the self-organizing capacities to solve complex issues. In this approach the solutions are build up bottom-up. In metagovernance there is a mix of governance styles (hierarchical, market-oriented, network) principles (efficiency, transparency, accountability, equity, inclusion, effectiveness, responsiveness, moral responsibility) and strategies (Network Design, Resourcing, Framing) In specific, this research focused on the City Deal for Circular Cities, a network that was stablished by the central government of the Netherlands that Entailed 9 local governments: Almere, Amsterdam, Apeldoorn, Dordrecht, Haarlemmermeer, Rotterdam, Utrecht and Venlo. Three knowledge partners; HaskoningDHV Nederland BV, the Netherland Organization for Applied Scientific Research (TNO) and Circle Economy UA. Also representatives from the State Secretary for Infrastructure and the Environment (IenM), the Minister for Housing and Civil Service (WenR) and the Minister for Economic Affairs (EZ). The objective of this deal was to use the self-organizing capacities of the stakeholders promote Circular Economy. This translated in the development of projects based in circularity, the sharing of knowledge in between the network and the formulation of indicators to assess the Deal itself. The outcome of the Deal was the creation of 17 different Circular Economy projects operated by the municipalities. This research aims to discover the effects that the meta governance strategies and principles had on the City Deal.
Full-text available
Disaster Risk Management (DRM) is a multi-dimensional problem complex requiring knowledge and experience from a wide range of disciplines. It also requires a methodology which can collate and organize this knowledge in an effective, transparent manner. Towards this end, seven specialists from the social, natural and engineering sciences collaborated in a facilitated workshop in order to develop a prototype multi-hazard disaster reduction model. The model, developed with computer-aided morphological analysis (MA), makes it possible to identify and compare risk reduction strategies, and preparedness and mitigation measures, for different types of hazards. Due to time constraints, the model is neither complete nor accurate - but only represents a proof-of-principle. The workshop was sponsored by the Earthquake Disaster Mitigation Research Center (EDM) in Kobe, in January, 2005
Full-text available
OR's traditional problem-solving techniques offer remarkably little assistance in deciding what the problem is. New problem structuring methods (PSMs) provide decision makers with systematic help in identifying an agreed framework for their problem. The result is either a well-defined project that can be addressed using traditional OR methods, or a clarification of the situation that enables those responsible to agree on a course of action. In principle, PSMs can provide analysts with greater access to strategic problems - those engaging multiple relatively independent decision makers. PSMs' transparent methods of representation can capture differing perceptions of the situation, to help generate a consensus or to facilitate negotiations.
Full-text available
The purpose of this article is to classify and compare – in essence to model – a number of different types of modelling methods employed within Operations Research and the Management Sciences (OR/MS). The classification of these methods is based on a selected number of generally recognised modelling properties. On the basis of this meta-model, requirements for the successful application of different modelling methods – for the study of given systems or objects of scientific enquiry – can be examined. The method employed for this meta-modelling task is General Morphological Analysis (GMA). The problem of a General Theory of Modelling (GTM) is also discussed.
Full-text available
There are important situations in which a method can be regarded as more suitable than the other. This concerns the question of which method is most appropriate as the primary method of chief point of departure for the study of a given system or object of scientific inquiry. This article deals with the foundations of analysis and synthesis as scientific methods, and especially with the requirements for the successful application of these methods.
Full-text available
General morphological analysis (GMA) is a method for structuring and investigating the total set of relationships contained in multidimensional, usually non-quantifiable, problem complexes. Pioneered by Fritz Zwicky at the California Institute of Technology in the 1930s and 1940s, it relies on a constructed parameter space, linked by way of logical relationships, rather than on causal relationships and a hierarchal structure. During the past 10 years, GMA has been computerized and extended for structuring and analysing complex policy spaces, developing futures scenarios and modelling strategy alternatives. This article gives a historical and theoretical background to GMA as a problem structuring method, compares it with a number of other ‘soft-OR’ methods, and presents a recent application in structuring a complex policy issue. The issue involves the development of an extended producer responsibility (EPR) system in Sweden
Abstract General morphological,analysis (GMA) is a method,for structuring and,analyzing,the total set of relationships contained in multi-dimensional, non-quantifiable problem complexes, and for synthesizing solution spaces. During the past 15 years, GMA has been extended, computerized and applied by the Swedish Defence Research Agency (FOI) for scenario development, long-term strategy management and
The search for scientific bases for confronting problems of social policy is bound to fail, becuase of the nature of these problems. They are wicked problems, whereas science has developed to deal with tame problems. Policy problems cannot be definitively described. Moreover, in a pluralistic society there is nothing like the undisputable public good; there is no objective definition of equity; policies that respond to social problems cannot be meaningfully correct or false; and it makes no sense to talk about optimal solutions to social problems unless severe qualifications are imposed first. Even worse, there are no solutions in the sense of definitive and objective answers.
Available from the World Wide Web: www
Syst Res 8(4):21-41. (Revised 1996) [Online]. Available from the World Wide Web: