Gene expression in human chondrocytes in late OA is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy

Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
Annals of the rheumatic diseases (Impact Factor: 10.38). 12/2008; 69(1):234-40. DOI: 10.1136/ard.2008.097139
Source: PubMed


To investigate changes in gene expression in fibrillated and intact human osteoarthritis (OA) cartilage for evidence of an altered chondrocyte phenotype and hypertrophy.
Paired osteochondral samples were taken from a high-load site and a low-load site from 25 OA joints and were compared with eight similar paired samples from age-matched controls. Gene expression of key matrix and regulatory genes was analysed by quantitative real-time reverse transcription-polymerase chain reaction on total RNA extracted from the cartilage.
There was a major change in chondrocyte gene expression in OA cartilage. SOX9 (38-fold) and aggrecan (4-fold) gene expression were both lower in OA (p<0.001), and collagen I (17-fold) and II (2.5-fold) gene expression were each increased in a subset of OA samples. The major changes in gene expression were similar at the fibrillated high-loaded site and the intact low-loaded site. There was no evidence of a generalised change in OA to proliferative or hypertrophic phenotype as seen in the growth plate, as genes associated with either stage of differentiation were unchanged (PTHrPR), or significantly downregulated (collagen X (14-fold, p<0.002), VEGF (23-fold, p<0.02), BCL-2 (5.6-fold, p<0.001), matrilin-1 (6.5-fold, p<0.001)). In contrast MMP-13 was significantly upregulated in the OA cartilage samples (5.3-fold, p<0.003).
The expression of key chondrocyte genes, including aggrecan and SOX9, was decreased in OA cartilage and the changes were similar in both fibrillated high-loaded and intact low-loaded cartilage on the same joint. However, there was no significant upregulation of type X collagen, and other genes associated with chondrocyte further differentiation and hypertrophy.

17 Reads
  • Source
    • "This notion is based upon the previously discussed common embryonic development of cartilage and bone and the current evidence certainly merits thorough examination. However, it has been met with some controversy in the field (Brew et al. 2010). Such controversies may potentially be addressed through a better understanding of the articular cartilage volume to surface area ratios in different species, and thus may provide some explanation as to why the degree of chondrocyte transiency in the articular cartilage differs from species to species. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
    Full-text · Article · Aug 2013 · Journal of Endocrinology
  • Source
    • "It has been estimated from a number of twin studies that the genetic contribution to OA is between 39% and 60% in hip and knee OA, respectively3,4. To date, however, while many genes have been shown to be differentially expressed between osteoarthritic and healthy chondrocytes by RT-PCR and microarray analyses5,6,7 relatively few genes have been identified through association studies to have reached genome wide significance; those that have include Growth/Differentiation factor (GDF5), a cluster of six genes on 7q22 (comprising PRKAR2B, HPB1, COG5, GPR22 DUS4L and BCAP29) and recently MCF2L8,9,10. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Increasing evidence points to a strong genetic component to osteoarthritis (OA) and that certain changes that occur in osteoarthritic cartilage recapitulate the developmental process of endochondral ossification. As zebrafish are a well validated model for genetic studies and developmental biology, our objective was to establish the spatiotemporal expression pattern of a number of OA susceptibility genes in the larval zebrafish providing a platform for functional studies into the role of these genes in OA. Design We identified the zebrafish homologues for Mcf2l, Gdf5, PthrP/Pthlh, Col9a2, and Col10a1 from the Ensembl genome browser. Labelled probes were generated for these genes and in situ hybridisations were performed on wild type zebrafish larvae. In addition, we generated transgenic reporter lines by modification of bacterial artificial chromosomes (BACs) containing full length promoters for col2a1 and col10a1. Results For the first time, we show the spatiotemporal expression pattern of Mcf2l. Furthermore, we show that all six putative OA genes are dynamically expressed during zebrafish larval development, and that all are expressed in the developing skeletal system. Furthermore, we demonstrate that the transgenic reporters we have generated for col2a1 and col10a1 can be used to visualise chondrocyte hypertrophy in vivo. Conclusion In this study we describe the expression pattern of six OA susceptibility genes in zebrafish larvae and the generation of two new transgenic lines marking chondrocytes at different stages of maturation. Moreover, the tools used demonstrate the utility of the zebrafish model for functional studies on genes identified as playing a role in OA.
    Full-text · Article · Feb 2013 · Osteoarthritis and Cartilage
  • Source
    • "However, previous findings by us [44] and Furumatsu and colleagues [43] demonstrated that COL2A1 and Sox9 (a transcription factor known to promote COL2A1) expression in inner meniscus cells was higher relative to their expression in outer meniscus cells, even in the presence of chondrogenic factors. A plausible reason for this disparity between our findings here and those of previous studies is donor-donor variability (age, gender, and so on) or, as alluded to earlier, the association with possible differences in the severity of OA among study specimens [53,57]. Additionally, it is probable that differences in the multi-potential characteristics of outer and inner meniscus cells play a contributing factor. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs. Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR. Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.
    Full-text · Article · Jun 2012 · Arthritis research & therapy
Show more