Caffeine and sport performance

Department of Sports Nutrition, Australian Institute of Sport, P.O. Box 176, Belconnen, ACT, Canberra 2616, Australia.
Applied Physiology Nutrition and Metabolism (Impact Factor: 2.34). 01/2009; 33(6):1319-34. DOI: 10.1139/H08-130
Source: PubMed


Athletes are among the groups of people who are interested in the effects of caffeine on endurance and exercise capacity. Although many studies have investigated the effect of caffeine ingestion on exercise, not all are suited to draw conclusions regarding caffeine and sports performance. Characteristics of studies that can better explore the issues of athletes include the use of well-trained subjects, conditions that reflect actual practices in sport, and exercise protocols that simulate real-life events. There is a scarcity of field-based studies and investigations involving elite performers. Researchers are encouraged to use statistical analyses that consider the magnitude of changes, and to establish whether these are meaningful to the outcome of sport. The available literature that follows such guidelines suggests that performance benefits can be seen with moderate amounts (~3 body mass) of caffeine. Furthermore, these benefits are likely to occur across a range of sports, including endurance events, stop-and-go events (e.g., team and racquet sports), and sports involving sustained high-intensity activity lasting from 1-60 min (e.g., swimming, rowing, and middle and distance running races). The direct effects on single events involving strength and power, such as lifts, throws, and sprints, are unclear. Further studies are needed to better elucidate the range of protocols (timing and amount of doses) that produce benefits and the range of sports to which these may apply. Individual responses, the politics of sport, and the effects of caffeine on other goals, such as sleep, hydration, and refuelling, also need to be considered.

Download full-text


Available from: Louise Mary Burke
  • Source
    • "It has been shown that caffeine has an ergogenic effect on human performance. There is evidence that caffeine increases endurance (Graham et al., 1998) and short-term high-intensity exercise performance (Burke, 2008). The discussed mechanisms for caffeine's ergogenic effect on endurance performance include the enhancement of fat oxidation that has been assumed to preserve muscle glycogen stores. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare the neuromuscular function of the plantar flexors following caffeine or placebo administration. Thirteen subjects (25 ± 3 years) ingested caffeine or placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after caffeine or placebo intake. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque, and neural drive to the muscles were measured. Triceps surae muscle activation was assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0–100 ms, 100–200 ms) and maximal voluntary contraction (MVC). Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during MVC, V-wave) and peak twitch torques were evaluated. The isometric maximum voluntary torque and evoked potentials were not different. However, we found a significant difference between groups for rate of torque development in the time intervals 0–100 ms [41.1 N·m/s (95% CI: 8.3–73.9 N·m/s, P = 0.016)] and 100–200 ms [32.8 N·m/s (95% CI: 2.8–62.8 N·m/s, P = 0.034)]. These changes were accompanied by enhanced neural drive to the plantar flexors. Data suggest that caffeine solely increased explosive voluntary strength of the triceps surae because of enhanced neural activation at the onset of contraction whereas MVC strength was not affected.
    Full-text · Article · Feb 2015 · Scandinavian Journal of Medicine and Science in Sports
  • Source
    • "Finally, our findings are also in agreement with Irwin et al. (2011), who reported a similar degree of improvement in cycling performance when a comparable ϳ12-h withdrawal from caffeine was enforced in habitual caffeine users. This observation suggests that longer withdrawal periods (24–48 h), as recommended previously (Burke 2008), may not be necessary. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.
    Full-text · Article · Sep 2014 · Applied Physiology Nutrition and Metabolism
  • Source
    • "Recent studies have shown that caffeine (CAF) can act as an ergogenic aid, both in short and long-term exercise [1]–[4] at both central and peripheral level [4]–[6]. Conversely to what was initially thought, CAF intake does not seem to be able to accelerate fat metabolism and to spare muscle glycogen during exercise, which would explain the increased performance observed in endurance tasks [4],[7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The objective of this study was to analyze the effect of caffeine ingestion on the performance and physiological variables associated with fatigue in 20-km cycling time trials. Methods In a double-blind placebo-controlled crossover study, 13 male cyclists (26 ± 10 y, 71 ± 9 kg, 176 ± 6 cm) were randomized into 2 groups and received caffeine (CAF) capsules (6−1) or placebo (PLA) 60 min before performing 20-km time trials. Distance, speed, power, rpm, rating of perceived exertion (RPE), electromyography (EMG) of the quadriceps muscles and heart rate (HR) were continuously measured during the tests. In addition, BRUMS questionnaire was applied before and after the tests. Results Significant interactions were found in power and speed (P = 0.001), which were significantly higher at the end of the test (final 2 km) after CAF condition. A main effect of time (P = 0.001) was observed for RPE and HR, which increased linearly until the end of exercise in both conditions. The time taken to complete the test was similar in both conditions (PLA = 2191 ± 158 s vs. CAF = 2181 ± 194 s, P = 0.61). No significant differences between CAF and PLA conditions were identified for speed, power, rpm, RPE, EMG, HR, and BRUMS (P > 0.05). Conclusion The results suggest that caffeine intake 60 min before 20-km time trials has no effect on the performance or physiological responses of cyclists.
    Full-text · Article · Aug 2014 · Journal of the International Society of Sports Nutrition
Show more