A novel cognitive-neurophysiological state biomarker in premanifest Huntington's disease validated on longitudinal data

Institute for Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Germany.
Scientific Reports (Impact Factor: 5.58). 05/2013; 3:1797. DOI: 10.1038/srep01797
Source: PubMed


In several neurodegenerative diseases, like Huntington's disease (HD), treatments are still lacking. To determine whether a treatment is effective, sensitive disease progression biomarkers are especially needed for the premanifest phase, since this allows the evaluation of neuroprotective treatments preventing, or delaying disease manifestation. On the basis of a longitudinal study we present a biomarker that was derived by integrating behavioural and neurophysiological data reflecting cognitive processes of action control. The measure identified is sensitive enough to track disease progression over a period of only 6 month. Changes tracked were predictive for a number of clinically relevant parameters and the sensitivity of the measure was higher than that of currently used parameters to track prodromal disease progression. The study provides a biomarker, which could change practice of progression diagnostics in a major basal ganglia disease and which may help to evaluate potential neuroprotective treatments in future clinical trials.

Download full-text


Available from: Vanessa Neß
  • Source
    • "Typically patients present in mid life with an array of motor signs including chorea and bradykinesia as well as psychiatric and cognitive impairments [6]. Many studies have sought to identify the earliest changes in HD and subtle impairments in motor and cognitive function before predicted disease onset have been reported [7,8]. Others have sought to more objectively track disease progression once the disease has become manifest and this includes a range of motor, cognitive and imaging approaches [4,9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current clinical assessments of motor function in Huntington's Disease (HD) rely on subjective ratings such as the Unified Huntington's Disease Rating scale (UHDRS). The ability to track disease progression using simple, objective, inexpensive, and robust measures would be beneficial. One objective measure of motor performance is hand-tapping. Over the last 14 years we have routinely collected, using a simple device, the number of taps made by the right and left hand over 30 seconds in HD patients attending our NHS clinics. Here we report on a longitudinal cohort of 237 patients, which includes patients at all stages of the disease on a wide range of drug therapies. Hand tapping in these patients declines linearly at a rate of 5.1 taps per year (p < 0.0001; 95% CI = 3.8 to 6.3 taps), and for each additional year of age patients could perform 0.9 fewer taps (main effect of age: p = 0.0007; 95% CI = 0.4 to 1.4). Individual trajectories can vary widely around this average rate of decline, and much of this variation could be attributed to CAG repeat length. Genotype information was available for a subset of 151 patients, and for each additional repeat, patients could perform 5.6 fewer taps (p < 0.0001; 95% CI = 3.3 to 8.0 taps), and progressed at a faster rate of 0.45 fewer taps per year (CAG by time interaction: p = 0.008; 95% CI = 0.12 to 0.78 taps). In addition, for each unit decrease in Total Functional Capacity (TFC) within individuals, the number of taps decreased by 6.3 (95% CI = 5.4 to 7.1, p < 0.0001). Hand tapping is a simple, robust, and reliable marker of disease progression. As such, this simple motor task could be a useful tool by which to assess disease progression as well therapies designed to slow it down.
    Full-text · Article · Feb 2014 · BMC Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: It is well-known that Huntington's disease (HD) affects saccadic processing. However, saccadic dysfunctions in HD may be seen as a result of dysfunctional processes occurring at the oculomotor level prior to the execution of saccades, i.e., at a pre-saccadic level. Virtually nothing is known about possible changes in pre-saccadic processes in HD. Objective: This study examines pre-saccadic processing in pre-manifest HD gene mutation carriers (pre-HDs) by using clinically available EEG measures. Methods: Error rates, pre-saccadic EEG potentials and saccade onset EEG potentials were measured in 14 pre-HDs and case-matched controls performing prosaccades and antisaccades in a longitudinal study over a 15-month period. Results: The results show that pre-saccadic potentials were changed in pre-HDs, relative to controls and also revealed changes across the 15-month longitudinal period. In particular, pre-saccadic ERP in pre-HDs were characterized by lower amplitudes and longer latencies, which revealed longitudinal changes. These changes were observed for anti-saccades, but not for pro-saccades. Overt saccadic trajectories (potentials) were not different to those in controls, showing that pre-saccadic processes are sensitive to subtle changes in fronto-striatal networks in pre-HDs. Conclusions: Deficits in pre-saccadic processes prior the execution of an erroneous anti-saccade can be seen as an effect of dysfunctional cognitive control in HD. This may underlie saccadic abnormalities and hence a major phenotype of HD. Pre-saccadic EEG potentials preceding erroneous anti-saccades are sensitive to pre-manifest disease progression in HD.
    No preview · Article · Jan 2014 · Journal of Huntington's disease
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report brain imaging and genetic diagnosis in a family from Wuhan, China, with a history of Huntington's disease. Among 17 family members across three generations, four patients (II2, II6, III5, and III9) show typical Huntington's disease, involuntary dance-like movements. Magnetic resonance imaging found lateral ventricular atrophy in three members (II2, II6, and III5). Moreover, genetic analysis identified abnormally amplified CAG sequence repeats (> 40) in two members (III5 and III9). Among borderline cases, with clinical symptoms and brain imaging features of Huntington's disease, two cases were identified (II2 and II6), but shown by mutation analysis for CAG expansions in the important transcript 15 gene, to be non-Huntington's disease. Our findings suggest that clinical diagnosis of Huntington's disease requires a combination of clinical symptoms, radiological changes, and genetic diagnosis.
    No preview · Article · Feb 2014 · Neural Regeneration Research
Show more