And-Inverter Graphs (AIGs) are a popular way to represent Boolean functions
(like circuits). AIG simplification algorithms can dramatically reduce an AIG,
and play an important role in modern hardware verification tools like
equivalence checkers. In practice, these tricky algorithms are implemented with
optimized C or C++ routines with no guarantee of correctness. Meanwhile, many
interactive theorem provers can now employ SAT or SMT solvers to automatically
solve finite goals, but no theorem prover makes use of these advanced,
AIG-based approaches.
We have developed two ways to represent AIGs within the ACL2 theorem prover.
One representation, Hons-AIGs, is especially convenient to use and reason
about. The other, Aignet, is the opposite; it is styled after modern AIG
packages and allows for efficient algorithms. We have implemented functions for
converting between these representations, random vector simulation, conversion
to CNF, etc., and developed reasoning strategies for verifying these
algorithms.
Aside from these contributions towards verifying AIG algorithms, this work
has an immediate, practical benefit for ACL2 users who are using GL to
bit-blast finite ACL2 theorems: they can now optionally trust an off-the-shelf
SAT solver to carry out the proof, instead of using the built-in BDD package.
Looking to the future, it is a first step toward implementing verified AIG
simplification algorithms that might further improve GL performance.