ArticlePDF Available

Lower Extremity Muscle Functions During Full Squats

Authors:

Abstract and Figures

The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.
Content may be subject to copyright.
333
Journal of Applied Biomechanics, 2008, 24, 333-339
© 2008 Human Kinetics, Inc.
The purpose of this research was to determine
the functions of the gluteus maximus, biceps
femoris, semitendinosus, rectus femoris, vastus
lateralis, soleus, gastrocnemius, and tibialis
anterior muscles about their associated joints
during full (deep-knee) squats. Muscle func-
tion was determined from joint kinematics,
inverse dynamics, electromyography, and
muscle length changes. The subjects were six
experienced, male weight lifters. Analyses
revealed that the prime movers during ascent
were the monoarticular gluteus maximus and
vasti muscles (as exemplied by vastus latera-
lis) and to a lesser extent the soleus muscles.
The biarticular muscles functioned mainly as
stabilizers of the ankle, knee, and hip joints by
working eccentrically to control descent or
transferring energy among the segments during
ascent. During the ascent phase, the hip exten-
sor moments of force produced the largest
powers followed by the ankle plantar exors
and then the knee extensors. The hip and knee
extensors provided the initial bursts of power
during ascent with the ankle extensors and
especially a second burst from the hip exten-
sors adding power during the latter half of the
ascent.
Keywords: electromyography, inverse dynam-
ics, kinesiology
Traditionally, kinesiologists and physical educators
classify muscles in several ways: by anatomical func-
tion, by type of contraction, by level of recruitment, and
by work done by the muscle during a particular motion.
Anatomically, muscles are dened by whether they are
exors, extensors, abductors, adductors, and so on based
on their lines of action across the joints that they cross.
Muscle contractions are categorized by how a muscle’s
length changes—concentric if the muscle shortens,
The authors are with the School of Human Kinetics, Univer-
sity of Ottawa, Ottawa, ON, Canada.
Lower Extremity Muscle Functions During Full Squats
D.G.E. Robertson, Jean-Marie J. Wilson, and Taunya A. St. Pierre
University of Ottawa
eccentric if it lengthens, and isometric when it is active
but there is no change in muscle length. The recruitment
level of a muscle is usually identied by the relative
magnitude of its electromyogram (EMG) compared
with its maximal magnitude. More difcult to dene is
the work done by a specic muscle and where the energy
it produces is used within the musculoskeletal system.
To overcome this currently unsolvable problem, the
work done by the moments of force across each joint are
used to estimate the net work done by all the structures
that cross the joint. Since the main contributors to the
work done across a joint are muscles, especially when
the joint does not reach its anatomical limits, biomecha-
nists have a partial way of determining the roles of mus-
cles during motion.
One can, for example, analyze a simple exor
movement and observe an increasing moment of force
and a simultaneous increase in the EMG of the exor
muscle. To terminate the period of exion, an antago-
nistic extensor muscle may turn on to cause an extensor
moment of force. The exor muscle would be observed
to be shortening during its period of contraction while
the extensor muscle would be shown to be lengthening
or eccentrically contracting. The situation becomes
more complex when multiple joints are involved and
some of the muscles cross more than one joint. For
example, researchers have come to opposite conclusions
when analyzing the role of biarticular muscles during
the vertical jump. Bobbert and Van Ingen Schenau
(1988) stated that energy was transferred distally by
biarticular muscles, whereas Pandy and Zajac (1991)
showed a distal-to-proximal transfer of energy. To reach
their conclusion, Pandy and Zajac determined the con-
tributions of muscles based on a musculoskeletal model
of the lower extremity. They pointed out that muscles
crossing a particular joint can deliver power to segments
remote from the joint(s) that they cross. If only it were
possible to attach power meters to the muscles to watch
the ows of mechanical energy as we do to measure the
ow of electrical energy to a house.
Elftman (1939a, 1939b) suggested a partial solution
to this problem and applied it to walking. His approach
was to calculate the powers due to the net forces and
moments at each joint as well as the instantaneous
334 Robertson, Wilson, and St. Pierre
1988), vertical lifting (Molbech, 1965; Wilson & Rob-
ertson, 1988), sprinting (Simonsen et al., 1985), and
jumping (Bobbert & Van Ingen Schenau, 1988; Pandy
& Zajac, 1991; Zajac, 1993; Prilutsky & Zatsiorsky,
1994; Jacobs et al., 1996).
The purpose of this study was to determine the
functions of the major lower limb muscles, particularly
the biarticular muscles, during full squats (descent and
ascent) based on EMG activity, inverse dynamics,
moment powers and estimated muscle length changes.
Past research (Molbech, 1965; Wilson & Robertson,
1988) examining biarticular muscles during full squat-
ting has provided some evidence for the existence of
paradoxical muscle activity. A study by Andrews (1985)
attempted to dene paradoxical activity through the
examination of a rst-order differential relationship
between muscle length and joint angle that yields the
moment arm length. Unfortunately, his method did not
account for changes in muscle recruitment.
Methods
The subjects were six male experienced weight lifters.
The subjects varied in height from 1.78 to 1.90 m and in
mass from 71.8 to 95.5 kg. The body was modeled as
four rigid segments connected by frictionless pin joints
at the hip, knee, and ankle. Segmental masses, radii of
gyration, and centers of gravity were calculated from
proportions described by Dempster (1955) and Plagen-
hoef (1971). The length of the muscles of interest
(soleus, tibialis anterior, gastrocnemius, vastus lateralis,
semitendinosus, biceps femoris, rectus femoris, and
gluteus maximus) were calculated using Frigo and
Pedotti’s (1978) model with modications by Hubley
(1981) to allow scaling for different sized persons. The
bar was treated as a particle with its center of gravity
acting at its geometric center. Angular motion of the bar
about its center of gravity was considered negligible
(McLaughlin et al., 1978).
Before data collection, pairs of silver–silver chlo-
ride electrodes were placed on the muscles at locations
specied by Delagi et al. (1975). Skin impedance was
conrmed to be below 20 kΩ and the interelectrode dis-
tance set to 2.5 cm to reduce cross talk (Winter et al.,
1994). High-input-impedance (10 MΩ) differential
ampliers (>110 dB CMRR, 10–500 Hz band-pass)
were used to obtain reliable EMG signals. The full-
wave-rectied EMG signals were ltered through 2nd-
order Butterworth lters with a 6-Hz cutoff frequency
(Winter, 1990), yielding their linear envelopes.
Following a warm-up and rest period, the subjects
were required to perform 12 full squat (knees maximally
exed) trials with 3 min of rest between trials. Six of the
trials were performed unloaded as a warm-up, and the
other half were performed with a load representing 80%
of each subject’s previously recorded maximum. The
squat consisted of a 2-s descent during which the ankle,
hip, and knee became exed into a full squat followed
immediately by a 2-s ascent during which the three
powers of each segment. The segmental powers could
then be accounted for by the ows of energy to or from
the segment at each end. Winter and Robertson (1978)
used his methods to show that energy could be tracked
during gait and proved that during the push-off phase of
walking, work generated by the ankle plantar exor
moment was used to supply energy to the foot, leg,
thigh, and even the trunk by the transfer of energy
though passive joint structures. However, no effort was
made to identify which muscles were responsible for
the various bursts of positive and negative work during
the complete gait cycle.
In this study, we will apply inverse dynamics and
moment power analysis to determine the work done at
the joints coupled with information about various major
muscles of the lower extremity to determine how the
motions of the full squat are achieved. In particular, the
roles of the biarticular muscles will be elucidated based
on their levels of contraction (EMGs) and their states of
contraction (lengthening or shortening). For example, a
curious paradox can occur when two opposing biarticu-
lar muscles contract simultaneously to produce motion
at both joints instead of stiffening the joints they cross.
Such a situation, rst described by Duchenne (in 1885,
see Kuo, 2001) and Lombard (1903) and subsequently
named Lombard’s paradox, is observed when rectus
femoris and biceps femoris contract concurrently during
the motion of rising from a chair. The extension seen at
both the hip and knee is the result of the differential
moment arms of the two muscles at each joint. Since the
rectus femoris has a greater moment arm across the
knee, due to the patella, it creates an extensor moment at
the knee. Biceps femoris has the longer moment arm at
the hip so it creates an extensor moment there. Thus,
simultaneous contractions of these muscles from the
seated position causes extension of the both the knee
and hip.
Experimentally determining how two-joint muscles
contribute during a full squat requires information about
muscle lengths, joint kinematics, and net moments of
force. Molbech (1965) suggested that biarticular mus-
cles of the lower extremity act in a “paradoxical” fash-
ion when the movement is constrained or controlled.
For his example, the movement consisted of having the
feet motionless on the ground and the hips following a
vertical track. He showed that a paradoxical situation
occurred because when a biarticular muscle, such as the
gastrocnemius contracted, it caused knee extension
when normally it was a knee exor. In a subsequent
paper (Carlsöö & Molbech, 1966), he and Carlsöö pro-
posed that a similar situation existed for seated cycling
where knee exors, such as the hamstrings, acted as
knee extensors. They considered cycling a controlled
motion since the pelvis was xed to the seat and the feet
must travel a circular path. Other studies have docu-
mented that paradoxical activity may occur during
movements when several joints have reduced degrees of
freedom, for example, during seated bicycling (Gregor
et al., 1985; Andrews, 1987), rowing (Robertson et al.,
Muscle Activity During Full Squats 335
joints extended concurrently. The minimum exion
angles for all three joints occurred at the end of descent.
Because there were no signicant differences in the
ranges of motion of the joints between the unloaded and
loaded conditions, based on a dependent groups t test (p
= .055), and since it was the loaded conditions that were
of most interest, only results from the loaded conditions
are presented.
At all three joints the peak angular velocities
occurred simultaneously. The peak negative angular
velocity occurred at just after 10% of the cycle whereas
the peak positive angular velocity occurred at 90% of
the cycle. The peak angular velocities at the hip and
knee joint (approximately 2 rad/s), however, were sub-
stantially higher than that of the ankle joint (<1.0 rad/s).
The hip, knee, and ankle joints had very distinct
patterns of the net moments of force (Figures 2, 3, and 4).
The hip and ankle joints showed extensor moments
throughout ascent and descent, whereas the knee joint
started and ended with a exor moment, with an exten-
sor moment in between. Peak moments varied between
subjects but, on average, the highest peak moments were
produced at the hips (maxima around –300 N·m) fol-
lowed by the ankles (approx. –200 N·m) and then the
knees (between ±100 N·m).
The moment powers (Figures 2, 3, and 4) at the
knee differed notably from the patterns seen at the other
two joints. The power patterns for both the hip and the
ankle extensors were eccentric during the descent and
concentric during the ascent. In contrast, power values
at the knee started with the exors acting concentrically
and then with the extensors acting eccentrically for the
rest of the descent. The ascent began with the extensors
switching to concentric contractions and ended with the
exors working eccentrically. Again, the peak powers
were highest for the hip extensors followed by the ankle
plantar exors and then the knee extensors.
The functions of the moments of force at the hip
and ankle divide into two phases (Figures 2 and 4). In
the descending phase, extensor moments dissipated
energy in order to control the rate and amount of the
descent, whereas, in the ascending portion, work was
generated by extensor moments about these joints. In
contrast, the functions of the knee moments of force
divided into four phases (Figure 3)—two during descent
and two during ascent. Initially during descent, positive
work was performed by the knee exors to unlock the
knee and initiate downward motion (0–15% of the
cycle). During the rest of the descent, energy was dissi-
pated by the knee extensors in an effort to control knee
exion (15–53% of the cycle). Positive work performed
by the knee extensors signaled the start of the ascent
(53–85% of the cycle). Near the end of the ascent, the
knee exors started to perform negative work (acted
eccentrically) to reduce the rate of knee extension and
presumably prevent hyperextension (85–100% of the
cycle).
The ensemble-averaged lengths of the muscles as
proportions of their standing lengths during the full
joints extended to return to an upright posture. The load
lifted during the full squats varied from 600 to 1226 N.
The subjects executed full squats with their right
feet on a force platform (Kistler 9261A). Cinemato-
graphic, electromyographic, and kinetic data were col-
lected simultaneously. A cine camera was positioned
perpendicular to the plane of motion, and all data were
sampled at 50 Hz. Following the 12 trials, the subjects
were required to perform three maximal isometric con-
tractions for each muscle. To elicit the MVCs, each sub-
ject adopted a partial squat position with the heels not
touching the ground and performed a maximal isomet-
ric contraction against a chain that was connected with
the ground. In pretesting, this procedure was shown to
produce MVCs in all of the major muscle groups that
were used in this study. The EMG results were averaged
and the maximum contraction values were used to detect
the relative EMG activation states of the muscles during
the full squats.
Within each of the two testing conditions (with and
without load), linear-envelope EMG signals for each
muscle were normalized over time and to maximum
EMG values. These data were then averaged for each
subject over six trials to yield an ensemble average
EMG pattern for each muscle. All within-subject ensem-
ble averages were then averaged to produce the across-
subject grand ensemble average (Yang & Winter, 1984)
for each muscle and testing condition.
The lm data were digitized to an accuracy of less
than 0.5 mm and then processed with the Biomech
Motion Analysis System (http://www.health.uottawa.
ca/biomech/csb/biomech.htm). The motion data were
smoothed with a zero-lag, 4th-order, Butterworth lter
set to a cutoff frequency of 6 Hz. Joint angular displace-
ments and velocities were derived from the motion data
and combined with the force plate data for inverse
dynamics analysis that resulted in the calculation of net
internal moments of force and their associated powers
(Robertson & Winter, 1980) at the ankle, knee, and hip.
These kinematic and kinetic data were then time nor-
malized and averaged across subjects.
Muscle-tendon-unit lengths for each subject were
calculated from relative angle changes, (Frigo & Pedotti,
1978; Hubley, 1981) normalized to their length during
standing and then ensemble averaged. These averages
were time normalized and then averaged across sub-
jects, resulting in grand ensemble, muscle length
histories.
Results
A slightly greater portion of the squat was required for
the descent phase (0–53%) than for the ascent phase
(53–100%) based on the change from exion to exten-
sion of the three joints. The changes that occurred in the
angles of the joints are illustrated in Figure 1. During
the descent, all three joints exed, simultaneously; the
reverse was seen during the ascent, in which all three
336 Robertson, Wilson, and St. Pierre
descent and lengthening on ascent. Gastrocnemius,
semitendinosus, and biceps femoris each shortened by
8%, 20%, and 6%, respectively, during descent.
Linear-envelope electromyograms averaged across
subjects and normalized to each subject’s maximum
voluntary contractions (MVCs) are displayed in Figure
6. These curves show the onset and recruitment levels of
each muscle during the squatting motion. The descent
phase of the full squat was characterized by tibialis
anterior, vastus lateralis, and rectus femoris activity,
squats are displayed in Figure 5. Three of the monoar-
ticular muscles acted at lengths beyond their standing
lengths. Soleus, gluteus maximus (GM), and vastus lat-
eralis (VL) all lengthened beyond their standing lengths
during descent, by 7%, 29%, and 18%, respectively,
before returning to their standing lengths at the end of
ascent. Only the monoarticular tibialis anterior muscles
shortened 5% during descent before returning to their
standing lengths during ascent.
Of the biarticular muscles, the rectus femoris mus-
cles stayed close to their standing lengths with changes
of less than 2%. They were also unusual by having a
bimodal pattern—lengthening then shortening during
both descent and ascent. All other biarticular muscles
exhibited unimodal contraction patterns—shortening on
Figure 1 Joint angles (in degrees ± 1 SD) during loaded
and unloaded full squats.
Figure 2 Ankle angular velocity, net moment of force, and
moment power (± 1 SD) during loaded full squats.
Figure 3 Knee angular velocity, net moment of force, and
moment power (± 1 SD) during loaded full squats.
Figure 4 Hip angular velocity, net moment of force, and
moment power (± 1 SD) during loaded full squats.
Muscle Activity During Full Squats 337
of the antagonistic muscles was observed at the knee
and hip joints as the rectus femoris, gluteus maximus,
vastus lateralis, semitendinosus, biceps femoris, and
gastrocnemius contracted simultaneously during the
extension (ascent) phase. EMG activity of the semiten-
dinosus paralleled that of the biceps femoris since both
are part of the hamstrings group, as did vastus lateralis
and rectus femoris, both part of the quadriceps group.
Thus, the hamstrings and gastrocnemius acted antago-
nistically to the actions of the quadriceps group at the
knee while the gluteus maximus acted antagonistically
to the rectus femoris at the hip during the early portion
of the ascent.
Discussion
The tibialis anterior contracted concentrically about the
ankle during descent to assist dorsiexion. Soleus, as
expected, functioned eccentrically but contributed little
based on its relatively low level of EMG activity. In con-
trast, gastrocnemius, which also had a relatively low
level of recruitment, contracted concentrically. As a
two-joint muscle, the role of the gastrocnemius may
have been to assist knee exion, whereas the soleus
acted to limit the amount of ankle dorsiexion during
descent. This observation is supported by the fact that
soleus level of recruitment increased to almost 50%
MVC as the subjects reached maximum descent.
Muscle activity about the knee during descent was
characterized by two periods—one of concentric work
and one of eccentric work. During the initial brief period
of concentric work gastrocnemius, semitendinosus, and
biceps femoris acted together to initiate exion of the
knee. These muscles concentrically contracted and were
active at around 25% of MVC. In particular, gastrocne-
mius exhibited a brief burst that combined with the two
hamstring muscles was enough to unlock the knee and
permit descent. Afterward, knee exion continued with
the knee extensors acting eccentrically to control and
eventually terminate the descent. During the eccentric
part of descent, continuous activity of the vastus latera-
lis contracting eccentrically was evident. Rectus femo-
ris (RF), another knee extensor, exhibited increasing
EMG activity as the descent reached maximum depth.
During the second half of decent, however, RF was
shortening slightly so it may have acted more as a hip
exor or as a stabilizer at both hip and knee. Since RF’s
length changed less than 2%, one could characterize its
role as being isometric and therefore was responsible
for transmitting energy across the hip and knee joints
for dissipation by the knee extensors and ankle plantar
exors. This type of mechanism has been shown for
jump landings by Prilutsky and Zatsiorsky (1994), but
the exact nature of RF’s contributions are difcult to
gauge using only inverse dynamics (Zajac, 1993).
The hip moment of force was consistently extensor
through the squat. During descent, the extensor moment
of force did negative work to control the rate and amount
whereas the ascent phase showed increasing levels of
activity from all the muscles, excepting tibialis anterior,
which decreased.
At the ankle joint, little evidence of coactivation of
antagonistic muscles occurred except at the deepest part
of the descent and during the early part of the ascent
phase (50–70% of cycle duration). Gastrocnemius and
soleus EMG patterns followed each other synergisti-
cally, and both these muscles were relatively inactive
(<25% MVC) during periods of signicant tibialis ante-
rior activity. In contrast, coactivation (i.e., >25% MVC)
Figure 5 Lengths of the muscles (± 1 SD) as proportions
of their standing lengths during loaded full squats.
Figure 6 Linear-envelope EMGs (± 1 SD) during loaded
full squats as percentages of maximum voluntary contractions
(MVCs).
338 Robertson, Wilson, and St. Pierre
not vary much (<2%) so they may have acted to prevent
excessive hip extension, which might result in the sub-
ject falling backward.
The antagonistic hamstrings, biceps femoris, and
semitendinosus, were also recruited during this period
especially at mid-ascent, but contracted eccentrically.
Gastrocnemius, another biarticular knee exor, was also
actively recruited during ascent and like the hamstrings
contracted eccentrically. These antagonists would
appear to be working against knee extension but their
combined actions may in fact assist extension. If we
consider that their lines of action are both partly directed
rearward, their vector sum would produce a force that
pulls the knee joint backward and into extension. Such a
mechanism has been suggested for biarticular muscles
when the segments are not constrained, as in jumping
(Zajac, 1993), but may also be true for lifting activities,
in which the distal ends of the kinematic chain (i.e., the
feet) are constrained by the ground. This paradoxical
ability of the biarticular muscles was suggested by Mol-
bech (1965) but was not investigated for a situation
where two sets of biarticular muscles (gastrocnemius
and hamstrings) acted simultaneously. The difculty
with Molbech’s principle is that he assumed that the
biarticular muscles shortened whereas for full squats the
biarticular muscles lengthened. Thus, his paradoxical
muscle activity cannot be said to have occurred during
full squats.
At the hip, the gluteus maximus was clearly a major
contributor to the work done. The gluteus maximus
muscles contracted concentrically throughout the ascent
and were actively recruited to near maximum levels
especially during the rst two-thirds of the ascent. Its
antagonist, RF, was also heavily recruited but only
during the earliest third of the ascent when it was eccen-
trically contracting. As mentioned previously, RF
offered resistance to hip extension but may also have
been fullling its role as a knee extensor by transmitting
energy from the torso to the leg (tibia). Rectus femoris
could have transmitted energy because of its relatively
stiff behavior as shown but its minimal length change
(Prilutsky & Zatsiorsky, 1994). At the end of ascent, RF
shortened but its recruitment level was nearly zero and
therefore did not contribute energy to the motion.
In conclusion, analysis of the EMG, inverse dynam-
ics, moment powers, and muscle length changes during
squatting revealed the complex relationships among the
contributions of the various major muscles of the lower
extremity. Not surprisingly, there was a close agreement
between the results of the six participants, which sup-
ports the notion that they all performed the squat in a
similar fashion. The results support Pandy and Zajac’s
(1991) notion that energy is provided in a proximal-to-
distal sequence with the hip extensors providing the
greatest contributions during ascent, followed by the
ankle plantar exors, and then the knee extensors. The
important role of the knee exors as the initiators of the
squatting motion by unlocking the knee and permitting
the start of descent was also identied.
of hip exion. Gluteus maximus contracted eccentrically
throughout the descent with EMG levels starting at 10%
MVC and increasing to about 25% MVC around mid-
descent. The gluteals curiously reduced their activity
level at maximum squat depth. Presumably, they were
not needed to maintain stability or perhaps they permit-
ted an extra degree of hipexion that would have created
a deeper counter-movement immediately before ascent.
Counter-movements enable stronger contraction forces
when they are done rapidly and immediately before a
powerful movement (Van Ingen Schenau, 1984).
Not surprisingly, during the ascent phase all three
moments of force were extensor and performed concen-
tric work. The hip extensors dominated earliest and
throughout the ascent, having the largest peak moments
(>300 N·m) and the largest peak powers (>200 W at
60% of cycle time with a second peak >300 N·m at 85%
of cycle time). The knee extensors produced relatively
the lowest powers of the three moments and only con-
tributed positive work for the rst two-thirds of the
ascent. The ankle plantar exors produced larger powers
than the knee extensors but did not contribute their max-
imum power until near the end of the lift (at 85% of
cycle time). This order of power production, from prox-
imal (hip) to distal (ankle), is similar to that of counter-
movement jumping (Nagano et al., 1998). Despite this
ordering of the powers, examination of the EMGs show
that all exors and extensors (excepting tibialis anterior)
were recruited almost simultaneously as compared with
vertical jumping (Bobbert & Van Ingen Schenau, 1988),
for which the order of recruitment was hip, knee, and
then ankle muscles. This may be due to the static start
and nish required for the full squat. One obvious dif-
ference with the squat was that all muscles relax at the
end of the movement whereas in vertical jumping many
muscles continue to contract until and after the end of
ground contact.
The soleus was the major contributor to ankle
extension since it concentrically contracted and was
recruited almost maximally. Gastrocnemius was also
heavily recruited but did no positive work during this
period because it was contracting eccentrically and so
could have been involved with transferring energy prox-
imally due to its biarticular nature (Van Soest et al.,
1983, Zajac, 1993; Prilutsky & Zatsiorsky, 1994). As
expected, the antagonistic tibialis anterior reduced its
activity level during ascent but was partly activated, pre-
sumably to stabilize the ankle against unexpected
perturbations.
During the rst two-thirds of ascent, the knee exten-
sor moment did positive work. The vastus lateralis, and
presumably the other vasti, contracted concentrically
and were recruited near maximally. The RF, another
member of the quadriceps group, was also recruited
based on its high levels of EMG but did not contribute
positive work to the body as it acted eccentrically
through the rst half of the ascent, during which the
majority of the external work by the knee extensors was
done. In fact, as mentioned previously, RF’s lengths did
Muscle Activity During Full Squats 339
McLaughlin, T.M., Lardner, T.J., & Dillman, C.J. (1978).
Kinetics of the parallel squat. Research Quarterly, 49,
175–179.
Molbech, S. (1965). On the paradoxical effect of some two-
joint muscles. Acta Morphologica Neerlando-Scandi-
navica, 6, 171–176.
Nagano, A., Ishige, Y., & Fukashiro, S. (1998). Comparison
of new approaches to estimate mechanical output of indi-
vidual joints in vertical jumps. Journal of Biomechanics,
31, 951–955.
Pandy, M.G., & Zajac, F.E. (1991). Optimal muscular coordi-
nation strategies for jumping. Journal of Biomechanics,
24, 1–10.
Prilutsky, B.U., & Zatsiorsky, V.M. (1994). Tendon action
of two-joint muscles: Transfer of mechanical energy
between joints during jumping, landing and running.
Journal of Biomechanics, 27, 25–34.
Plagenhoef, S. (1971). Patterns of human motion—A cinemat-
ographic analysis. Englewood Cliffs, NJ: Prentice-Hall.
Robertson, D.G.E., Stothart, J.P., & Wilson, J-M. (1988).
Electromyographic and impulse analysis of ergometer
rowing. Biomechanics XI-B (pp. 869–873). Amsterdam:
Free University Press.
Robertson, D.G.E., & Winter, D.A. (1980). Mechanical energy
generation, absorption and transfer amongst segments
during walking. Journal of Biomechanics, 13, 845–854.
Simonsen, E.B., Thomsen, L., & Klausen, K. (1985). Activ-
ity of mono- and biarticular leg muscles during sprint
running. European Journal of Applied Physiology, 54,
524–532.
Van Ingen Schenau, G.J. (1984). An alternative view of the
concept of utilization of elastic energy in human move-
ment. Human Movement Science, 3, 301–336.
Van Soest, A.J., Schwab, A.L., Bobbert, M.F., & Van Ingen
Schenau, G.J. (1993). The inuence of the biarticularity
of the gastrocnemius on vertical-jumping achievement.
Journal of Biomechanics, 26, 1–8.
Winter, D.A. (1990). Biomechanics and motor control of
human movement (2nd ed.). Toronto: John Wiley &
Sons.
Winter, D.A., Fuglevand, A.J., & Archer, S.E. (1994). Cross-
talk in surface electromyography: Theoretical and practi-
cal estimates. Journal of Electromyography and Kinesi-
ology, 4, 15–26.
Winter, D.A., & Robertson, D.G.E. (1978). Joint torque and
energy patterns in normal gait. Biological Cybernetics,
29, 137–142.
Wilson, J.M., & Robertson, D.G.E. (1988). Analysis of bio-
mechanical principles in weighted deep-knee bends. Pro-
ceedings: Fifth Biennial Conference and Symposium of
Canadian Society for Biomechanics. London: Spodym
Publishers. pp.174-175.
Yang, J.F., & Winter, D.A. (1984). Electromyographic ampli-
tude normalization methods: Improving their sensitivity
as diagnostic tools in gait analysis. Archives of Physical
Medicine and Rehabilitation, 65, 517–521.
Zajac, F.E. (1993). Muscle coordination of movement: A per-
spective. Journal of Biomechanics, 26(Suppl. 1), 109–
204.
Acknowledgments
Thanks to the National Sciences and Engineering Research
Council for nancial support of this project and to Graham
Caldwell, University of Massachusetts at Amherst, for a
constructive critique.
References
Andrews, J.G. (1985). A general method for determining the
functional role of a muscle. Journal of Biomechanical
Engineering, 107, 348–353.
Andrews, J.G. (1987). The functional roles of the hamstrings
and quadriceps during cycling: Lombard’s paradox revis-
ited. Journal of Biomechanics, 20, 565–575.
Bobbert, M.F., & van Ingen Schenau, G.J. (1988). Coordina-
tion in vertical jumping. Journal of Biomechanics, 21,
241–262.
Carlsöö, S., & Molbech, S. (1966). The functions of two-joint
muscles in a closed muscular chain. Acta Morphologica
Neerlando-Scandinavica, 7, 377–386.
Delagi, E.F., Perotto, A., Iazzatti, I., & Morrison, D. (1975).
Anatomic guide for the electromyographer—The limbs.
Springeld, IL: C. Thomas.
Dempster, W.T. (1955). Space Requirements of the Seated
Operator. Geometrical, Kinematic and Mechanical
Aspects of the Body with Special Reference to the Limbs.
WADC Technical Report (pp. 55–159). Ohio: Wright Air
Development Centre, Air Research and Development
Command, United States Air Force, Wright-Patterson
Air Force Base.
Elftman, H. (1939a). Forces and energy changes in the leg
during walking. The American Journal of Physiology,
125, 339–356.
Elftman, H. (1939b). The function of muscles in locomotion.
The American Journal of Physiology, 125, 357–366.
Frigo, C., & Pedotti, A. (1978). Determination of muscle
length during locomotion. In R.C. Nelson & C.A. More-
house (Eds.), Biomechanics VI-A (pp. 355–360). Balti-
more, MD: University Park Press.
Gregor, R.J., Cavanagh, P.R., & Lafortune, M. (1985). Knee
exor moments during propulsion in cycling–A creative
solution to Lombard’s Paradox. Journal of Biomechan-
ics, 18, 307–316.
Hubley, C.L. (1981). An analysis of assumptions underlying
vertical jump studies used to examine work augmenta-
tion due to pre-stretch. Unpublished Master’s Thesis.
University of Waterloo, Waterloo.
Jacobs, R., Bobbert, M.F., & van Ingen Schenau, G.J. (1996).
Mechanical output from individual muscles during
explosive leg extensions: The role of biarticular muscles.
Journal of Biomechanics, 29, 513–523.
Kuo, A.D. (2001). The action of two-joint muscles: The legacy
of W. P. Lombard, M. Latash, & V. Zatsiorsky. Classics in
Movement Sciences, Chapter 10 (pp. 289–315). Cham-
paign, IL: Human Kinetics Publ.
Lombard, W.P. (1903). The action of two-joint muscles. Amer-
ican Physical Education Review, 8, 141–145.
... Monoarticular VM and VL contract eccentrically during descent and support the transition between descent and ascent by decelerating the descent period. 33 During most of the ascent period, VM and VL contract concentrically at high recruitment levels, while reducing their output during the last third of the ascent period. 33 Although VM and VL exhibit functional unity, their activity and thus their roles during SQ BP are not identical. ...
... 33 During most of the ascent period, VM and VL contract concentrically at high recruitment levels, while reducing their output during the last third of the ascent period. 33 Although VM and VL exhibit functional unity, their activity and thus their roles during SQ BP are not identical. For instance, VM shows lower variability in activity than VL during SQ BP . ...
... For instance, VM shows lower variability in activity than VL during SQ BP . 33 Biarticular RF also increases its activity during descent. However, RF contracts concentrically during the final part of the descent, highlighting the additional role of RF as a hip flexor. ...
Article
Full-text available
The interplay between biarticular and monoarticular muscles of the knee and hip joints during bipedal squats (SQBP) requires adequate central‐nervous control mechanisms to enable smooth and dynamic movements. Here, we investigated motor control between M. vastus medialis (VM), M. vastus lateralis (VL), and M. rectus femoris (RF) in 12 healthy male recreational athletes during SQBP with three load levels (50%, 62.5% & 75% of 3‐repetition maximum) following a standardized strength training protocol (3 sets of 10 repetitions). To quantify differences in motor control mechanisms in both time and frequency domains, we analyzed (1) muscle covariation via correlation analyses, as well as (2) common neural input via intermuscular coherence (IMC) between RF, VM, and VL. Our results revealed significantly higher gamma IMC between VM‐VL compared to RF‐VL and RF‐VM for both legs. Correlation analyses demonstrated significantly higher correlation coefficients during ascent periods compared to descent periods across all analyzed muscle pairs. However, no load‐dependent modulation of motor control could be observed. Our study provides novel evidence that motor control during SQBP is characterized by differences in common input between biarticular and monoarticular muscles. Additionally, muscle activation patterns show higher similarity during ascent compared to descent periods. Future research should aim to validate and extend our observations as insights into the underlying control mechanisms offer the possibility for practical implications to optimize training concepts in elite sports and rehabilitation.
... Such research has motivated the development of assistance methods using ankle exoskeletons, which have subsequently been used to reduce the metabolic cost of walking [13], [14], [34], [47], [48]. Similarly, theoretical [4], [32], [33] and computational studies [29]- [31] studies also identified the importance of the ankle during squatting and suggests that an ankle exoskeleton may be able to reduce the squat effort. Realizing effective squat assistance using an ankle exoskeleton, however, is challenging due to subject-specific biomechanical movements and muscle activation patterns as well as a subjective range of motion [49]. ...
... We collected respiratory measures (K5, Cosmed, Rome, Italy) to determine the metabolic cost of squatting. We also measured muscle activations using wireless surface electromyography (EMG) at 1259 Hz (Trigno, Delsys, MA, USA) from the rectus femoris (RF), tibialis anterior (TA), soleus (SOL), gastrocnemius medialis (GAS), vastus medialis (VAS), vastus lateralis (VL), bicep femoris (BF), and semitendinosus (Semi) muscles [32], [69], [70]. EMG sensors were attached according to instructions from the SENIAM guideline [71]. ...
... The main link between reduced metabolic cost and the underlying mechanism seems to be through muscle activities. During a squat, the quadricep muscles have a higher contribution to the energetic costs [32], [70]. To reduce such muscle activities, squat assistance has typically been provided using a knee exoskeleton [78], [79], and little attention has been devoted to ankle assistance. ...
Article
Full-text available
Exoskeletons can assist humans during squatting and the assistance has the potential to reduce the physical demands. Although several squat assistance methods are available, the effect of personalized assistance on physical effort has not been examined. We hypothesize that personalized assistance will reduce the physical effort of squatting. We developed a human-in-the-loop Bayesian optimization scheme to minimize the metabolic cost of squatting using a unilateral ankle exoskeleton. The optimization identified subject-specific assistance parameters for ascending and descending during squatting and took 15.6 min on average to converge. The subject-specific optimized condition reduced metabolic cost by 19.9% and rectus femoris muscle activity by 28.7% compared to the condition without the exoskeleton with a higher probability of improvement compared to a generic condition. In an additional study with two participants, the personalized condition presented higher metabolic cost reduction than the generic condition. These reductions illustrate the importance of personalized ankle assistance using an exoskeleton for squatting, a physically intensive activity, and suggest that such a method can be applied to minimize the physical effort of squatting. Future work can investigate the effect of personalized squat assistance on fatigue and the potential risk of injury.
... Load lifting is a standard energy-consuming industrial operation [29]. Low back pain and back injuries can occur as a worker lifts an object continuously, holds heavy loads in a static pose, and twists back due to a heavy load [5]. ...
... The muscle activity of thigh muscles is of interest when performing a squatting exercise [36]. Notably, the quadriceps show more significant muscle activity than the hamstrings during the complete ascent phase [29]. The focus is to relieve muscle groups of the burden of working concentrically and eccentrically to control the motion of the knee joint. ...
Article
Full-text available
Lumbar support exoskeletons with active and passive actuators are currently the cutting-edge technology for preventing back injuries in workers while lifting heavy objects. However, many challenges still exist in both types of exoskeletons, including rigid actuators, risks of human–robot interaction, high battery consumption, bulky design, and limited assistance. In this paper, the design of a compact, lightweight energy storage device combined with a rotary series elastic actuator (ES-RSEA) is proposed for use in a lumbar support exoskeleton to increase the level of assistance and exploit the human bioenergy during the two stages of the lifting task. The energy storage device takes the responsibility to store and release passive mechanical energy while RSEA provides excellent compliance and prevents injury from the human body’s undesired movement. The experimental tests on the spiral spring show excellent linear characteristics (above 99%) with an actual spring stiffness of 9.96 Nm/rad. The results demonstrate that ES-RSEA can provide maximum torque assistance in the ascent phase with 66.6 Nm while generating nearly 21 Nm of spring torque during descent without turning on the DC motor. Ultimately, the proposed design can maximize the energy storage of human energy, exploit the biomechanics of lifting tasks, and reduce the burden on human effort to perform lifting tasks.
... Load lifting is a standard energy-consuming industrial operation [27]. Low back pain and back injuries can occur as a worker lifts an object continuously, holds heavy loads in a static pose, and twists back due to a heavy load [5]. ...
... The muscle activity of thigh muscles is of interest when performing a squatting exercise [34]. Notably, the quadriceps show more significant muscle activity than the hamstrings during the complete ascent phase [27]. The focus is to relieve muscle groups of the burden of working concentrically and eccentrically to control the motion of the knee joint. ...
Preprint
Full-text available
Lumbar support exoskeletons with active and passive actuators are currently the cutting-edge technology for preventing back injuries in workers while lifting heavy objects. However, many challenges still exist in both types of exoskeletons, including rigid actuators, risks of human-robot interaction, high battery consumption, bulky design, and limited assistance. In this paper, the design of a compact, lightweight energy storage device combined with rotary series elastic (ES-RSEA) is proposed for use in a lumbar support exoskeleton to increase the level of assistance and exploit the human bioenergy during the two stages of the lifting task. ES takes the responsibility to store and release passive mechanical energy while RSEA provides excellent compliance and prevents injury from the human body's undesired movement. The experimental tests on the spiral spring showed excellent linear characteristics (above 99%) with an actual spring stiffness of 9.96 Nm/rad. The results demonstrate that ES-RSEA can provide maximum torque assistance in the ascent phase with 66.6 Nm while generating nearly 21 Nm of spring torque during descent without turning on the DC motor. Ultimately, the proposed design can maximize the energy storage of human energy, exploit the biomechanics of lifting tasks, and reduce the burden on human effort to perform lifting tasks.
... This is particularly interesting when considering the increased muscle activity during SLS compared to SSQ (Figure 3(b)) as the foot and lower leg are in comparable positions, while knee and hip flexion during SSQ results in a slightly (nonsignificantly) more posterior COP location. While greater muscle activity during SLS than SSQ may seem surprising based on the perceived difficulty of maintaining each position, we believe that this indicates that most of the muscles measured in this study are not those primarily responsible for maintaining stability in a squat position (i.e., the quadriceps, hamstrings, TA, and gastrocnemius) [36][37][38][39][40][41]. In the current study, TA was the only muscle which showed its highest activation during the SSQ, though the differences between SSQ, SHR, and SLS were not statistically significant. ...
... For example, muscle activity during SHR and SSQ were significantly greater than during BLS for all measured muscles. As previously mentioned, research has shown that EFMs are active while maintaining a squat position (or during movements involved in ADL such as getting into or out of a car) [38][39][40]. Though the IFMs were more active during SSQ than during BLS and BSQ, they were less active than during SLS, implying that EFMs and other muscles may be more important for maintaining stability in the squat position, regardless of loading magnitude. ...
Article
Full-text available
Purpose: Maintaining balance during static standing postures requires the coordination of many neuromuscular mechanisms. The role of the intrinsic and extrinsic foot muscles in this paradigm has yet to be clearly defined. The purpose of this study was to explore foot muscle activation during static phases on common weight-bearing tasks of varying loads and balance demands. Methods: Twenty healthy young adults performed 6 standing postures (single-limb and double-limb stand, squat, and heel raise) with one foot on a force plate. Muscle activity was recorded from the abductor hallucis, flexor hallucis longus and brevis, and tibialis posterior using intramuscular electrodes; surface electrodes were used to record activity from the peroneus longus and tibialis anterior. Two-way repeated measures ANOVA (2 loading conditions × 3 postures) were run to compare muscle activation and center of pressure velocity. Results: Intrinsic foot muscle activity increased as loading and postural demand increased; however, the specific effects varied for each of the extrinsic foot muscles. Conclusions: These results suggest that the intrinsic foot muscles play an important role in maintaining static balance. Strengthening intrinsic and extrinsic foot muscles may help increase stability in people who have weak toe flexors or who suffer from a variety of foot pathologies.
... Since the hip moment increased with 102% load with lower barbell displacement and a reduced hip extension at d max1 and v min (Figure 3), the subjects are at a height at which the possible force output is lower . At this height, the hip extension is so low (≈70°) that the large gluteus and hamstring (biceps femoris and semitendinos) muscle lengths together with a small moment arm of the muscle around the joint gives a mechanical disadvantage such that the capacity to exert force was reduced (Robertson et al., 2008;van den Tillaar, 2015a). Due to this incapacity of the gluteus and hamstring muscles at this height the subject, as indicated by the lower myoelectrical activities (Figure 6) get stuck at this height. ...
Article
Full-text available
Shortly after beginning the upward phase of a free-weight barbell back squat there is often a deacceleration phase (sticking region) that may lead to repetition failure. The cause for this region is not well understood. Therefore, this study investigated the effects of 90%, 100%, and 102% of 1-RM barbell loads on kinematics, kinetics, and myoelectric activity in back squats. Twelve resistance-trained healthy males (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) participated in the study and lifted 134 ± 17 kg at 90% and 149 ± 19 kg at 100%, while they failed at 153 ± 19 kg with 102% load. The main findings were that barbell displacement and barbell velocity in the sticking region decreased with increasing loads. Moreover, the external hip extensor moment increased with heavier loads, whereas the knee extension and ankle plantarflexion moments were similar during the concentric phase. Also, reduced hip and knee extension together with lower myoelectric activity for all hip extensors and vastus lateralis were found for the 102% load compared to the others. Our finding suggests that the increased external hip extensor moment together with lower hip extensor myoelectric activity due to a reduced hip extension and thereby are responsible for lifting failure among resistance-trained males. ARTICLE HISTORY
... Conversely, knee flexor muscles are more active at smaller flexion angles during squat. In particular, at the beginning of the flexion phase, the biceps femoris, gastrocnemius, and semitendinosus all act together to initiate flexion of the knee (Robertson et al., 2008). Although knee flexor muscles remain less active after their initial burst (Wilk et al., 1996;Isear et al., 1997), biceps femoris long head, semimembranosus, and semitendinosus continue lengthening and thus apply a considerable passive force until around 60°fl exion (Sinclair et al., 2017). ...
Article
Full-text available
Understanding the sources of error is critical before models of the musculoskeletal system can be usefully translated. Using in vivo measured tibiofemoral forces, the impact of uncertainty in muscle-tendon parameters on the accuracy of knee contact force estimates of a generic musculoskeletal model was investigated following a probabilistic approach. Population variability was introduced to the routine musculoskeletal modeling framework by perturbing input parameters of the lower limb muscles around their baseline values. Using ground reaction force and skin marker trajectory data collected from six subjects performing bodyweight squat, the knee contact force was calculated for the perturbed models. The combined impact of input uncertainties resulted in a considerable variation in the knee contact force estimates (up to 2.1 BW change in the predicted force), especially at larger knee flexion angles, hence explaining up to 70% of the simulation error. Although individual muscle groups exhibited different contributions to the overall error, variation in the maximum isometric force and pathway of the muscles showed the highest impacts on the model outcomes. Importantly, this study highlights parameters that should be personalized in order to achieve the best possible predictions when using generic musculoskeletal models for activities involving deep knee flexion.
... The primary variable of interest was the mean GMAX EMG during the descent phase of each squat. The decent phase was defined as the period from upright standing position to peak hip flexion and was the period of interest given that eccentric action of the GMAX is important for controlling the motions of flexion, adduction, and internal rotation during the deceleration phase of athletic movements (Cannon et al., 2021;Hollman et al., 2020;Robertson et al., 2008;Zazulak et al., 2005). To ensure squat exercises were performed similarly between testing days peak hip flexion angles, peak hip extensor moments, and descent times for both squat tasks were calculated. ...
Article
Given its tri-planar action at the hip, strengthening of gluteus maximus (GMAX) has been advocated as part of rehabilitation and injury prevention protocols for various musculoskeletal conditions. However, recruitment of GMAX during weight-bearing strengthening exercises can be challenging owing to the muscular redundancy at the hip for a given joint motion. The current study sought to determine if a 1-week activation program could result in greater GMAX recruitment during functional strengthening exercises. Pre- and post-training surface electromyography were collected from 12 healthy participants as they performed double- and single-leg squats. Between testing sessions, participants completed a GMAX activation training program consisting of isometric exercises with band resistance (twice per day for 7 days). Following the 1-week activation program, GMAX recruitment was found to increase by 57% during the double-leg squat (p = 0.005, Cohen’s r = 0.73) and 53% during the single-leg squat (p = 0.006, Cohen’s r = 0.70). Implementation of an initial GMAX activation program should be considered to facilitate neuromuscular adaptations that facilitate utilization of GMAX during hip strengthening exercises.
Article
Squatting has received considerable attention in sports and is commonly utilized in daily activities. Knowledge of the squatting biomechanics in terms of its speed and depth may enhance exercise selection when targeting for sport-specific performance improvement and injury avoidance. Nonetheless, these perspectives have not been consistently reported. Hence, this preliminary study intends to quantify the kinematics, kinetics, and energetics in squat with different depths and speeds among healthy young adults with different physical activity levels; i.e., between active and sedentary groups. Twenty participants were administered to squat at varying depths (deep, normal, and half) and speeds (fast, normal, and slow). Motion-capture system and force plates were employed to acquire motion trajectories and ground reaction force. Joint moment was obtained via inverse dynamics, while power was derived as a product of moment and angular velocity. Higher speeds and deeper squats greatly influence higher joint moments and powers at the hip ([Formula: see text]) and knee ([Formula: see text]) than ankle, signifying these joints as the prime movers with knee as the predominant contributor. These preliminary findings show that the knee-strategy and hip-strategy were employed in compensating speed and depth manipulations during squatting. In certain contexts, appreciating these findings may provide clinically relevant implications, from the performance and injury avoidance viewpoint, which will ameliorate the physical activity level of practitioners.
Article
Full-text available
Experiments were conducted on normal level gait to determine the synergistic patterns present in the forces causing joint moments and those associated with the generation, absorption and transfer of mechanical energy. The following generalizations can be made about the patterns: (i) During swing phase three forces (gravitational, muscle and knee joint acceleration) are responsible for shank rotation, and are shown to act together during both acceleration and deceleration.—(ii) The patterns of generation, absorption and transfer of mechanical energy at the joints are detailed. These patterns demonstrate inter-segment transfers of energy through the joint centres, and through the muscles, as well as the more recognized generation and absorption by the muscles themselves.—As a result of the complexity shown in these patterns it is cautioned that fundamental relationships that may have been derived from controlled biomechanical experiments (such as horizontal flexion and extension of the forearm) are not likely to apply to more normal movements such as gait.
Article
It is widely accepted that the series elastic component (SEC) of muscles and tendons plays an important role in dynamic human movements. Many experiments seem to show that during a pre-stretch movement energy can be stored in the SEC which is re-used during the subsequent concentric contraction. Mechanical calculations were performed to calculate the capacity for muscles and tendons to store elastic energy. The storage of elastic energy in muscle tissue appears to be negligible. In tendons some energy can be stored but the total elastic capacity of the tendons of the lower extremities appears far too small to explain reported advantages of a pre-stretch during jumping and running.Based on literature concerning chemical change and enthalpy production during experiments on isolated muscles, a model is proposed which can explain the advantages of a preliminary counter movement on force and work output during the subsequent concentric contraction. The main advantage of a pre-stretch, as seen in movements like jumping, throwing and running, seems to be to prevent a waste of cross bridges at the onset of a contraction in taking up the slack of the muscle. The model can explain why the mechanical efficiency in running can be much higher than in cycling. A muscle which is stretched prior to concentric contraction can do more work at the same metabolic cost when compared with a concentric contraction without pre-stretch.
Article
The purpose of this paper is to address four aspects of surface electromyography associated with crosstalk between adjacent recording sites. The first issue that is addressed in the potential crosstalk between electrodes located on muscles with different functions: antagonist pairs, or muscles with one common and one different function (i.e. soleus/peroneus longus or soleus/ gastrocnemius). Practical functional tests are utilized to demonstrate the crosstalk between muscle pairs to be negligible. The second goal is to estimate the depth of pick-up and the crosstalk between myoelectric signals from agonist muscles using a theoretical model. The depth of pick-up was estimated to be 1.8 cm (including a 2 mm layer of skin and fat) using electrodes of 49 mm(2) with bipolar spacing of 2.0 cm. A cross-correlation technique is demonstrated which predicts the common signal (crosstalk) between surface electrodes with electrode-pair spacing of 1 cm around a hypothetical muscle. The predicted crosstalk using cross-correlation measures was 49% at 1 cm electrode-pair spacing dropping to 13% at 2 cm spacing and 4% at 3 cm. The third part compares these predictions with crosstalk measures from experimental recordings taken from electrode pairs spaced 2.5 cm apart around the quadriceps. At 2.5 cm spacing there was 22-24% common signal dropping to between 4-7% at 5 cm and to between 1 and 2% at 7.5 cm. The fourth and last component of this report assesses three methods to decrease the range of pick-up and thereby potential crosstalk: electrodes of smaller surface area, reduced bipolar spacing and mathematical differentiation. All three techniques reduce the common signal by varying amounts; all three techniques combined reduce the predicted crosstalk for the 1.0 cm electrode-pair spacing from 49-10.5%.
Article
The classic book on human movement in biomechanics, newly updated. Widely used and referenced, David Winter's Biomechanics and Motor Control of Human Movement is a classic examination of techniques used to measure and analyze all body movements as mechanical systems, including such everyday movements as walking. It fills the gap in human movement science area where modern science and technology are integrated with anatomy, muscle physiology, and electromyography to assess and understand human movement. In light of the explosive growth of the field, this new edition updates and enhances the text with: Expanded coverage of 3D kinematics and kinetics. New materials on biomechanical movement synergies and signal processing, including auto and cross correlation, frequency analysis, analog and digital filtering, and ensemble averaging techniques. Presentation of a wide spectrum of measurement and analysis techniques. Updates to all existing chapters. Basic physical and physiological principles in capsule form for quick reference. An essential resource for researchers and student in kinesiology, bioengineering (rehabilitation engineering), physical education, ergonomics, and physical and occupational therapy, this text will also provide valuable to professionals in orthopedics, muscle physiology, and rehabilitation medicine. In response to many requests, the extensive numerical tables contained in Appendix A: "Kinematic, Kinetic, and Energy Data" can also be found at the following Web site: www.wiley.com/go/biomechanics.
Article
http://deepblue.lib.umich.edu/bitstream/2027.42/4540/5/bab9715.0001.001.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/4540/4/bab9715.0001.001.txt
Article
This study investigated the muscular torques and joint forces during the parallel squat as performed by weightlifters. (JD)
Article
This paper presents a detailed analysis of an optimal control solution to a maximum height squat jump, based upon how muscles accelerate and contribute power to the body segments during the ground contact phase of jumping. Quantitative comparisons of model and experimental results expose a proximal-to-distal sequence of muscle activation (i.e. from hip to knee to ankle). We found that the contribution of muscles dominates both the angular acceleration and the instantaneous power of the segments. However, the contributions of gravity and segmental motion are insignificant, except the latter become important during the final 10% of the jump. Vasti and gluteus maximus muscles are the major energy producers of the lower extremity. These muscles are the prime movers of the lower extremity because they dominate the angular acceleration of the hip toward extension and the instantaneous power of the trunk. In contrast, the ankle plantarflexors (soleus, gastrocnemius, and the other plantarflexors) dominate the total energy of the thigh, though these muscles also contribute appreciably to trunk power during the final 20% of the jump. Therefore, the contribution of these muscles to overall jumping performance cannot be neglected. We found that the biarticular gastrocnemius increases jump height (i.e. the net vertical displacement of the center of mass of the body from standing) by as much as 25%. However, this increase is not due to any unique biarticular action (e.g. proximal-to-distal power transfer from the knee to the ankle), since jumping performance is similar when gastrocnemius is replaced with a uniarticular ankle plantarflexor.