Conference Paper

A High-Order Multiscale Features Incorporated Bayesian Method for Cerebrovascular Segmentaiton from TOF MRA

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This paper presents a supervised statistical-based cerebrovascular segmentation method from time-of-flight MRA. The novelty of this method is that rather than model the dataset over the entire intensity range, we at first use a low threshold to eliminate the lowest intensity region, and then use two uniform distributions to model the middle and high intensity regions, respectively. Subsequently, in order to overcome the intensity overlap between subcutaneous fat and arteries, a high order multiscale features based energy function is introduced to enhance the segmentation. Comparing with those sole intensity based segmentation method the newly proposed algorithm can solve the problem of the regional intensity variation of TOF-MRA well and improve the quality of segmentation. The experimental results also show that the proposed method can provide a better quality segmentation than sole intensity information used method.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Chapter
Full-text available
This paper describes a method for the enhancement of curvilinear structures like vessels and bronchi in 3D medical images. We develop a line-enhancement filter based on the eigenvalues of Hessian matrix aiming at both the discrimination of line structures from other structures and the recovery of original line structures from corrupted ones. The multi-scale responses of the line filters are integrated based on the equalization of noise level at each scale. The resulted multi-scale line filtered images provide significantly improved segmentation of curvilinear structures. The line-filtered images are also useful for the direct visualization of curvilinear structures by combining with a volume rendering technique even from conventional MR images. We show the usefulness of the method through the segmentation and visualization of vessels from MRA and MR images, and bronchi from CT images.
Article
Full-text available
Vessel segmentation algorithms are the critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms. We put the various vessel extraction approaches and techniques in perspective by means of a classification of the existing research. While we have mainly targeted the extraction of blood vessels, neurosvascular structure in particular, we have also reviewed some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We have divided vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) miscellaneous tube-like object detection approaches. Some of these categories are further divided into sub- categories. We have also created tables to compare the papers in each category against such criteria as dimensionality, input type, pre-processing, user interaction, and result type.
Article
Full-text available
We present a new fast approach for surface segmentation of thin structures, like vessels and vascular trees, based on Fast Marching and Level Sets methods. Fast Marching allows segmentation of tubular structures inating a "long balloon" from a user given single point. However, when the tubular shape is rather long, the front propagation may blow up through the boundary of the desired shape close to the starting point. Our contribution is focused on a way to go on front propagation only on the actually moving front and freezing other points. We demonstrate the ability to build a fast and accurate segmentation for those tubular and tree structures. We also develop a useful stopping criterion for the causal front propagation. We illustrate our algorithms by applications on the segmentation of vessels in 3D medical images.
Article
Full-text available
The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancement filter. A vesselness measure is obtained on the basis of all eigenvalues of the Hessian. This measure is tested on two dimensional DSA and three dimensional aortoiliac and cerebral MRA data. Its clinical utility is shown by the simultaneous noise and background suppression and vessel enhancement in maximum intensity projections and volumetric displays. 1
Article
A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours, motion tracking, and stereo matching. The authors have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.
Article
Detection of tubular structures in 3D images is an important issue for vascular medical imaging. We present in this paper a new approach for centerline detection and reconstruction of 3D tubular structures. Several models of vessels are introduced for estimating the sensitivity of the image second-order derivatives according to elliptical cross section, to curvature of the axis, or to partial volume effects. Our approach uses a multiscale analysis for extracting vessels of different sizes according to the scale. For a given model of vessel, we derive an analytic expression of the relationship between the radius of the structure and the scale at which it is detected. The algorithm gives both centerline extraction and radius estimation of the vessels allowing their reconstruction. The method has been tested on synthetic images, an image of a phantom, and real images, with encouraging results.
Article
This paper describes a method for the enhancement of curvilinear structures such as vessels and bronchi in three-dimensional (3-D) medical images. A 3-D line enhancement filter is developed with the aim of discriminating line structures from other structures and recovering line structures of various widths. The 3-D line filter is based on a combination of the eigenvalues of the 3-D Hessian matrix. Multi-scale integration is formulated by taking the maximum among single-scale filter responses, and its characteristics are examined to derive criteria for the selection of parameters in the formulation. The resultant multi-scale line-filtered images provide significantly improved segmentation and visualization of curvilinear structures. The usefulness of the method is demonstrated by the segmentation and visualization of brain vessels from magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), bronchi from a chest CT, and liver vessels (portal veins) from an abdominal CT.
Conference Paper
A multi-scale segmentation technique for line-like structures in 2D and 3D medical images is presented. It is based on normalized second derivatives and on the eigenvector analysis of the Hessian matrix. The method allows for the estimation of the local diameter, the longitudinal direction and the contrast of line-structures and for the distinction between edge-like and line-like structures. The characteristics of the method in respect to several analytic line-profiles as well as the influence of neighboring structures and line-bending is discussed. The method is applied to 3D medical images.
Article
A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.
Article
The vasculature is of utmost importance in neurosurgery. Direct visualization of images acquired with current imaging modalities, however, cannot provide a spatial representation of small vessels. These vessels, and their branches which show considerable variations, are most important in planning and performing neurosurgical procedures. In planning they provide information on where the lesion draws its blood supply and where it drains. During surgery the vessels serve as landmarks and guidelines to the lesion. The more minute the information is, the more precise the navigation and localization of computer guided procedures. Beyond neurosurgery and neurological study, vascular information is also crucial in cardiovascular surgery, diagnosis, and research. This paper addresses the problem of automatic segmentation of complicated curvilinear structures in three-dimensional imagery, with the primary application of segmenting vasculature in magnetic resonance angiography (MRA) images. The method presented is based on recent curve and surface evolution work in the computer vision community which models the object boundary as a manifold that evolves iteratively to minimize an energy criterion. This energy criterion is based both on intensity values in the image and on local smoothness properties of the object boundary, which is the vessel wall in this application. In particular, the method handles curves evolving in 3D, in contrast with previous work that has dealt with curves in 2D and surfaces in 3D. Results are presented on cerebral and aortic MRA data as well as lung computed tomography (CT) data.
Article
In this paper, we present an automatic statistical approach for extracting 3D blood vessels from time-of-flight (TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset are classified as either blood vessels or background noise. The observed volume data is modeled by two stochastic processes. The low level process characterizes the intensity distribution of the data, while the high level process characterizes their statistical dependence among neighboring voxels. The low level process of the background signal is modeled by a finite mixture of one Rayleigh and two normal distributions, while the blood vessels are modeled by one normal distribution. The parameters of the low level process are estimated using the expectation maximization (EM) algorithm. Since the convergence of the EM is sensitive to the initial estimate of the model parameters, an automatic method for parameter initialization, based on histogram analysis, is provided. To improve the quality of segmentation achieved by the proposed low level model especially in the regions of significantly vascular signal loss, the high level process is modeled as a Markov random field (MRF). Since MRF is sensitive to edges and the intracranial vessels represent roughly 5% of the intracranial volume, 2D MRF will destroy most of the small and medium sized vessels. Therefore, to reduce this limitation, we employed 3D MRF, whose parameters are estimated using the maximum pseudo likelihood estimator (MPLE), which converges to the true likelihood under large lattice. Our proposed model exhibits a good fit to the clinical data and is extensively tested on different synthetic vessel phantoms and several 2D/3D TOF datasets acquired from two different MRI scanners. Experimental results showed that the proposed model provides good quality of segmentation and is capable of delineating vessels down to 3 voxel diameters.
Article
A three-dimensional (3-D) representation of cerebral vessel morphology is essential for neuroradiologists treating cerebral aneurysms. However, current imaging techniques cannot provide such a representation. Slices of MR angiography (MRA) data can only give two-dimensional (2-D) descriptions and ambiguities of aneurysm position and size arising in X-ray projection images can often be intractable. To overcome these problems, we have established a new automatic statistically based algorithm for extracting the 3-D vessel information from time-of-flight (TOF) MRA data. We introduce distributions for the data, motivated by a physical model of blood flow, that are used in a modified version of the expectation maximization (EM) algorithm. The estimated model parameters are then used to classify statistically the voxels into vessel or other brain tissue classes. The algorithm is adaptive because the model fitting is performed recursively so that classifications are made on local subvolumes of data. We present results from applying our algorithm to several real data sets that contain both artery and aneurysm structures of various sizes.
Article
A method is presented which aids the clinician in obtaining quantitative measures and a three-dimensional (3-D) representation of vessels from 3-D angiographic data with a minimum of user interaction. Based on two user defined starting points, an iterative procedure tracks the central vessel axis. During the tracking process, the minimum diameter and a surface rendering of the vessels are computed, allowing for interactive inspection of the vasculature. Applications of the method to CTA, contrast enhanced (CE)-MRA and phase contrast (PC)-MRA images of the abdomen are shown. In all applications, a long stretch of vessels with varying width is tracked, delineated, and visualized, in less than 10 s on a standard clinical workstation.
Article
This paper presents a statistical approach to aggregating speed and phase (directional) information for vascular segmentation of phase contrast magnetic resonance angiograms (PC-MRA). Rather than relying on speed information alone, as done by others and in our own work, we demonstrate that including phase information as a priori knowledge in a Markov random field (MRF) model can improve the quality of segmentation. This is particularly true in the region within an aneurysm where there is a heterogeneous intensity pattern and significant vascular signal loss. We propose to use a Maxwell-Gaussian mixture density to model the background signal distribution and combine this with a uniform distribution for modelling vascular signal to give a Maxwell-Gaussian-uniform (MGU) mixture model of image intensity. The MGU model parameters are estimated by the modified expectation-maximisation (EM) algorithm. In addition, it is shown that the Maxwell-Gaussian mixture distribution (a) models the background signal more accurately than a Maxwell distribution, (b) exhibits a better fit to clinical data and (c) gives fewer false positive voxels (misclassified vessel voxels) in segmentation. The new segmentation algorithm is tested on an aneurysm phantom data set and two clinical data sets. The experimental results show that the proposed method can provide a better quality of segmentation when both speed and phase information are utilised.
Article
Precise segmentation of three-dimensional (3D) magnetic resonance angiography (MRA) images can be a very useful computer aided diagnosis (CAD) tool for clinical routines. Level sets based evolution schemes, which have been shown to be effective and easy to implement for many segmentation applications, are being applied to MRA data sets. In this paper, we present a segmentation scheme for accurately extracting vasculature from MRA images. Our proposed algorithm models capillary action and derives a capillary active contour for segmentation of thin vessels. The algorithm is implemented using the level set method and has been applied successfully on real 3D MRA images. Compared with other state-of-the-art MRA segmentation algorithms, experiments show that our method facilitates more accurate segmentation of thin blood vessels.
Conference Paper
Accurate automatic extraction of a 3D cerebrovascular system from images obtained by time-of-flight (TOF) or phase contrast (PC) magnetic resonance angiography (MRA) is a challenging segmentation problem due to small size objects of interest (blood vessels) in each 2D MRA slice and complex surrounding anatomical structures, e.g. fat, bones, or grey and white brain matter. We show that due to a multi-modal nature of MRA data blood vessels can be accurately separated from background in each slice by a voxel-wise classification based on precisely identified probability models of voxel intensities. To identify the models, an empirical marginal probability distribution of intensities is closely approximated with a linear combination of discrete Gaussians (LCDG) with alternate signs, and we modify the conventional Expectation-Maximization (EM) algorithm to deal with the LCDG. To validate the accuracy of our algorithm, a special 3D geometrical phantom motivated by statistical analysis of the MRA-TOF data is designed. Experiments with both the phantom and 50 real data sets confirm high accuracy of the proposed approach.
Article
Segmentation of vascular structures is a difficult and challenging task. In this article, we present an algorithm devised for the segmentation of such structures. Our technique consists in a geometric deformable model with associated energy functional that incorporates high-order multiscale features in a non-parametric statistical framework. Although the proposed segmentation method is generic, it has been applied to the segmentation of cerebral aneurysms in 3DRA and CTA. An evaluation study over 10 clinical datasets indicate that the segmentations obtained by our method present a high overlap index with respect to the ground-truth (91.13% and 73.31%, respectively) and that the mean error distance from the surface to the ground truth is close to the in-plane resolution (0.40 and 0.38 mm, respectively). Besides, our technique favorably compares to other alternative techniques based on deformable models, namely parametric geodesic active regions and active contours without edges.
Article
Vascular segmentation has recently been given much attention. This review paper has two parts. Part I of this review focused on the physics of magnetic resonance angiography (MRA) and prefiltering techniques applied to MRA. Part II of this review presents the state-of-the-art overview, status, and new achievements in vessel segmentation algorithms from MRA. The first part of this review paper is focused on the nonskeleton or direct-based techniques. Here, we present eight different techniques along with their mathematical foundations, algorithms and their pros and cons. We will also focus on the skeleton or indirect-based techniques. We will discuss three different techniques along with their mathematical foundations, algorithms and their pros and cons. This paper also includes a clinical discussion on skeleton versus nonskeleton-based segmentation techniques. Finally, we shall conclude this paper with the possible challenges, the future, and a brief summary on vascular segmentation techniques.
Conference Paper
. This paper presents an extended version of the fully-automated 3D cerebral vessel segmentation algorithm developed by Wilson and Noble [1] which is applicable to time-of-flight (TOF) and phase contrast (PC) magnetic resonance angiography (MRA) images. We introduce a Rician distribution for background-noise modelling and use a modified EM (Expectation-Maximization) algorithm for the parameter estimation procedure. Experimental results show that the estimated Rician distribution gives a better quality-of-fit to the observed background noise distribution than a Gaussian distribution. The segmented 3D vasculature is shown to be qualitatively comparable with the results obtained from higher resolution TOF MRA images. Keywords : Phase Contrast/Time-of-Flight Magnetic Resonance Angiography, Vessel Segmentation, EM Algorithm, GDC (Guglielmi Detachable Coil) Treatment, Endovascular Treatment of Aneurysms, Neuorology. 1 Introduction 3D vascular segmentation is an essential first step for br...
Snakes: Active contour modelsCURVES: curve evolution for vessel segmentation
  • M Kass
  • A Witkin
  • D Terzopoulos
  • L M Lorigo
M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active contour models," International Journal of Computer Vision, vol. 1, pp. 321–331, 1987. [4] L. M. Lorigo and O. D. Faugeras, "CURVES: curve evolution for vessel segmentation," Med. Image, Anal. vol. 5, pp. 195–206, 2001.