Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania.
International Journal of Nanomedicine (Impact Factor: 4.38). 04/2013; 8:1429-38. DOI: 10.2147/IJN.S42613
Source: PubMed


This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Aux/MgO catalytic system (where × = 1, 2, or 3 wt%). The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%-50%) and the final purity (96%-98%) of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot) one order of magnitude higher than that of the bare platinum electrode, which also confirmed that the transfer of electrons took place more readily at the Gr-Au-3-modified electrode.

Download full-text


Available from: Fumiya Watanabe
  • Source
    • "composite, the size of the crystalline domain was almost double (4.08 nm) that of the Gr-AuAg-1 composite and corresponded to about eleven graphitic layers. This finding is in excellent agreement with previous results,30 which demonstrated, for the first time, that by increasing the amount of Au nanoparticles in the catalytic system (Aux/MgO) from x=1 to 3 wt%, the degree of crystallinity of graphene sheets considerably increased. The sample prepared with the catalyst having 3 wt% Au exhibited the highest degree of crystallinity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10(-5) M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10(-6) to 5×10(-3) M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine.
    Full-text · Article · Feb 2014 · International Journal of Nanomedicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Composite nanostructures based on few-layers graphene with encased gold or silver nanoparticles (denoted as Gr-Au and Gr-Ag, respectively) were separately prepared in a single-step synthesis by radio frequency catalytic chemical vapor deposition (RF-cCVD) over Aux/MgO and Agx/MgO catalytic system (where x = 3 wt.%), respectively. Their morphological properties were investigated by electron microscopy techniques (TEM/HRTEM), which demonstrated that the number of graphitic layers within the sheet varied between 2 and 7. Thorough TEM analysis also indicated that gold nanoparticles had a mean size of 22 nm, while silver nanoparticles were found to be larger with a mean size of 35 nm. X-ray powder diffraction proved that the crystallinity of the Gr-Au or Gr-Ag samples is less influenced by the type of metallic nanoparticles (silver or gold) encased between the graphitic layers. The mean value of the crystalline domain perpendicular to graphene (0 0 2) crystallographic plane was determined to be approximately 2.25 nm (for Gr-Au sample) and 2.14 nm (for Gr-Ag sample), both corresponding to 6 graphitic layers. Gr-Ag and Gr-Au nanostructures were used to modify platinum substrates and subsequently employed for the electrochemical analysis of carbamazepine. A significant decrease in the electrochemical oxidation potential of carbamazepine (150 mV) was obtained with both modified electrodes. The detection limit (DL) was found to be 2.75 × 10−5 M and 2.92 × 10−5 M for the Pt/Gr-Ag and Pt/Gr-Au electrode, respectively.
    No preview · Article · Feb 2013 · Electrochimica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnesia supported Au, Ag, and Au–Ag nanostructured catalysts were prepared, characterized, and used to synthesize few-layer graphene–metal nanoparticle (Gr–MeNP) composites. The catalysts have a mezoporous structure and a mixture of MgO and MgO·H2O as support. The gold nanoparticles (AuNPs) are uniformly dispersed on the surface of the Au/MgO catalysts, and have a uniform round shape with a medium size of ~8 nm. On the other hand, the silver nanoparticles (AgNPs) present on the Ag/MgO catalyst have an irregular shape, larger diameters, and less uniform dispersion. The Au–Ag/MgO catalyst contains large Au–Ag bimetallic particles of ~20–30 nm surrounded by small (5 nm) AuNPs. Following the RF-CCVD process and the dissolution of the magnesia support, relative large, few-layer, wrinkled graphene sheets decorated with metal nanoparticles (MeNPs) are observed. Graphene–gold (Gr–Au) and graphene–silver (Gr–Ag) composites had 4–7 graphitic layers with a relatively large area and similar crystallinity for samples prepared in similar experimental conditions. Graphene–gold–silver composites (Gr–Au–Ag) presented graphitic rectangles with round, bent edges, higher crystallinity, and a higher number of layers (8–14). The MeNPs are encased in the graphitic layers of all the different samples. Their size, shape, and distribution depend on the nature of the catalyst. The AuNPs were uniformly distributed, had a size of about 15 nm, and a round shape similar to those from Au/MgO catalyst. In Gr–Ag, the AgNPs have a round shape, very different from that of the Ag/MgO catalyst, large size distribution and are not uniformly distributed on the surface. Agglomerations of AgNPs together with large areas of pristine few-layer graphene were observed. In Gr–Au–Ag composites, almost exclusively large bimetallic particles of about 25–30 nm, situated at the edge of graphene rectangles have been found.
    No preview · Article · Nov 2013 · Journal of Materials Science
Show more