Article

Acute Suppression of Spontaneous Neurotransmission Drives Synaptic Potentiation

Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, and The Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 04/2013; 33(16):6990-7002. DOI: 10.1523/JNEUROSCI.4998-12.2013
Source: PubMed

ABSTRACT

The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous NMDA receptor-mediated (NMDAR-mediated) neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor expression, eukaryotic elongation factor-2 kinase function, and increased surface expression of AMPA receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDAR blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action.

1 Follower
 · 
21 Reads
    • "Moreover , LTP-induced enlargement of hippocampal dendritic spine volume is dependent on BDNF signaling and local protein translation (Tanaka et al., 2008). Recent studies have also identified a key role for BDNF in synaptic potentiation seen after sustained blockade of NMDA receptor activity, where BDNF action appears to upregulate postsynaptic AMPA receptors (Autry et al., 2011; Nosyreva et al., 2013). 1.2. "
    [Show abstract] [Hide abstract]
    ABSTRACT: How do antidepressants elicit an antidepressant response? Here, we review accumulating evidence that the neurotrophin brain-derived neurotrophic factor (BDNF) serves as a transducer, acting as the link between the antidepressant drug and the neuroplastic changes that result in the improvement of the depressive symptoms. Over the last decade several studies have consistently highlighted BDNF as a key player in antidepressant action. An increase in hippocampal and cortical expression of BDNF mRNA parallels the antidepressant-like response of conventional antidepressants such as SSRIs. Subsequent studies showed that a single bilateral infusion of BDNF into the ventricles or directly into the hippocampus is sufficient to induce a relatively rapid and sustained antidepressant-like effect. Importantly, the antidepressant-like response to conventional antidepressants is attenuated in mice where the BDNF signaling has been disrupted by genetic manipulations. Low dose ketamine, which has been found to induce a rapid antidepressant effect in patients with treatment-resistant depression, is also dependent on increased BDNF signaling. Ketamine transiently increases BDNF translation in hippocampus, leading to enhanced synaptic plasticity and synaptic strength. Ketamine has been shown to increase BDNF translation by blocking NMDA receptor activity at rest, thereby inhibiting calcium influx and subsequently halting eukaryotic elongation factor 2 (eEF2) kinase leading to a desuppression of protein translation, including BDNF translation. The antidepressant-like response of ketamine is abolished in BDNF and TrkB conditional knockout mice, eEF2 kinase knock out mice, in mice carrying the BDNF met/met allele, and by intra-cortical infusions of BDNF-neutralizing antibodies. In summary, current data suggests that conventional antidepressants and ketamine mediate their antidepressant-like effects by increasing BDNF in forebrain regions, in particular the hippocampus, making BDNF an essential determinant of antidepressant efficacy.
    No preview · Article · Oct 2015 · Neuropharmacology
  • Source
    • "Under these conditions, anisomycin completely abolished the increase in AMPAmEPSC amplitudes as no significant differences were seen in their distribution after TTX + ryanodine treatment compared to treatment with TTX alone (Figure 5D–F). Previous studies have also shown that a key regulator of protein synthesis, eukaryotic elongation factor 2 (eEF2), is phosphorylated and inactivated by the Ca 2+ -dependent eEF2 kinase thus blocking protein synthesis under resting conditions (Sutton et al., 2007; Autry et al., 2011; Nosyreva et al., 2013; "
    [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca2+ signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca2+ probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca2+ transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg2+. These Ca2+ transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca2+ channels, or group I mGluRs. However, inhibition of Ca2+-induced Ca2+ release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca2+-induced Ca2+ release in amplifying NMDA receptor-driven Ca2+ signals at rest for the maintenance of synaptic homeostasis.
    Full-text · Article · Jul 2015 · eLife Sciences
  • Source
    • "Electrophysiological studies have shown that a single ketamine injection increases excitatory post-synaptic currents (EPSCs) in pyramidal cells of the rat mPFC 24 h after a single ketamine injection (Li et al., 2010). Ketamine application to hippocampal slices also enhances AMPAR-mediated transmission and the number of AMPARs, after ketamine is washed out (Nosyreva et al., 2013). Facilitation of glutamatergic transmission in the mPFC may thus represent a critical mechanism for the rapid and sustained antidepressant effect of ketamine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical studies indicate that the rapid antidepressant effect of ketamine is dependent on activation of AMPA receptors in the medial prefrontal cortex (mPFC) resulting in a prolonged enhancement of glutamatergic transmission in the mPFC. In similarity, addition of atypical antipsychotic drugs (APDs) to SSRIs has also been found to induce a rapid and potent antidepressant effect. Using intracellular recordings in layer V/VI pyramidal cells of the rat mPFC in vitro, we found that a combination of low, clinically relevant concentrations of the atypical APD olanzapine and the SSRI fluoxetine facilitated NMDA and AMPA-induced currents in pyramidal cells via activation of dopamine D1 receptors. A single ketamine injection (10mg/kg, 24h before the experiment) enhanced AMPA-and apparently to some extent also NMDA-induced currents. Our results propose that the rapid and potent antidepressant effects of both treatments may be related to a common mechanism of action, namely facilitation of glutamatergic, in particular AMPA receptor-mediated transmission, in the mPFC. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
    Full-text · Article · Jul 2015 · European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology
Show more