SRC Signaling Is Crucial in the Growth of Synovial Sarcoma Cells

Departments of Pathology and Molecular Medicine, University Hospital Bonn, Bonn
Cancer Research (Impact Factor: 9.33). 04/2013; 73(8):2518-28. DOI: 10.1158/0008-5472.CAN-12-3023
Source: PubMed


Synovial sarcoma is a soft-tissue malignancy characterized by a reciprocal t(X;18) translocation encoding a chimeric transcriptional modifier. Several receptor tyrosine kinases have been found activated in synovial sarcoma; however, no convincing therapeutic concept has emerged from these findings. On the basis of the results of phosphokinase screening arrays, we here investigate the functional and therapeutic relevance of the SRC kinase in synovial sarcoma. Immunohistochemistry of phosphorylated SRC and its regulators CSK and PTP1B (PTPN1) was conducted in 30 synovial sarcomas. Functional aspects of SRC, including dependence of SRC activation on the SS18/SSX fusion proteins, were analyzed in vitro. Eventually, synovial sarcoma xenografts were treated with the SRC inhibitor dasatinib in vivo. Activated phospho (p)-(Tyr416)-SRC was detected in the majority of tumors; dysregulation of CSK or PTP1B was excluded as the reason for the activation of the kinase. Expression of the SS18/SSX fusion proteins in T-REx-293 cells was associated with increased p-(Tyr416)-SRC levels, linked with an induction of the insulin-like growth factor pathway. Treatment of synovial sarcoma cells with dasatinib led to apoptosis and inhibition of cellular proliferation, associated with reduced phosphorylation of FAK (PTK2), STAT3, IGF-IR, and AKT. Concurrent exposure of cells to dasatinib and chemotherapeutic agents resulted in additive effects. Cellular migration and invasion were dependent on signals transmitted by SRC involving regulation of the Rho GTPases Rac and RhoA. Treatment of nude mice with SYO-1 xenografts with dasatinib significantly inhibited tumor growth in vivo. In summary, SRC is of crucial biologic importance and represents a promising therapeutic target in synovial sarcoma. Cancer Res; 73(8); 1-11. ©2013 AACR.

  • Source
    • "In contrast, there were no differences in PTEN or mTOR status. Collectively, our results support that Src activation is associated with an IGF1R-dependent mechanism involving activation of the MAPK and PI3K/Akt pathways, as reported in other types of neoplasia (Michels et al, 2013). However, an inverted correlation of Src with EGFR and p27 loss and not association with mTOR makes probable that other than IGF1R-dependent pathways may mediate Src activation in breast carcinoma as well (Chu et al, 2007; Ishizawar et al, 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Src is a non-receptor tyrosine kinase involved in signalling and crosstalk between growth-promoting pathways. We aim to investigate the relationship of active Src in response to trastuzumab of HER2-positive breast carcinomas. Methods: We selected 278 HER2-positive breast cancer patients with (n=154) and without (n=124) trastuzumab treatment. We performed immunohistochemistry on paraffin-embedded tissue microarrays of active Src and several proteins involved in the PI3K/Akt/mTOR pathway, PIK3CA mutational analysis and in vitro studies (SKBR3 and BT474 cancer cells). The results were correlated with clinicopathological factors and patients' outcome. Results: Increased pSrc-Y416 was demonstrated in trastuzumab-resistant cells and in 37.8% of tumours that correlated positively with tumour size, necrosis, mitosis, metastasis to the central nervous system, p53 overexpression and MAPK activation but inversely with EGFR and p27. Univariate analyses showed an association of increased active Src with shorter survival in patients at early stage with HER2/hormone receptor-negative tumours treated with trastuzumab. Conclusions: Src activation participates in trastuzumab mechanisms of resistance and indicates poor prognosis, mainly in HER2/hormone receptor-negative breast cancer. Therefore, blocking this axis may be beneficial in those patients.
    Full-text · Article · Jun 2014 · British Journal of Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanostructured substrates have been recognized to initiate transcriptional programs promoting cell proliferation. Specifically β-catenin has been identified as transcriptional regulator, activated by adhesion to nanostructures. We set out to identify processes responsible for nanostructure-induced endothelial β-catenin signaling. Transmission electron microscopy (TEM) of cell contacts to differently sized polyethylene terephthalate (PET) surface structures (ripples with 250 to 300 nm and walls with 1.5 μm periodicity) revealed different patterns of cell-substrate interactions. Cell adhesion to ripples occurred exclusively on ripple peaks, while cells were attached to walls continuously. The Src kinase inhibitor PP2 was active only in cells grown on ripples, while the Abl inhibitors dasatinib and imatinib suppressed β-catenin translocation on both structures. Moreover, Gd(3+) sensitive Ca(2+) entry was observed in response to mechanical stimulation or Ca(2+) store depletion exclusively in cells grown on ripples. Both PP2 and Gd(3+) suppressed β-catenin nuclear translocation along with proliferation in cells grown on ripples but not on walls. Our results suggest that adhesion of endothelial cells to ripple structured PET induces highly specific, interface topology-dependent changes in cellular signalling, characterized by promotion of Gd(3+) -sensitive Ca(2+) entry and Src/Abl activation. We propose that these signaling events are crucially involved in nanostructure-induced promotion of cell proliferation.
    Full-text · Article · Oct 2013 · Journal of Nanomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.
    Full-text · Article · Apr 2014 · F1000 Research
Show more