Article

Dietary zeolite supplementation reduces oxidative damage and plaque generation in the brain of an Alzheimer's disease mouse model

Department of Biomedical Sciences and Biotechnologies, University of Brescia, 25123 Brescia, Italy. Electronic address: .
Life sciences (Impact Factor: 2.7). 04/2013; 92(17-19). DOI: 10.1016/j.lfs.2013.03.008
Source: PubMed

ABSTRACT

Aim:
Oxidative stress is considered one of the main events that lead to aging and neurodegeneration. Antioxidant treatments used to counteract oxidative damage have been associated with a wide variety of side effects or at the utmost to be ineffective. The aim of the present study was to investigate the antioxidant property of a natural mineral, the tribomechanically micronized zeolite (MZ).

Main methods:
Cell death and oxidative stress were assessed in retinoic acid differentiated SH-SY5Y cells, a neuronal-like cell line, after a pro-oxidant stimulus. In vivo evaluation of antioxidant activity and amyloidogenic processing of beta amyloid have been evaluated in a transgenic model of aging related neurodegeneration, the APPswePS1dE9 transgenic mice (tg mice) after a five-month long period of water supplementation with MZ.

Key findings:
The study showed that 24h of cell pretreatment with MZ (1) protected the cells by radical oxygen species (ROS)-induced cell death and moreover (2) induced a reduction of the mitochondrial ROS production following a pro-oxidant stimulation. Looking for an antioxidant effect of MZ in vivo, we found (3) an increased activity of the endogenous antioxidant enzyme superoxide dismutase (SOD) in the hippocampus of tg mice and (4) a reduction in amyloid levels and plaque load in MZ treated tg mice compared to control tg mice.

Significance:
Our results suggest MZ as a novel potential adjuvant in counteracting oxidative stress and plaque accumulation in the field of neurodegenerative diseases.

0 Followers
 · 
44 Reads
  • Source
    • "In this regard, dietary zeolite (micronized zeolite) supplementation has been shown to reduce mitochondrial ROS, increase superoxide dismutase (SOD) levels, and attenuate Aβ accumulation in the APP/PS1 mouse brain [110]. In the same way, Salvia sahendica extracts prevented reduction in the level of NRF1 and mitochondrial transcription factor A (TFAM), induced by Aβ [111]. In another study, melatonin and caffeine treatment, almost completely restored mitochondrial function in assays of respiratory rate, membrane potential, ROS production, and ATP level in the brains of the APP/PS1 [112]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer's disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1alpha) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-beta aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed "anti-ageing pathways", for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.
    Full-text · Article · Mar 2014 · Cell Communication and Signaling
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
    No preview · Article · Aug 2014 · Methods in Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson’s disease and Alzheimer’s disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson’s and Alzheimer’s diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds.
    No preview · Article · Jun 2015 · Oxidative medicine and cellular longevity
Show more