ArticleLiterature Review

The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeostasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake, endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge may help in the design of future therapies for the metabolic syndrome.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The central role of this system in obesity development makes it a worthy therapeutic target for the treatment of obesity and associated comorbidities. The ECS is a complex system comprised of several bioactive lipids of which the two most-studied are N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) [4]. These bioactive lipids interact with both membrane-bound and nuclear receptors, leading to a broad range of physiological effects [4]. ...
... The ECS is a complex system comprised of several bioactive lipids of which the two most-studied are N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) [4]. These bioactive lipids interact with both membrane-bound and nuclear receptors, leading to a broad range of physiological effects [4]. The two main endocannabinoid receptors are the G-coupled receptors CB1 and CB2, which are expressed throughout the central nervous system and many other tissues, including organs affecting metabolic homeostasis [4]. ...
... These bioactive lipids interact with both membrane-bound and nuclear receptors, leading to a broad range of physiological effects [4]. The two main endocannabinoid receptors are the G-coupled receptors CB1 and CB2, which are expressed throughout the central nervous system and many other tissues, including organs affecting metabolic homeostasis [4]. In recent years, additional receptors and "endocannabinoid-like" mediators have been identified as part of the extended ECS [5]. ...
Article
Full-text available
The prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model. However, the effect of commercially available medical cannabis oils that contain numerous additional active molecules has not been examined. We tested herein the effects of THC- and CBD-enriched medical cannabis oils on obesity parameters and the gut microbiota composition of C57BL/6 male mice fed with either a high-fat or standard diet. We also assessed the levels of prominent endocannabinoids and endocannabinoid-like lipid mediators in the liver. THC-enriched extract prevented weight gain by a high-fat diet and attenuated diet-induced liver steatosis concomitantly with reduced levels of the lipid mediators palmitoyl ethanolamide (PEA) and docosahexaenoyl ethanolamide (DHEA) in the liver. In contrast, CBD-enriched extract had no effect on weight gain, but, on the contrary, it even exacerbated liver steatosis. An analysis of the gut microbiota revealed that mainly time but not treatment exerted a strong effect on gut microbiota alterations. From our data, we conclude that THC-enriched cannabis oil where THC is the main constituent exerts the optimal anti-obesity effects.
... [AEA] and 2-arachidonoylglycerol ) -ultimately synthesized from the long-chain omega-6 polyunsaturated fatty acids, arachidonic acid and its precursor linoleic acid, esterified to cell membrane phospholipids -their two main receptors (CB1 and CB2), and the enzymes necessary for AEA and 2-AG synthesis and degradation (Fig. S1) [14][15][16][17]. Initially, this system was studied for its association with hedonic appetite and brain reward systems. ...
... Furthermore, overactivation of endocannabinoid signaling at CB1 receptors also generates increased adipogenesis and adipose tissue deposition [16]. Consistent with studies that have demonstrated higher serum anandamide levels in carriers of the rs324420 variant [57,63], of the studies reporting significant findings, variant allele carriers are more susceptible to being overweight/ obese, and to higher BMI, waist circumference, waist-to-hip ratio, and fat mass values than individuals carrying the wild-type allele [26,34,39,51,53,55,56]. ...
... Increased tone of the endocannabinoid system has been shown to interfere with lipid metabolism [76]. In the adipose tissue, the endocannabinoid system via CB1 receptors increases glucose uptake and activates genes related to lipogenesis [16] and decreases the browning of this tissue, by increasing lipid accumulation and impairing lipid oxidation capacity [77]. In addition, studies report that agonism of CB1 receptors and genetic ablation of FAAH increase hepatic production of triglycerides and cholesterol, mainly in mice under a high-fat diet [58,78,79]. ...
Article
Full-text available
Background Overweight and obesity are the consequence of a sustained positive energy balance. Twin studies show high heritability rates pointing to genetics as one of the principal risk factors. By 2022, genomic studies led to the identification of almost 300 obesity-associated variants that could help to fill the gap of the high heritability rates. The endocannabinoid system is a critical regulator of metabolism for its effects on the central nervous system and peripheral tissues. Fatty acid amide hydrolase (FAAH) is a key enzyme in the inactivation of one of the two endocannabinoids, anandamide, and of its congeners. The rs324420 variant within the FAAH gene is a nucleotide missense change at position 385 from cytosine to adenine, resulting in a non-synonymous amino acid substitution from proline to threonine in the FAAH enzyme. This change increases sensitivity to proteolytic degradation, leading to reduced FAAH levels and increased levels of anandamide, associated with obesity-related traits. However, association studies of this variant with metabolic parameters have found conflicting results. This work aims to perform a systematic review of the existing literature on the association of the rs324420 variant in the FAAH gene with obesity and its related traits. Methods A literature search was conducted in PubMed, Web of Science, and Scopus. A total of 645 eligible studies were identified for the review. Results/Conclusions After the identification, duplicate elimination, title and abstract screening, and full-text evaluation, 28 studies were included, involving 28 183 individuals. We show some evidence of associations between the presence of the variant allele and higher body mass index, waist circumference, fat mass, and waist-to-hip ratio levels and alterations in glucose and lipid homeostasis. However, this evidence should be taken with caution, as many included studies did not report a significant difference between genotypes. These discordant results could be explained mainly by the pleiotropy of the endocannabinoid system, the increase of other anandamide-like mediators metabolized by FAAH, and the influence of gene-environment interactions. More research is necessary to study the endocannabinoidomic profiles and their association with metabolic diseases.
... The endocannabinoid system (ECS) plays a vital role in regulating appetite, metabolic processes, and energy balance both centrally and peripherally [3]. ECS is composed of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), endogenous ligands, i.e., endocannabinoids, and the enzymes that synthesize and degrade them [3]. ...
... The endocannabinoid system (ECS) plays a vital role in regulating appetite, metabolic processes, and energy balance both centrally and peripherally [3]. ECS is composed of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), endogenous ligands, i.e., endocannabinoids, and the enzymes that synthesize and degrade them [3]. The endocannabinoids are bioactive lipids, the two most studied of which are N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) [3]. ...
... ECS is composed of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), endogenous ligands, i.e., endocannabinoids, and the enzymes that synthesize and degrade them [3]. The endocannabinoids are bioactive lipids, the two most studied of which are N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) [3]. In recent years, additional receptors, enzymes, and "endocannabinoid-like" mediators have been identified as part of the extended ECS. ...
Article
Full-text available
Prolonged cannabis users show a lower prevalence of obesity and associated comorbidities. In rodent models, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from the plant Cannabis sativa L. have shown anti-obesity properties, suggesting a link between the endocannabinoid system (ECS) and obesity. However, the oral administration route has rarely been studied in this context. The aim of this study was to investigate the effect of prolonged oral administration of pure THC and CBD on obesity-related parameters and peripheral endocannabinoids. C57BL/6 male mice were fed with either a high-fat or standard diet and then received oral treatment in ramping doses, namely 10 mg/kg of THC or CBD for 5 weeks followed by 30 mg/kg for an additional 5 weeks. Mice treated with THC had attenuated weight gain and improved glucose tolerance, followed by improvement in steatosis markers and decreased hypertrophic cells in adipose epididymal tissue. Mice treated with CBD had improved glucose tolerance and increased markers of lipid metabolism in adipose and liver tissues, but in contrast to THC, CBD had no effect on weight gain and steatosis markers. CBD exclusively decreased the level of the endocannabinoid 2-arachidonoylglycerol in the liver. These data suggest that the prolonged oral consumption of THC, but not of CBD, ameliorates diet-induced obesity and metabolic parameters, possibly through a mechanism of adipose tissue adaptation.
... Key enzymes involved in the metabolism of endocannabinoids include fatty acid amide hydrolase (FAAH) that breaks down AEA into arachidonic acid and ethanolamine, and monoacylglycerol lipase (MAGL) that breaks down 2-AG into AEA and glycerol [9]. Although the ECS has been linked to immune, metabolic and nervous system homeostasis, and likely plays a regulatory role via the gut-brain axis, the precise physiological processes are still being studied [10][11][12][13]. Nonetheless, numerous active studies on phytocannabinoids are providing key evidence to support their potential efficacy in treating cardiovascular disease, cancer and inflammation [14][15][16]. ...
... Cannabis use is associated with improved metabolic parameters, such as better insulin sensitivity and lower fasting insulin levels, which would benefit obese patients [89,90]. Studies have also implicated that there may be dysregulation of the ECS in diet-induced obesity and metabolic disorders [13]. Akkermansia mucinophila is a key saccharolyte of the intestinal microbiota, which ferments dietary fibre to generate SCFAs that have the potential to modulate GPCR's such as cannabinoid receptors, and is found in lower abundance in the gut microbiota of obese patients compared to healthy individuals [91]. A. muciniphila inversely correlates with the onset of inflammation and altered adipose tissue metabolism [92], and with an increase in endocannabinoid-like molecules within the distal intestine [93] in animal models of diet-induced obesity. ...
... Yet, recent investigations discovered long-chain fatty acid amides and esters that often share biosynthetic or degradative enzymes with 2-AG and AEA and can thus considered to be part of the expanded eCB system (e.g., endocannabinoidome) [3]. Accumulating evidence highlights the essential role of the eCB system in multiple physiological functions such as energy homeostasis, food intake, sleep patterns, mood, and stress [4,5]. In addition, the eCB signaling is implicated in numerous pathophysiological processes, including respiratory, mental, cardiovascular, and cerebrovascular diseases [6]. ...
... In line with our findings, a study from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts identified substantial differences between men and women in their associations of blood metabolome with A-T-N biomarkers [33]. Sex-specific differences were observed mainly in metabolites responsible for energy metabolism and homeostasis, processes that are regulated by eCBs [4,5]. Sex-specific differences has been shown in the expression and affinity of cannabis receptors in animals [34] and human brains [35]. ...
Article
Full-text available
Background Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. Methods This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011–2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer’s disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. Results Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = − 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). Conclusions Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer’s disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.
... doi: bioRxiv preprint Metabolic homeostasis is regulated by a network of organs and tissues, primarily involving adipose tissue, muscle, liver and the hypothalamus, which act as central metabolic regulators. Cellular dysregulation within these tissues substantially associates with metabolic disorders, including obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) [1]. ...
Preprint
Single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful approach for studying cellular heterogeneity in metabolic tissues. However, snRNA-seq analysis remains challenging due to low gene expression and data complexity. Here, we introduce an optimized analytical workflow for snRNA-seq data from 67 samples across white adipose tissue, muscle, liver and the hypothalamus. We emphasized the importance of key steps including ambient RNA removal, doublet identification and data integration to ensure accurate downstream analysis. This workflow offers a valuable resource for researchers in metabolism, facilitating deeper insights into cellular diversity and metabolic function through rigorous snRNA-seq analysis.
... Notably the levels of mediators such as 2-AG, 2-DHG and 2-DPG in the caecum were 434 favoured in Se-depleted HFHS diets, whereas, in the present study, we observed that these mediators were 435 increased by the HFHS diet only in the presence of Fe supplementation (Figure 2B). Given the association 436 between tissular 2-AG levels and dysmetabolism, observed also in humans(Silvestri & Di Marzo, 2013), it 437 is tempting to speculate that individuals may be protected by the negative effects of a cafeteria-type diet 438 with supplementation of Se and slight reduction of dietary Fe. 439 ...
... Its overactivation in obesity leads to hyperphagia, increased fat accumulation, and systemic inflammation. First generation CB1R targeted inhibitors induced weight loss but were also associated with psychiatric issues, while the next generation peripherally restricted CB1R inverse agonists have shown promising results in reducing visceral adiposity and improving insulin sensitivity, their clinical application remains limited by partial efficacy (Di Marzo, 2008;Silvestri & Di Marzo, 2013). Meanwhile, ZFP423, a zinc-finger transcription factor, is a potent repressor of thermogenic gene expression by inhibiting EBF2 and suppressing UCP1 (Rajakumari et al., 2013;Shao et al., 2016;Shao et al., 2021;. ...
Preprint
According to the CDC, between 2017 and March 2020, 41.9% of U.S. adults aged 20 and older had obesity, with 9.2% experiencing severe obesity, affecting over 100 million and 22 million adults, respectively. Obesity prevalence increased from 30.5% in 1999-2000 to 41.9% in 2017-2020, while severe obesity rose from 4.7% to 9.2%. As per CDC projection, by 2030, nearly half of the US adults will be obese, with a quarter of them being severely obese. Current therapeutic approaches predominantly focus on appetite suppression and caloric restriction. This approach results in both fat mass and lean mass loss and thus compromises long term metabolic health. Preserving lean mass during weight loss is crucial. Remodeling of the white fat into beige fat through the process called browning offers a promising alternative to appetite suppression dependent weight loss, and complements with reduction of visceral fat, marrow adipose tissue, improve liver steatosis, enhancing insulin sensitivity, reduced cardiovascular risk and suppression of inflammation. Here, we present CCT-217, a groundbreaking siRNA therapy targeting CB1R and ZFP423 genes, with strong adipose tissue-specific tropism with nil brain and liver penetration in diet-induced obese (DIO) C57BL/6J male mice model (n=7 control, n=5 treated). Mice received 7 subcutaneous doses over 20 days (initial half-dose, followed by once after three days CB1R siRNA 2.0 mg/kg and ZFP423 siRNA 1.8 mg/kg dose). CCT-217 induced browning of the WAT and resulted in a significant 26% reduction in body weight with a modest 12% decrease in feed intake after the 4th dose, preserved normal clinical behavior and nutrition. Lean mass composition significantly improved to 79% versus 62% in controls, while total fat mass decreased by 43.5%. Notably, visceral fat depots, including retroperitoneal (59.4%), mesenteric (54.3%), and gonadal (42.0%) fat showed substantial reductions, alongside a reduction of 61.7% inguinal white adipose tissue (iWAT). Histological analysis revealed extensive browning of iWAT, reduced adipocyte size, and increased adipocyte count, indicating enhanced thermogenesis and adipose tissue remodeling. Liver pathology showed significant improvement, with reduced hepatocellular adipose vacuolation and the absence of fibrosis, inflammation, or macrophage infiltration, highlighting the hepatoprotective effects of CCT-217. Metabolic markers demonstrated a 20% reduction in plasma cholesterol and decreased systemic inflammation (21% reduction in CRP), accompanied by significantly improved leptin sensitivity and favorable trends in insulin sensitivity. Mechanistically, CCT-217 achieved 42-fold silencing of CB1R and 14.5-fold silencing of ZFP423 specifically in iWAT, with no off-target effects observed in liver or brain. In conclusion, CCT-217 emerges as a landmark therapy that effectively reduces visceral fat, enhances lean mass composition, and restores metabolic health through precise, tissue-specific gene silencing. These findings position CCT-217 as a transformative and highly promising next generation therapeutic for addressing obesity and its associated complications.
... The interplay between ECS, inflammation, and obesity isbecoming increasingly evident. The ECS plays a major role in the regulation of adipose tissue function, promoting adipogenesis and the expansion of fat stores, while also influencing inflammatory processes within the tissue [37,67]. ECs in white adipose tissue (WAT) are partly produced by immune cells like macrophages, which infiltrate WAT in response to excess caloric intake, contributing to elevated EC levels in individuals with obesity [68]. ...
Article
Full-text available
Purpose of Review This review explores the role of the endocannabinoid system (ECS) in regulating energy balance, food intake, and metabolism, with a focus on how ECS dysregulation contributes to obesity. The goal is to provide insights into the mechanisms underlying obesity and its associated metabolic disorders. Recent Findings Recent research indicates that the ECS significantly influences food intake, fat storage, insulin sensitivity, and inflammation, all of which are central to the development and progression of obesity. New research areas include the interaction between the ECS and gut microbiota, circadian rhythms of the ECS, and the impact of genetic and epigenetic factors on ECS function. Interest in the therapeutic potential of targeting the ECS has grown, with earlier treatments like CB1 receptor antagonists showing mixed results in efficacy and safety. Summary Evidence from both animal and human studies highlight the impact of elevated levels of the endocannabinoids anandamide and 2-AG on food intake, insulin resistance, visceral fat accumulation, and metabolic disturbances associated with obesity. The review explores the interaction between the ECS and other physiological systems, including gut-brain communication, circadian rhythms, as well as leptin and ghrelin signaling. Additionally, genetic and epigenetic factors influencing ECS function are examined, emphasizing their contribution to obesity susceptibility. While therapeutic approaches targeting the ECS, particularly CB1 receptor antagonism, have shown potential in managing obesity, the review acknowledges the challenges posed by central nervous system side effects in earlier treatments like rimonabant. However, recent advancements in peripherally restricted CB1 antagonists offer renewed hope for safer and more effective obesity treatments. The review concludes by addressing future research directions and therapeutic strategies to combat this global health challenge.
... In addition, CBD has been shown to upregulate expression of CB2 [49], which may increase sensitivity to the immune suppressive effects of this receptor in response to other ligands. Beyond the immune system, other studies have shown a clear links between the ECS and metabolic regulation [50], although most implicate CB1 [51]. Studies have additionally provided evidence for a role of the CB2 receptor in nutrient absorption and metabolism [52]. ...
Article
Full-text available
Background The endocannabinoid system (ECS) is highly integrated with seemingly all physiological and pathophysiological processes in the body. There is increasing interest in utilizing bioactive plant compounds, for promoting health and improving production in livestock. Given the established interaction between phytochemicals and the ECS, there are many opportunities for identification and development of therapies to address a range of diseases and disorders. However, the ECS has not been thoroughly characterized in cattle, especially in the gastrointestinal tract. The objective of this study was to characterize the distribution and transcriptional abundance of genes associated with the endocannabinoid system in bovine tissues. Methods Tissues including brain, spleen, thyroid, lung, liver, kidney, mesenteric vein, tongue, sublingual mucosa, rumen, omasum, duodenum, jejunum, ileum and colon were collected from 10-mo old Holstein steers (n = 6). Total RNA was extracted and gene expression was measured using absolute quantification real time qPCR. Gene expression of endocannabinoid receptors CNR1 and CNR2, synthesis enzymes DAGLA, DAGLB and NAPEPLD, degradation enzymes MGLL and FAAH, and transient receptor potential vanilloids TRPV3 and TRPV6 was measured. Data were analyzed in R using a Kruskal-Wallis followed by a Wilcoxon rank-sum test. Results are reported as the median copy number/20 ng of equivalent cDNA (CN) with interquartile range (IQR). Results The greatest expression of CNR1 and CNR2 was in the brain and spleen, respectively. Expression of either receptor was not detected in any gastrointestinal tissues, however there was a tendency (P = 0.095) for CNR2 to be expressed above background in rumen. Expression of endocannabinoid synthesis and degradation enzymes varied greatly across tissues. Brain tissue had the greatest DAGLA expression at 641 CN (IQR 52; P ≤ 0.05). DAGLB was detected in all tissues, with brain and spleen having the greatest expression (P ≤ 0.05). Expression of NAPEPLD in the gastrointestinal tract was lowest in tongue and sublingual mucosal. There was no difference in expression of NAPEPLD between hindgut tissues, however these tissues collectively had 592% greater expression than rumen and omasum (P ≤ 0.05). While MGLL was found to be expressed in all tissues, expression of FAAH was only above the limit of detection in brain, liver, kidney, jejunum and ileum. TRPV3 was expressed above background in tongue, rumen, omasum and colon. Although not different from each other, thyroid and duodenum had the greatest expression of TRPV6, with 285 (IQR 164) and 563 (IQR 467) CN compared to all other tissues (P < 0.05). Conclusions These data demonstrate the complex distribution and variation of the ECS in bovine tissues. Expression patterns suggest that regulatory functions of this system are tissue dependent, providing initial insight into potential target tissues for manipulation of the ECS.
... The endocannabinoid systems, both peripheral and central, are crucial to energy metabolism, including adipocyte activity (Rossi et al., 2018;Sidibeh et al., 2017). In both mouse and human WAT, Cannabinoid receptor 1 (CB1) activation caused down-regulation of the expression of Peroxisome proliferatoractivated receptor gamma coactivator 1-alpha (PGC1-α), which in turn degrades mitochondrial performance, and boosts lipogenesis (Tedesco et al., 2010;Tedesco et al., 2008;Silvestri & di Marzo, 2013). It is a well-known fact that adipocytes lack CB1 receptors affected for the increment of activated macrophage abundance (De Azua et al., 2017;Murphy & Foll, 2020). ...
Article
Full-text available
Despite the advancement of allopathic medicine, G-protein coupled receptors (GPCRs) are investigated as ideal drug targets for a range of chronic diseases including cancers, obesity, type II diabetes mellitus, non-alcoholic fatty liver, cardiovascular diseases, and neurodegeneration. During the past decades, scientists have been directly focused on the deep understanding of GPCR signaling pathways involved in the regulation of energy homeostasis and glucose metabolism which can hopefully direct towards the synthesis of novel drug compounds. Regulation of energy homeostasis is always aligned with the GPCRs associated with adipose tissues in which obesity is identified as one of the major diseases. However, evidence has not been provided on Food and Drug Administration (FDA) approved therapeutics for obesity that can directly affect the metabolism of adipose tissues yet. With the aid of these findings related to adipose tissue biology, further expansion and metabolic activation of white adipose tissues, brown adipose tissues, and beige adipose tissues will be potential target therapy for a variety of human diseases in the future. Therefore, the present review primarily focuses on the GPCRs present in adipose tissues and their regulatory roles in the pathophysiology of human diseases.
... CBD, a plant-based compound, is renowned for its non-psychological effects. It has been scientifically proven to possess anti-inflammatory and antioxidant properties, effectively inhibiting the signaling pathways involved in these processes [38][39][40][41][42][43]. Furthermore, CBD can inhibit glycogen synthase kinase-3β, which acts as a negative regulator of the Wnt/β-catenin pathway responsible for promoting neurogenesis in the hippocampus, an area of the brain involved in memory and learning [41,44,45]. ...
Article
Full-text available
Background Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex ® , a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. Methods Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N -diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. Results GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. Conclusions The use of an FDA-approved CBD (Epidiolex ® ) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.
... Mature adipocytes from visceral and subcutaneous adipose tissue express CBRs on their plasma membranes and CB1R is located at various subcellular levels, including the plasma membrane and mitochondria of the adipocyte (128,129). However, there is some uncertainty regarding CB2R expression in differentiated adipocytes (130)(131)(132)(133)(134). A complete endocannabinoid system has been found in both murine and human adipocytes (135)(136)(137). Bone marrowderived DCs from mice express CB1R and CB2R (138) and the endocannabinoid system is present in human DCs (139). ...
Article
Full-text available
Triple-negative breast cancer (TNBC) accounts for about 10-20% of all breast cancer cases and is associated with an unfavorable prognosis. Until recently, treatment options for TNBC were limited to chemotherapy. A new successful systemic treatment is immunotherapy with immune checkpoint inhibitors, but new tumor-specific biomarkers are needed to improve patient outcomes. Cannabinoids show antitumor activity in most preclinical studies in TNBC models and do not appear to have adverse effects on chemotherapy. Clinical data are needed to evaluate efficacy and safety in humans. Importantly, the endocannabinoid system is linked to the immune system and immunosuppression. Therefore, cannabinoid receptors could be a potential biomarker for immune checkpoint inhibitor therapy or a novel mechanism to reverse resistance to immunotherapy. In this article, we provide an overview of the currently available information on how cannabinoids may influence standard therapy in TNBC.
... Moreover, the endocannabinoid family may include also the so called "endocannabinoid-like" compounds, such as N-palmitoylethanolamine (PEA), that act independently from endocannabinoid receptors and can significantly contribute to the biological effect of 2-AG and AEA 18 . ECS plays a key role in regulating food intake and energy homeostasis 19 , and in regulating the immune system and inflammation 20 . As a complex cell-signaling network, the ECS can exert a modulating action from periphery to central nervous system in a two-way direction 21 , influencing also endocrine and reproductive system as well as gastrointestinal physiology, in which the gut microbiota plays a key role in many host functions 22,23 . ...
Article
Full-text available
Environmental pollutants used as plasticizers in food packaging and in thousands of everyday products have become harmful for their impact on human health. Among them, phthalates, recognized as emerging endocrine disruptors (EDs) can induce toxic effects leading to different health disorders. Only few studies evaluated the effects of di-n-hexyl phthalate (DnHP) in in vivo models and no studies have been conducted to investigate the effect of DnHP on the endocannabinoid system (ECS), one of the majors signaling pathways involved in the microbiota–gut–brain axis. Due to the current relevance of probiotic bacteria as beneficial dietary interventions, the present study was aimed at evaluating the potential neuroprotective impact of daily administration of Lactiplantibacillus (Lpb.) plantarum IMC513 on zebrafish adults exposed to DnHP, with a focus on ECS modulation. Gene expression analysis revealed a promising protective role of probiotic through the restoration of ECS genes expression to the control level, in the brain of zebrafish daily exposed to DnHP. In addition, the levels of main endocannabinoids were also modulated. These findings confirm the potential ability of probiotics to interact at central level by modulating the ECS, suggesting the use of probiotics as innovative dietary strategy to counteract alterations by EDs exposure.
... regulating energy balance and metabolism [41]. During the progression of AD, there is a gradual dysfunction of the ECS [42]. ...
Article
Full-text available
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014–2024) using keywords such as “Alzheimer’s disease” and “cannabinoids”. The majority of natural (Δ9-THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway). Combining anticholinesterase properties with a cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the vast majority of studies discussed support further advancing cannabinoids in clinical trials for AD treatment.
... Nevertheless, cannabinoids might have some effects on CB receptors of other tissues/cells within the body, which was not investigated in our study. As it has been well recognized, CNR1 is abundantly expressed in the nervous system and other peripheral tissues [36] while CNR2 is expressed primarily within the immune cells [37]. ...
Preprint
Full-text available
The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appear to be safe with minor effects on the metabolism, including a decrease of circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2) or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment (GSE) analysis, and the Dynamic Impact Approach. Using a 0.2 FDR cut-off, we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEG in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSE analysis identified activation of PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver.
... Nevertheless, cannabinoids might have some effects on CB receptors of other tissues/cells within the body, which was not investigated in our study. As it has been well recognized, CNR1 is abundantly expressed in the nervous system and other peripheral tissues [39] while CNR2 is expressed primarily within the immune cells [40]. ...
Article
Full-text available
The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly ∆ 9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2), or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment Analysis (GSEA), and the Dynamic Impact Approach. Using a 0.2 FDR cutoff , we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEGs in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSEA identified activation of the PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver.
... Review made by Campos et al. (2016) [13] underscores ECS's neuroprotective traits, deeming it a potential neuropsychiatric intervention target. Reviews [14][15][16][17][18] discuss its roles in metabolic regulation, stress, and emotional behavior, indicating therapeutic possibilities for stress-related conditions. Insights into neuroprotection, anti-inflammation, metabolic regulation, and stress response highlight the ECS's potential as a therapeutic target across various medical conditions. ...
Article
Full-text available
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer’s Disease, multiple sclerosis, or Parkinson’s disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
... Moreover, we should also bear in mind that AA constitutes a biosynthetic precursor of endocannabinoids, of which the best-studied are AEA and 2-AG (Di . These AA-derived metabolites are endogenous ligands of CB 1 and CB 2 receptors, and according to the current state of knowledge, overactivation of the CB 1 receptor is closely related to the induction of the inflammatory response and occurrence of obesity (Silvestri and Di Marzo, 2013;Bielawiec et al., 2020). Additionally, our research also showed that the oversupply of FAs in the diet caused similar changes in the composition of the PS fraction as in PC, including a significant enhancement in the proportions of MUFAs, n-3, and n-6 PUFAs. ...
Article
Full-text available
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders.
... Another EC receptor is TRPV1; AEA and other endocannabinoids are natural ligands for TRPV1 [23,24], and it is produced when intracellular Ca 2+ levels increase [3]. In addition, a cross talk between CB1 and TRPV1 has been demonstrated by several studies [25][26][27][28]. ...
Article
Full-text available
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O′ and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.
... 15 Understanding the association between current cannabis use and other potential risk factors including cigarette smoking for MetS is critical to identify underlying mechanisms, which may be related to the energy and metabolic homeostasis-related ECS. [24][25][26][27] Cigarette smoking promotes the development and progression of MetS by increasing insulin resistance through elevated levels of insulin-antagonistic hormones, including cortisol, catecholamines, and growth hormones. 28 This study aims to examine the association between current cannabis use and MetS in a nationally representative US sample of emerging adults by race/ethnicity, considering potential confounders such as cigarette smoking. ...
Article
Full-text available
Background Association between cannabis use and metabolic syndrome (MetS) has been documented; yet variation by race/ethnicity is understudied. We examined cannabis use and MetS by race/ethnicity among emerging adults (18-25 years old), the age group with the highest prevalence of cannabis use. Methods Data from 18- to 25-year-olds who completed the National Health and Nutrition Examination Survey (2009-2018) were analyzed. Current cannabis use was defined as ≥1 day of use in the last 30 days. MetS was defined using standardized guidelines as ≥3 of the following: elevated fasting glucose, triglycerides, systolic (SBP) and/or diastolic blood pressure (DPB), waist circumference, and/or low high-density lipoprotein (HDL) cholesterol. Logistic regression was used to examine the association between current cannabis use (CCU) and MetS, adjusting for covariates. Results Of 3974 respondents, 48.8% were female, mean age 21.1 years (SD = 2.4), 56.7% non-Hispanic white, 20.4% Hispanic, and 14.0% non-Hispanic black (NHB). Hispanics had the highest MetS prevalence (7.9%) and lowest CCU prevalence (23.5%). NHB had highest CCU prevalence (33.4%, P < .0001) and lowest MetS prevalence (4.8%, P = .2543). CCUs had a higher mean SBP (P = .020) and Hispanics (P = .002) than never users. Conversely, NHB CCUs exhibited lower mean SBP than NHB never users (P = .008). CCUs had 42% reduced odds of MetS than never users (AOR: 0.58, 95% CI: 0.35-0.95). Among NHB, CCUs had 78% lower likelihood of having MetS than never users (AOR: 0.22, 95% CI: 0.06-0.81). Conclusions Cannabis use impacts MetS and blood pressure differently by race/ethnicity. Current cannabis use was associated with lower odds of MetS overall and among NHB. Further research is warranted to investigate how administration routes, dosages, and usage duration affect MetS.
... This points toward heightened peripheral AEA metabolism concurrent with elevated exercise levels. An intriguing facet lies in the impact of AEA on mitochondrial function and oxidative metabolism pathways [62,63]. Such insights lead one to speculate about potential correlations between alterations in AEA levels and changes in cardiorespiratory fitness. ...
Article
Full-text available
Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoidmediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoylethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.
... The endocannabinoid-system (ECS) is a complex cell-signaling cascade, featuring cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), endocannabinoids, and the enzymes orchestrating their synthesis and breakdown. This intricate network plays a pivotal role in regulating diverse physiological processes, such as stress response, cognitive functions, pain sensation, immune functions, appetite and metabolism, all aimed at maintaining the delicate balance of homeostasis in the body [30][31][32]. CB1R is a G protein-coupled receptor predominantly located in the central nervous system but also found in peripheral tissues, including the liver. Activation of CB1R signaling is implicated in liver injury associated with alcohol abuse. ...
Article
Macrophage stimulating protein (MSP) is a multifunctional serum protein produced in the liver, belonging to the plasminogen-related kringle protein family. It exerts diverse biological functions by activating a transmembrane receptor protein-tyrosine kinase known as RON in humans and SKT in mice. MSP plays a pivotal role in innate immunity and is involved in various activities such as cell survival, migration, and phagocytosis. Elucidating the regulatory mechanisms governing MSP gene expression is of great importance. In this study, we comprehensively elucidate the molecular mechanism underlying hepatic MSP gene expression in response to alcoholism. Exposure to ethanol specifically upregulated the expression of ERRγ and MSP in the liver, while not in other organs. Liver-specific knockout of the cannabinoid receptor type 1 (CB1R), an upstream regulator of ERRγ, inhibited the alcohol-induced upregulation of MSP expression. Overexpression of ERRγ alone was sufficient to enhance MSP expression in hepatic cell lines and in mice. Conversely, knockdown of ERRγ in cell lines or liver-specific knockout of ERRγ in mice reversed ethanol-induced MSP gene expression. Promoter studies revealed the direct binding of ERRγ to the MSP gene promoter at the ERR response element (ERRE), resulting in the positive regulation of MSP gene expression in response to alcohol. This finding was further supported by ERRE-mutated MSP-luciferase reporter assays. Notably, treatment with GSK5182, an ERRγ-specific inverse agonist, significantly suppressed alcohol-induced hepatic MSP expression. Collectively, we exposed a novel mechanistic understanding of how alcohol-induced ERRγ controls the transcriptional regulation of MSP gene expression in the liver.
... In the present study, after 3 weeks of cannabis oil administration, favorable changes were evident in the lipid profile and markers of liver damage and prevented the increase in serum endocannabinoid levels in SRD-fed rats. Furthermore, we observed an improvement in the hepatic lipid content, NAS, and enzyme activities involved in de novo lipogenesis and oxidation of fatty acids, highlighting the beneficial effects of the full-spectrum cannabis extract used in dyslipidemia, liver damage, hepatic steatosis, and Some studies have suggested that Δ9-THC and/or CBD cannabinoids increased HDL-c concentration, reduced lipid serum and hepatic triglyceride accumulation, and liver damage in other animal models [46][47][48]. Similarly, Silvestri et al. [49] revealed the positive influence of CBD on the liver, namely, the reduction of intracellular lipid content in an in vitro hepatosteatosis model. ...
Article
Full-text available
Introduction This study aimed to analyze the effects of cannabis oil (cannabidiol:tetrahydrocannabinol [CBD:THC], 2:1 ratio) on the mechanisms involved in hepatic steatosis and oxidative stress in an experimental model of metabolic syndrome (MS) induced by a sucrose-rich diet (SRD). We hypothesized that noninvasive oral cannabis oil administration improves hepatic steatosis through a lower activity of lipogenic enzymes and an increase in carnitine palmitoyltransferase-1 (CPT-1) enzyme activity involved in the mitochondrial oxidation of fatty acids. Furthermore, cannabis oil ameliorates liver oxidative stress through the regulation of the main regulatory factors involved, nuclear factor erythroid 2 (NrF2) and nuclear factor-kB (NF-κB) p65. For testing this hypothesize, a relevant experimental model of MS was induced by feeding rats with a SRD for 3 weeks. Methods Male Wistar rats were fed the following diets for 3 weeks: reference diet: standard commercial laboratory diet, SRD, and SRD + cannabis oil: noninvasive oral administration of 1 mg/kg body weight cannabis oil daily. The full-spectrum cannabis oil presents a total cannabinoid CBD:THC 2:1 ratio. Serum glucose, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (AP), N-arachidonoylethanolamine or anandamide and 2-arachidonoylglycerol endocannabinoids levels, thiobarbituric acid reactive substance (TBARS) levels, and non-enzymatic antioxidant capacity (ferric ion-reducing antioxidant power [FRAP]) were evaluated. In the liver tissue: histology, nonalcoholic fatty liver disease activity score (NAS), triglycerides and cholesterol content, lipogenic enzyme activities (fatty acid synthase, acetyl-CoA carboxylase, malic enzyme, and glucose-6-phosphate dehydrogenase), enzyme related to mitochondrial fatty acid oxidation (CPT-1), reactive oxygen species, TBARS, FRAP, glutathione, catalase, glutathione peroxidase, and glutathione reductase enzyme activities. 4-hydroxynonenal, NrF2, and NF-κB p65 levels were analyzed by immunohistochemistry. Results The results showed that SRD-fed rats developed dyslipidemia, liver damage, hepatic steatosis (increase of key enzymes related to the novo fatty acid synthesis and decrease of key enzyme related to mitochondrial fatty acid oxidation), lipid peroxidation, and oxidative stress. Hepatic NrF2 expression was significantly decreased and NF-κB p65 expression was increased. Cannabis oil administration improved dyslipidemia, liver damage, hepatic steatosis, lipid peroxidation (improving enzymes involved in lipid metabolism), and oxidative stress. In the liver tissue, NrF2 expression increased, and NF-κB p65 expression was reduced. Conclusion The present study revealed new aspects of liver damage and steatosis, lipid peroxidation, and oxidative stress in dyslipidemic insulin-resistant SRD-fed rats. We demonstrated new properties and molecular mechanisms of cannabis oil (CBD:THC, 2:1 ratio) on lipotoxicity and hepatic oxidative stress in an experimental model of MS.
... The extension of the eCB system, the endocannabinoidome (eCBome), includes additional eCB congeners derived from long chain fatty acids, notably within the N-acyl-ethanolamines (NAEs) and the 2-monoacyl-glycerols (2-MAGs) families, as well as numerous other enzymes and receptors. This system shares several metabolic functions with the gut microbiota, such as energy metabolism, inflammation, and immunity [3][4][5] . An increasing amount of evidence points to a bidirectional relationship between gut microbiota activity and the host eCBome www.nature.com/scientificreports/ ...
Article
Full-text available
The gut microbiota and the endocannabinoidome (eCBome) play important roles in regulating energy homeostasis, and both are closely linked to dietary habits. However, the complex and compositional nature of these variables has limited our understanding of their interrelationship. This study aims to decipher the interrelation between dietary intake and the gut microbiome–eCBome axis using two different approaches for measuring dietary intake: one based on whole food and the other on macronutrient intakes. We reveal that food patterns, rather than macronutrient intakes, were associated with the gut microbiome–eCBome axis in a sample of healthy men and women (n = 195). N-acyl-ethanolamines (NAEs) and gut microbial families were correlated with intakes of vegetables, refined grains, olive oil and meats independently of adiposity and energy intakes. Specifically, higher intakes in vegetables and olive oil were associated with increased relative abundance of Clostridiaceae, Veillonellaceae and Peptostreptococaceae, decreased relative abundance of Acidominococaceae, higher circulating levels of NAEs, and higher HDL and LDL cholesterol levels. Our findings highlight the relative importance of food patterns in determining the gut microbiome–eCBome axis. They emphasize the importance of recognizing the contribution of dietary habits in these systems to develop personalized dietary interventions for preventing and treating metabolic disorders through this axis.
... Factually, relevant research has unveiled valuable clarifying snippets in terms of delineating many diseases pathways, including adipose tissue-related mechanisms regulating energy homeostasis (28). The eCBS mediators are the endocannabinoids, AEA and 2-arachidonoyl-glycerol, which are critical regulators of the WAT and often dysregulated in obesity (23,(28)(29)(30). AEA levels increase during adipogenesis (31), and this eCB is suggested to upregulate this process through activation of cannabinoid receptor 1 and peroxisome proliferator-activated receptor gamma (PPARG) (20,32,33). ...
Article
Full-text available
White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells—preadipocytes—following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2′-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.
... The discovery of mtCB 1 receptors shed some light onto the intertwined connection between cannabinoid signaling and brain bioenergetics. While the link between energy homeostasis and CB 1 receptor signaling has been known for some time now (Silvestri & Di Marzo, 2013), the presence of mtCB 1 in different tissues and their participation in the control of several organ functions, particularly in the brain, triggered an endless number of possibilities related to the CB 1 -mediated control of metabolic processes. Indeed, mtCB 1 receptors have been increasingly recognized as key players in the regulation of brain metabolism and rewiring of certain behavioral responses. ...
Article
Full-text available
The brain requires large quantities of energy to sustain its functions. At the same time, the brain is isolated from the rest of the body, forcing this organ to develop strategies to control and fulfill its own energy needs. Likely based on these constraints, several brain‐specific mechanisms emerged during evolution. For example, metabolically specialized cells are present in the brain, where intercellular metabolic cycles are organized to separate workload and optimize the use of energy. To orchestrate these strategies across time and space, several signaling pathways control the metabolism of brain cells. One of such controlling systems is the endocannabinoid system, whose main signaling hub in the brain is the type‐1 cannabinoid (CB1) receptor. CB1 receptors govern a plethora of different processes in the brain, including cognitive function, emotional responses, or feeding behaviors. Classically, the mechanisms of action of CB1 receptors on brain function had been explained by its direct targeting of neuronal synaptic function. However, new discoveries have challenged this view. In this review, we will present and discuss recent data about how a small fraction of CB1 receptors associated to mitochondrial membranes (mtCB1), are able to exert a powerful control on brain functions and behavior. mtCB1 receptors impair mitochondrial functions both in neurons and astrocytes. In the latter cells, this effect is linked to an impairment of astrocyte glycolytic function, resulting in specific behavioral outputs. Finally, we will discuss the potential implications of (mt)CB1 expression on oligodendrocytes and microglia metabolic functions, with the aim to encourage interdisciplinary approaches to better understand the role of (mt)CB1 receptors in brain function and behavior. image
Article
Objectives Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. These innate mechanisms becom detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. This study aims at elucidating the role of the endocannabinoid system in energy accumulation and hedonic feeding. Methods We applied a genetic strategy to reconstitute cannabinoid type-1 receptor (CB1) expression at functional levels specifically in CaMKII+ neurons (CaMKII-CB1-RS) and adipocytes (Ati-CB1-RS), respectively, in a CB1 deficient background. Results Rescued CB1 expression in CaMKII+ neurons, but not in adipocytes, promotes feeding behavior, leading to fasting-induced hyperphagia, increased motivation, and impulsivity to palatable food seeking. In a diet-induced obesity model, CB1 re-expression in CaMKII+ neurons, but not in adipocytes, compared to complete CB1 deficiency, was sufficient to largely restore weight gain, food intake without any effect on glucose intolerance associated with high-fat diet consumption. In a model of glucocorticoid-mediated metabolic syndrome, CaMKII-CB1-RS mice showed all metabolic alterations linked to the human metabolic syndrome except of glucose intolerance. In a binge-eating model mimicking human pathological feeding, CaMKII-CB1-RS mice showed increased seeking and compulsive behavior to palatable food, suggesting crucial roles in foraging and an enhanced susceptibility to addictive-like eating behaviors. Importantly, other contingent behaviors, including increased cognitive flexibility and reduced anxiety-like behaviors, but not depressive-like behaviors, were also observed. Conclusions CB1 in CaMKII+ neurons is instrumental in feeding behavior and energy storage under physiological conditions. The exposure to risk factors (hypercaloric diet, glucocorticoid dysregulation) leads to obesity, metabolic syndrome, binge-eating and food addiction.
Article
Full-text available
Background The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [¹⁸F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood–brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d4 and -d8 deuterated isotopologues of [¹⁸F]JHU94620. Results The deuterated [¹⁸F]JHU94620 isotopologues showed improved metabolic stability avoiding the accumulation of BBB-penetrating radiometabolites in the brain over time. CB2R-specific binding with KD values in the low nanomolar range was determined across species. Dynamic PET studies revealed a CB2R-specific and reversible uptake of [¹⁸F]JHU94620-d8 in the spleen and to a local hCB2R(D80N) protein overexpression in the striatal region in rats. Conclusion These results support further investigations of [¹⁸F]JHU94620-d8 in pathological models and tissues with a CB2R overexpression as a prerequisite for clinical translation.
Article
Context Little is known about the link between the endocannabinoid system and the in vivo metabolic function of white adipose tissue (WAT). Objective We aimed to evaluate whether endocannabinoids (EC) are linked to postprandial fatty acid metabolism and WAT metabolic function. Design Men and women, with (IGT, n=20) or without impaired glucose tolerance (NGT, n=20) underwent meal testing with oral and intravenous stable isotope palmitate tracers and positron emission tomography with intravenous [11C]-palmitate and oral [18F]-fluoro-thia-heptadecanoic acid to determine systemic and organ-specific dietary fatty acid (DFA) and non-esterified fatty acid (NEFA) metabolism and partitioning. We determined fasting and postprandial plasma levels of EC by UHPLC-MS/MS. Results All EC of the 2-monoacylglycerol (2-MAG) family displayed a progressive postprandial increase up to 360 min after meal intake that was more pronounced in women with IGT. N-acylethanolamine (NAE) levels decreased between fasting and 180 min, followed by a return to pre-prandial values at 360 min and were also increased in women with IGT. Postprandial area under the curve (AUC) of palmitate appearance rate was significantly and independently associated with postprandial AUC of anandamide (AEA; P=0.0003) and total energy expenditure (P=0.0009). DFA storage in abdominal subcutaneous adipose tissue was positively predicted by fasting 2-arachidonoylglycerol (2-AG; P<0.04). Conclusion EC levels of the NAE family independently follow plasma NEFA metabolism, whereas 2-MAG closely follow the spillover of triglyceride-rich lipoprotein intravascular lipolytic products. Whether these associations are causal requires further investigation.
Article
Full-text available
Objective Endocannabinoids and their N-acyl-ethanolamines (NAEs) and 2monoacyl-glycerols (2-MAGs) congeners are involved in the central and peripheral regulation of energy homeostasis, they are present in human milk and are associated with obesity. Infants exposed in utero to gestational diabetes mellitus (GDM) are more likely to develop obesity. The objective of this cross-sectional study is to compare the profile of eCBome mediators in milk of women with gestational diabetes (GDM+) and without (GDM-) and to assess the association with offspring growth. The hypothesis is that the eCBome of GDM+ human milk is altered and associated with a difference in infant growth. Methods Circulating eCBome mediators were measured by LC-MS/MS in human milk obtained at 2 months postpartum from GDM+ (n=24) and GDM- (n=29) women. Infant weight and height at 2 months were obtained from the child health record. Z-scores were calculated. Results Circulating Npalmitoylethanolamine (PEA) was higher in human milk of GDM+ women than in GDM- women (4.9 ± 3.2 vs. 3.3 ± 1.7, p=0.04). Higher levels were also found for several 2monoacyl-glycerols (2-MAGs) (p<0.05). The levels of NAEs (β=-4.6, p=0.04) and especially non-omega-3 NAEs (B=-5.6, p=0.004) in human milk were negatively correlated with weight-for-age z-score of GDM+ offspring. Conclusion The profile of eCBome mediators in human milk at 2 months postpartum was different in GDM+ compared to GDM- women and was associated with GDM+ offspring growth at 2 months. Clinical trial registration ClinicalTrials.gov, identifier (NCT04263675 and NCT02872402).
Preprint
Full-text available
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014–2024) using keywords such as "Alzheimer's disease" and "cannabinoids". The majority of natural (THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included, showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway). Combining anticholinesterase properties with cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the majority of studies discussed supports further advancing cannabinoids in clinical trials for AD treatment.
Article
The endocannabinoid system (ECs) is composed of multiple signaling compounds and receptors within the central and peripheral nervous system along with various organs, including the gut, liver, and skeletal muscle. The ECs has been implicated in metabolism, gut motility, and eating behaviors. The ECs is altered in disease states such as obesity. Recent studies have clarified the role of the gut microbiome and nutrition on the ECs. Exogenous cannabinoid (CB) use, either organic or synthetic, stimulates the ECs through CB1 and CB2 receptors. However, the role of CBs is unclear in regard to nutrition optimization or to treat disease states. This review briefly summarizes the effect of the ECs and exogenous CBs on metabolism and nutrition. With the increased legalization of cannabis, there is a corresponding increased use in the United States. Therefore, nutrition clinicians need to be aware of both the benefits and harm of cannabis use on overall nutrition status, as well as the gaps in knowledge for future research and guideline development.
Preprint
Full-text available
Objectives Preclinical studies of amyotrophic lateral sclerosis (ALS) have shown altered endocannabinoid (eCB) signalling that may contribute to the disease. Results from human studies are sparse and inconclusive. The aim of this study was to determine the association between serum levels of eCBs or their congeners, the so-called endocannabinoidome, and disease status and activity in ALS patients. Methods Serum concentrations of the eCBs 2-arachidonoylglycerol (2AG) and N-arachidonoylethanolamine (AEA), and AEA congeners, palmitoylethanolamide (PEA), oleoylethanolamide (OEA), eicosapentaenoylethanolamide (EPEA), 2-docosahexaenoylglycerol (2-DHG) and docosahexaenoylethanolamide (DHEA) were measured in samples from 65 ALS patients, 32 healthy controls (HC) and 16 neurological disease controls (NALS). A subset of 46 ALS patients underwent a longitudinal study. Disease activity and progression were correlated with eCB and congener levels. Results Most circulating mediators were higher in ALS than HC (all p < 0.001), but not NALS. Across clinical stages, ALS patients showed increased levels of PEA, OEA, and EPEA (all p < 0.02), which were confirmed by the longitudinal study (all p < 0.03). Serum PEA and OEA levels were independent predictors of survival and OEA levels were higher in patients complaining of appetite loss. Cluster analysis revealed two distinct profiles of circulating mediators associated with corresponding patterns of disease activity (severe vs. mild). Patients belonging to the “severe” cluster showed significantly higher levels of OEA, PEA and lower levels of 2-DHG compared to NALS and HC. Interpretation Circulating endocannabinoidome profiles are indicative of disease activity, thus possibly paving the way to personalised, rather than a “one-fit-all”, therapeutic approaches targeting the endocannabinoidome.
Article
Bitterness-receptor gene TAS2R38 is associated with taste sensitivity and dietary behaviour, and is known to play a critical role in adiposity. However, evidence regarding body composition from a large cohort is lacking. This study aimed to ascertain whether TAS2R38 rs10246939 C > T bitterness genetic variation is associated with body composition in Korean individuals. The TAS2R38 rs10246939 genotypes, anthropometric measurements, and body composition of 1,843 males and 1,801 females from the Korean Genome and Epidemiology Study were analysed. Findings suggested that there was a significant difference in body fat components by TAS2R38 genotype. Furthermore, the bitterness genotype exhibited a positive association with adiposity markers in females. The TT genotype showed greater body mass index, body fat percentage, and degree of obesity than those with the C allele. However, such an association was not observed in males. In conclusion, this study suggests that TAS2R38 rs10246939 is associated with fat tissue markers in Korean females.
Article
Background The metabolic changes that ultimately lead to gestational diabetes mellitus (GDM) likely begin before pregnancy. Cannabis use might increase the risk of GDM by increasing appetite or promoting fat deposition and adipogenesis. Objectives We aimed to assess the association between preconception cannabis use and GDM incidence. Methods We analysed individual‐level data from eight prospective cohort studies. We identified the first, or index, pregnancy (lasting ≥20 weeks of gestation with GDM status) after cannabis use. In analyses of pooled individual‐level data, we used logistic regression to estimate study‐type‐specific odds ratios (OR) and 95% confidence intervals (CI), adjusting for potential confounders using random effect meta‐analysis to combine study‐type‐specific ORs and 95% CIs. Stratified analyses assessed potential effect modification by preconception tobacco use and pre‐pregnancy body mass index (BMI). Results Of 17,880 participants with an index pregnancy, 1198 (6.7%) were diagnosed with GDM. Before the index pregnancy, 12.5% of participants used cannabis in the past year. Overall, there was no association between preconception cannabis use in the past year and GDM (OR 0.97, 95% CI 0.79, 1.18). Among participants who never used tobacco, however, those who used cannabis more than weekly had a higher risk of developing GDM than those who did not use cannabis in the past year (OR 2.65, 95% CI 1.15, 6.09). This association was not present among former or current tobacco users. Results were similar across all preconception BMI groups. Conclusions In this pooled analysis of preconception cohort studies, preconception cannabis use was associated with a higher risk of developing GDM among individuals who never used tobacco but not among individuals who formerly or currently used tobacco. Future studies with more detailed measurements are needed to investigate the influence of preconception cannabis use on pregnancy complications.
Article
We have designed orally bioavailable, non-brain-penetrant antagonists of the cannabinoid-1 receptor (CB1R) with a built-in biguanide sensor to mimic 5'-adenosine monophosphate kinase (AMPK) activation for treating obesity-associated co-morbidities. A series of 3,4-diarylpyrazolines bearing rational pharmacophoric pendants designed to limit brain penetration were synthesized and evaluated in CB1R ligand binding assays and recombinant AMPK assays. The compounds displayed high CB1R binding affinity and potent CB1R antagonist activities and acted as AMPK activators. Select compounds showed good oral exposure, with compounds 36, 38-S, and 39-S showing <5% brain penetrance, attesting to peripheral restriction. In vivo studies of 38-S revealed decreased food intake and body weight reduction in diet-induced obese mice as well as oral in vivo efficacy of 38-S in ameliorating glucose tolerance and insulin resistance. The designed "cannabinoformin" four-arm CB1R antagonists could serve as potential leads for treatment of metabolic syndrome disorders with negligible neuropsychiatric side effects.
Chapter
Cannabinoids (CBDs) represent a group of C21 or C22 terpenophenolic compounds predominantly produced by Cannabis but have also been found in plants from the Radula and Helichrysum genera. There are about 100 different cannabinoids, although some of them are metabolites. They are generally classified into ten subclasses [1–3].
Article
Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.
Article
Full-text available
Endocannabinoid lipids are known to exert orexigenic effects via central cannabinoid CB1 and CB2 receptors, which have also been identified in islet endocrine cells. However, there is no consensus on whether the receptors are expressed by β-cells, nor what effect CB1 and CB2 receptor agonists have on insulin secretion. In the current study we have therefore used the mouse MIN6 β-cell line rather than primary islets, which are heterogeneous clusters of endocrine cells. Cannabinoid receptor and diacylglycerol lipase isoform mRNAs were detected in MIN6 cells by RT-PCR and immunocytochemistry was used to identify cannabinoid receptor expression by MIN6 cells. Changes in cyclic AMP and intracellular calcium were measured by immunoassay and microfluorimetry, respectively, and insulin secretion from perifused MIN6 pseudoislets was determined by radioimmunoassay. MIN6 β-cells express the cannabinoid synthesising enzyme diacylglycerol lipase and CB1 and CB2 receptors, which are coupled to inhibition of β-cell cyclic AMP generation and stimulation of intracellular calcium levels. Cannabinoid receptor activation with pharmacological agonists resulted in reversible elevations in insulin secretion at both 2 mM and 20 mM glucose. Synthesis of endocannabinoids by β-cells may provide an additional mechanism for stimulation of insulin secretion through activation of β-cell CB1 and/or CB2 cannabinoid receptors.
Article
Full-text available
The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.
Article
Full-text available
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.
Article
Full-text available
Cannabinoid type 1 (CB(1)) receptor activation is generally considered a powerful orexigenic signal and inhibition of the endocannabinoid system is beneficial for the treatment of obesity and related metabolic diseases. The hypothalamus plays a critical role in regulating energy balance by modulating both food intake and energy expenditure. Although CB(1) receptor signaling has been implicated in the modulation of both these mechanisms, a complete understanding of its role in the hypothalamus is still lacking. Here we combined a genetic approach with the use of adeno-associated viral vectors to delete the CB(1) receptor gene in the adult mouse hypothalamus and assessed the impact of such manipulation on the regulation of energy balance. Viral-mediated deletion of the CB(1) receptor gene in the hypothalamus led to the generation of Hyp-CB(1)-KO mice, which displayed an approximately 60% decrease in hypothalamic CB(1) receptor mRNA levels. Hyp-CB(1)-KO mice maintained on a normocaloric, standard diet showed decreased body weight gain over time, which was associated with increased energy expenditure and elevated β(3)-adrenergic receptor and uncoupling protein-1 mRNA levels in the brown adipose tissue but, surprisingly, not to changes in food intake. Additionally, Hyp-CB(1)-KO mice were insensitive to the anorectic action of the hormone leptin (5 mg/kg) and displayed a time-dependent hypophagic response to the CB(1) inverse agonist rimonabant (3 mg/kg). Altogether these findings suggest that hypothalamic CB(1) receptor signaling is a key determinant of energy expenditure under basal conditions and reveal its specific role in conveying the effects of leptin and pharmacological CB1 receptor antagonism on food intake.
Article
Full-text available
The goal of this study was to determine whether administration of the CB(1) cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d(31)-tripalmitin) and intravenously ((13)C(4)-palmitate, (13)C(1)-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg(-1)·h(-1), P = 0.03). These data support the potential for a strong effect of CB(1) receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis.
Article
Full-text available
n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. In a 'prevention study', C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WAT.
Article
Full-text available
Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. In this condition, the subject eats also when not in a state of short-term energy depletion, and food is consumed uniquely because of its gustatory rewarding properties. The physiological mechanisms underlying this eating behavior are not deeply understood, but endogenous rewarding mediators like ghrelin and endocannabinoids are likely involved. To explore the role of these substances in hedonic eating, we measured changes in their plasma levels in eight satiated healthy subjects after ad libitum consumption of highly palatable food as compared with the consumption of nonpalatable food in isoenergetic amounts with the same nutrient composition of the palatable food. The consumption of food for pleasure was characterized by increased peripheral levels of both the peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol. Levels of the other endocannabinoid anandamide and of anandamide-related mediators oleoylethanolamide and palmitoylethanolamide, instead, progressively decreased after the ingestion of both highly pleasurable and isoenergetic nonpleasurable food. A positive correlation was found between plasma 2-arachidonoyl glycerol and ghrelin during hedonic but not nonhedonic, eating. The present preliminary findings suggest that when motivation to eat is generated by the availability of highly palatable food and not by food deprivation, a peripheral activation of two endogenous rewarding chemical signals is observed. Future research should confirm and extend our results to better understand the phenomenon of hedonic eating, which influences food intake and, ultimately, body mass.
Article
Full-text available
Background/aims: Antagonism of the endocannabinoid receptor-1 (CB1R) directly improves whole-body metabolic parameters of insulin resistance. The present investigation determined the effects of chronic CB1R antagonism on whole-body and skeletal-muscle insulin action in insulin-sensitive lean and insulin-resistant obese Zucker rats. Methods: Animals were either fed ad libitum or in pairs, or treated with SR141716 (10 mg/kg i.p. for 14 days). Results: Food intake was significantly reduced (p < 0.05) after initial SR141716 treatment and remained decreased in both lean and obese animals until day 13. Fasting plasma glucose decreased (24%) and insulin increased (43%) in lean SR141716-treated (24%) rats compared to lean ad libitum-fed controls, but not in the corresponding obese groups. Fasting plasma free fatty acids were reduced by CB1R antagonism in lean (21%) and obese (42%) animals. Whole-body insulin sensitivity was increased (36%) in obese SR141716-treated rats compared to obese ad libitum-fed controls, which was associated with reduced insulin secretion during an oral glucose tolerance test. Insulin-stimulated glucose transport activity in the soleus was greatest in the respective SR141716-treated lean and obese groups compared to the corresponding ad libitum- and pair-fed controls. Chronic SR141716 treatment did not induce alterations in signaling factors associated with the regulation of glucose transport [protein kinase B (Akt), glycogen synthase kinase-3β, 5'-AMP-dependent protein kinase, or p38 mitogen-activated protein kinase] in the soleus. Conclusions: These results indicate that, while the chronic treatment with CB1R antagonism markedly diminished food intake in lean and obese Zucker rats, there are also significant metabolic improvements in whole-body and skeletal-muscle insulin action mediated by CB1R antagonism through mechanisms independent of reduced caloric intake.
Article
Full-text available
Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.
Article
Full-text available
The elucidation of the role of endocannabinoids in physiological and pathological conditions and the transferability of the importance of these mediators from basic evidence into clinical practice is still hampered by the indefiniteness of their circulating reference intervals. In this work, we developed and validated a two-dimensional LC/MS/MS method for the simultaneous measurement of plasma endocannabinoids and related compounds such as arachidonoyl-ethanolamide, palmitoyl-ethanolamide, and oleoyl-ethanolamide, belonging to the N-acyl-ethanolamide (NAE) family, and 2-arachidonoyl-glycerol and its inactive isomer 1-arachidonoyl-glycerol from the monoacyl-glycerol (MAG) family. We found that several pitfalls in the endocannabinoid measurement may occur, from blood withdrawal to plasma processing. Plasma extraction with toluene followed by on-line purification was chosen, allowing high-throughput and reliability. We estimated gender-specific reference intervals on 121 healthy normal weight subjects fulfilling rigorous anthropometric and hematic criteria. We observed no gender differences for NAEs, whereas significantly higher MAG levels were found in males compared with females. MAGs also significantly correlated with triglycerides. NAEs increased with age in females, and arachidonoyl-ethanolamide correlated with adiposity and metabolic parameters in females. This work paves the way to the establishment of definitive reference intervals for circulating endocannabinoids to help physicians move from the speculative research field into the clinical field.
Article
Full-text available
Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
Article
Full-text available
Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.
Article
Full-text available
We examined the physiological mechanisms by which cannabinoid receptor 1 (CB1) antagonism improves glucose metabolism and insulin sensitivity independent of its anorectic and weight-reducing effects, as well as the effects of CB1 antagonism on brown adipose tissue (BAT) function. Three groups of diet-induced obese mice received for 1 month: vehicle; the selective CB1 antagonist SR141716; or vehicle/pair-feeding. After measurements of body composition and energy expenditure, mice underwent euglycaemic-hyperinsulinaemic clamp studies to assess in vivo insulin action. In separate cohorts, we assessed insulin action in weight-reduced mice with diet-induced obesity (DIO), and the effect of CB1 antagonism on BAT thermogenesis. Surgical denervation of interscapular BAT (iBAT) was carried out in order to study the requirement for the sympathetic nervous system in mediating the effects of CB1 antagonism on BAT function. Weight loss associated with chronic CB1 antagonism was accompanied by increased energy expenditure, enhanced insulin-stimulated glucose utilisation, and marked activation of BAT thermogenesis. Insulin-dependent glucose uptake was significantly increased in white adipose tissue and BAT, whereas glycogen synthesis was increased in liver, fat and muscle. Despite marked weight loss in the mice, SR141716 treatment did not improve insulin-mediated suppression of hepatic glucose production nor increase skeletal muscle glucose uptake. Denervation of iBAT blunted the effect of SR141716 on iBAT differentiation and insulin-mediated glucose uptake. Chronic CB1 antagonism markedly enhances insulin-mediated glucose utilisation in DIO mice, independent of its anorectic and weight-reducing effects. The potent effect on insulin-stimulated BAT glucose uptake reveals a novel role for CB1 receptors as regulators of glucose metabolism.
Article
Full-text available
The endocannabinoid system (ECS) is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoylglcyerol (2-AG), and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI), or other markers of adiposity and metabolism. Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose) or serum adipokine levels (adiponectin, leptin or resistin). In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.
Article
Full-text available
Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)-specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist-induced hypothermia was attenuated in the mutant mice, but the agonist-induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system-mediated effect, was not. Compared to wild-type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high-fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabant's efficacy, indicating that blockade of central CB1 is required for rimonabant's antiobesity actions.
Article
Full-text available
Omega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds. Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS). Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.
Article
Full-text available
Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB(1)-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB(1)-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.
Article
Full-text available
Activated cannabinoid 1 receptor (CB1R) signaling has been implicated in the development of phenotypes associated with fatty liver, insulin resistance, and impaired suppression of hepatic glucose output. Endoplasmic reticulum stress-associated liver-specific transcription factor CREBH is emerging as a critical player in various hepatic metabolic pathways and regulates hepatic gluconeogenesis in diet-induced obese settings. In this study, we elucidated the critical role of CREBH in mediating CB1R signaling to regulate glucose homeostasis in primary rat and human hepatocytes. mRNA and protein levels and glucose production were analyzed in primary rat and human hepatocytes. ChIP assays were performed together with various transcriptional analyses using standard techniques. CB1R activation by 2-arachidonoylglycerol (2-AG) specifically induced CREBH gene expression via phosphorylation of the JNK signaling pathway and c-Jun binding to the AP-1 binding site in the CREBH gene promoter. 2-AG treatment significantly induced hepatic gluconeogenic gene expression and glucose production in primary hepatocytes, and we demonstrated that the CREBH binding site mutant significantly attenuated 2-AG-mediated activation of the gluconeogenic gene promoter. Endogenous knockdown of CREBH led to ablation of 2-AG-induced gluconeogenic gene expression and glucose production, and the CB1R antagonist AM251 or insulin exhibited repression of CREBH gene induction and subsequently inhibited gluconeogenesis in both rat and human primary hepatocytes. These results demonstrate a novel mechanism of action of activated CB1R signaling to induce hepatic gluconeogenesis via direct activation of CREBH, thereby contributing to a better understanding of the endocannabinoid signaling mechanism involved in regulating the hepatic glucose metabolism.
Article
Full-text available
Since the first reports of endocannabinoid-mediated retrograde signaling in 2001, great advances have been made toward understanding the molecular basis and functions of the endocannabinoid system. Electrophysiological studies have revealed that the endocannabinoid system is functional at various types of synapses throughout the brain. Basic mechanisms have been clarified as to how endocannabinoids are produced and released from postsynaptic neurons and regulate neurotransmitter release through activating presynaptic cannabinoid CB(1) receptors, although there remain unsolved questions and some discrepancies. In addition to this major function, recent studies suggest diverse functions of endocannabinoids, including control of other endocannabinoid-independent forms of synaptic plasticity, regulation of neuronal excitability, stimulation of glia-neuron interaction, and induction of CB(1)R-independent plasticity. Using recently developed pharmacological and genetic tools, behavioral studies have elucidated the roles of the endocannabinoid system in various aspects of neural functions. In this review, we make a brief overview of molecular mechanisms underlying the endocannabinoid-mediated synaptic modulation and also summarize recent findings, which shed new light on a diversity of functional roles of endocannabinoids.
Article
Full-text available
Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.
Article
Full-text available
The endocannabinoid (EC) system has been implicated as an important regulator of energy homeostasis. In obesity and type 2 diabetes, EC tone is elevated in peripheral tissues including liver, muscle, fat, and also centrally, particularly in the hypothalamus. Cannabinoid receptor type 1 (CB₁) blockade with the centrally and peripherally acting rimonabant induces weight loss and improves glucose homeostasis while also causing psychiatric adverse effects. The relative contributions of peripheral versus central EC signaling on glucose homeostasis remain to be elucidated. The aim of this study was to test whether the central EC system regulates systemic glucose fluxes. We determined glucose and lipid fluxes in male Sprague-Dawley rats during intracerebroventricular infusions of either WIN55,212-2 (WIN) or arachidonoyl-2'-chloroethylamide (ACEA) while controlling circulating insulin and glucose levels through hyperinsulinemic, euglycemic clamp studies. Conversely, we fed rats a high-fat diet for 3 days and then blocked central EC signaling with an intracerebroventricular infusion of rimonabant while assessing glucose fluxes during a clamp. Central CB₁ activation is sufficient to impair glucose homeostasis. Either WIN or ACEA infusions acutely impaired insulin action in both liver and adipose tissue. Conversely, in a model of overfeeding-induced insulin resistance, CB₁ antagonism restored hepatic insulin sensitivity. Thus central EC tone plays an important role in regulating hepatic and adipose tissue insulin action. These results indicate that peripherally restricted CB₁ antagonists, which may lack psychiatric side effects, are also likely to be less effective than brain-permeable CB₁ antagonists in ameliorating insulin resistance.
Article
Full-text available
Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action. We measured EC production in isolated human and mouse islets and β-cell line in response to glucose and KCl. We evaluated human and mouse islets, several β-cell lines, and CB1R-null (CB1R(-/-)) mice for the presence of a fully functioning EC system. We investigated if ECs influence β-cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. ECs are generated within β-cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in β-cells and leads to increased β-cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased β-cell proliferation and mass, coupled with enhanced IR signaling in β-cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on β-cells in a Gα(i)-dependent manner. These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and proliferation in diabetes.
Article
International Journal of Obesity is a monthly, multi-disciplinary forum for papers describing basic, clinical and applied studies in biochemistry, genetics and nutrition, together with molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders
Article
Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB1/2, TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR signaling pathways. Cannabinoids-endocannabinoids are anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic in most cancers, in vitro and in vivo in animals. They signal through p38, MAPK, JUN, PI3, AKT, ceramide, caspases, MMPs, PPARs, VEGF, NF-κB, p8, CHOP, TRB3 and pro-apoptotic oncogenes (p53,p21 waf1/cip1) to induce cell cycle arrest, autophagy, apoptosis and tumour inhibition. Paradoxically they are pro-proliferative and anti-apoptotic in some cancers. Differences in receptor expression and concentrations of cannabinoids in cancer and immune cells can elicit anti- or pro-cancer effects through different signal cascades (p38MAPK or PI3/AKT). Similarities between effects of cannabinoids-endocannabinoids, omega-3 LCPUFA and CLAs/CLnAs as anti-inflammatory, antiangiogenic, anti-invasive anti-cancer agents indicate common signaling pathways. Evidence in vivo and in vitro shows EPA and DHA can form endocannabinoids that: (i) are ligands for CB1/2 receptors and possibly TRPV-1, (ii) have non-receptor mediated bioactivity, (iii) induce cell cycle arrest, (iii) increase autophagy and apoptosis, and (iv) augment chemotherapeutic actions in vitro. They can also form bioactive, eicosanoid-like products that appear to be non-CBR ligands but have effects on PPARs and NF-kB transcription factors.
Article
Background and purpose: The development of potent and selective inhibitors of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) via DAG lipases (DAGL) α and β is just starting to be considered as a novel and promising source of pharmaceuticals for the treatment of disorders that might benefit from a reduction in endocannabinoid tone, such as hyperphagia in obese subjects. Experimental approach: Three new fluorophosphonate compounds O-7458, O-7459 and O-7460 were synthesized and characterized in various enzymatic assays. The effects of O-7460 on high-fat diet intake were tested in mice. Key results: Of the new compounds, O-7460 exhibited the highest potency (IC₅₀ = 690 nM) against the human recombinant DAGLα, and selectivity (IC₅₀ > 10 μM) towards COS-7 cell and human monoacylglycerol lipase (MAGL), and rat brain fatty acid amide hydrolase. Competitive activity-based protein profiling confirmed that O-7460 inhibits mouse brain MAGL only at concentrations ≥ 10 μM, and showed that this compound has only one major 'off-target', that is, the serine hydrolase KIAA1363. O-7460 did not exhibit measurable affinity for human recombinant CB₁ or CB₂ cannabinoid receptors (Ki > 10 μM). In mouse neuroblastoma N18TG2 cells stimulated with ionomycin, O-7460 (10 μM) reduced 2-AG levels. When administered to mice, O-7460 dose-dependently (0-12 mg·kg⁻¹, i.p.) inhibited the intake of a high-fat diet over a 14 h observation period, and, subsequently, slightly but significantly reduced body weight. Conclusions and implications: O-7460 might be considered a useful pharmacological tool to investigate further the role played by 2-AG both in vitro and in vivo under physiological as well as pathological conditions.
Article
The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids. However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARγ, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists.
Article
Objectives: (1) To investigate whether modulation of the cannabinoid type 1 receptor (CB1R) directly regulates the production of adiponectin (ApN) and other adipokines in omental adipose tissue (OAT) of obese subjects, (2) to establish in which cellular fraction of OAT the effects of CB1R blockade take place and (3) to unravel the underlying mechanisms. Subjects and methods: OAT was obtained from 30 obese subjects (body mass index: 40.6±1.3 kg m(-2)) undergoing abdominal surgery. Primary cultures of explants or of freshly isolated adipocytes or stromal-vascular cells (SVCs) were used. Results: In OAT explants, the CB1R blocker Rimonabant upregulated ApN gene expression. mRNA abundance of omentin that exhibits insulin-sensitizing properties was upregulated as well. Conversely, mRNA levels of two pro-inflammatory cytokines, macrophage inflammatory protein (MIP)-1β and interleukin (IL)-7 were downregulated. We next examined where these effects took place within OAT. CB1R expression was similar in both cellular fractions. In isolated mature adipocytes, blockade of CB1R reproduced the increase of ApN mRNA and the decrease of IL-7 mRNA, while inducing a rise of ApN secretion into the medium. In isolated SVC, gene expression of omentin, which is restricted to this fraction, was augmented, while that of MIP-1β was diminished. Finally, we deciphered the mechanisms leading to ApN regulation by the endocannabinoid system (ES). We first established that ApN regulation was actually mediated by the CB1R: ApN gene expression was upregulated by Rimonabant and downregulated by the CB1R agonist arachidonyl-2-chloroethylamide (ACEA). Upregulation of ApN by Rimonabant was unaltered by inhibiting cAMP production. However, downregulation of ApN by ACEA was fully reversed by an inhibitor of p38 mitogen-activated protein kinase (p38MAPK) and ACEA increased p38MAPK phosphorylation. Conclusions: Blockade of CB1R attenuates the inflammatory state in both cellular fractions of OAT either by increasing ApN and omentin production or by decreasing mRNAs of MIP-1β and IL-7. ApN regulation by the ES partly involves p38MAPK.
Article
Obesity-related leptin resistance manifests in loss of leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.
Article
Introduction: Excessive abdominal obesity along with other risk factors results in the metabolic syndrome, which can lead to heart disease, Type-2 diabetes, and death. The endocannabinoid system (ECS) is composed of neutral lipids which signal through the G-protein coupled cannabinoid receptors CB1 and CB2. In abdominal obesity, the ECS is generally up-regulated in central and peripheral tissues and its blockade results in positive metabolic changes. Rimonabant (SR141716) was the first selective CB1 inverse agonist/antagonist marketed for the treatment of obesity; however, psychiatric side effects, which may result from its actions in the brain or its inverse agonism, resulted in its removal from the market. Recently, key metabolic-modulatory roles for the ECS within peripheral tissues have come to light. Thus there has been significant effort put forth by several laboratories to develop either neutral or peripherally restricted CB1 antagonists. Areas covered: In this review we shall provide an overview of the roles the ECS plays outside the brain in regulating metabolism, and highlight the latest advances in the development of neutral and/or peripherally restricted CB1 antagonists, and other state of the art strategies that minimize endocannabinoid overactivity. Expert opinion: The CB1 receptor is potentially a clinically relevant target for the design of therapies against metabolic syndrome, deserving the development and clinical testing of CB1-neutral antagonists which can pass the blood - brain barrier or of peripherally restricted inverse agonists/neutral antagonists. Furthermore, reducing endocannabinoid biosynthesis could represent an alternative strategy to counteract peripheral endocannabinoid overactivity through dietary n-3 polyunsaturated fatty acids or the development of diacylglycerol lipase inhibitors.
Article
In this review, we consider the role of endocannabinoids and cannabinoid‐1 (CB 1 ) cannabinoid receptors in metabolic regulation and as mediators of the thrifty phenotype that underlies the metabolic syndrome. We survey the actions of endocannabinoids on food intake and body weight, as well as on the metabolic complications of visceral obesity, including fatty liver, insulin resistance and dyslipidemias. Special emphasis is placed on weighing the relative importance of CB 1 receptors located in peripheral tissues versus the central nervous system in mediating the metabolic effects of endocannabinoids. Finally, we review recent observations that indicate that peripherally restricted CB 1 receptor antagonists retain efficacy in reducing weight and improving metabolic abnormalities in mouse models of obesity without causing behavioural effects predictive of neuropsychiatric side effects in humans. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue‐7
Article
The GPR119 receptor is expressed predominantly in pancreatic β cells and in enteroendocrine cells. It is a major target for the development of anti-diabetic drugs that through GPR119 activation may stimulate both insulin and GLP-1 release. GPR119 can be activated by oleoylethanolamide and several other endogenous lipids containing oleic acid: these include N-oleoyl-dopamine, 1-oleoyl-lysophosphatidylcholine, generated in the tissue, and 2-oleoyl glycerol generated in the gut lumen. Thus, the well-known stimulation of GLP-1 release by dietary fat is probably not only mediated by free fatty acids acting through, for example, GPR40, but is also probably mediated in large part through the luminal formation of 2-monoacylglycerol acting on the 'fat sensor' GPR119. In the pancreas GPR119 may also be stimulated by 2-monoacylglycerol generated from local turnover of pancreatic triacylglycerol. Knowledge about the endogenous physiological ligands and their mode of interaction with GPR119 will be crucial for the development of efficient second-generation modulators of this important drug target.
Article
It is well known that the endocannabinoid system, through cannabinoid CB1 receptor activation, has an important role in the main aspects of energy balance (i.e. food intake, energy expenditure and glucose and fat metabolism), orchestrating all the machinery involved in body weight control and energy homeostasis. A number of studies have revealed a crucial role of brain CB1 receptors in these processes. However, functional cannabinoid CB2 receptors have also been described in the brain, with no studies addressing their putative role in body weight control and glucose homeostasis. We have tested this hypothesis by analysing fasting-induced feeding, body weight, some hypothalamic neuropeptides, glucose tolerance and plasma hormones in an animal model specifically overexpressing CB2 receptors in the central nervous system. We found that specific overexpression of CB2 receptors in the brain promoted higher basal glucose levels, decreased fasting-induced feeding and, eventually, led to a lean phenotype and glucose intolerance. These findings could not be attributed to decreased locomotor activity, increased anxiety or depressive-like behaviours. The expression of relevant neuropeptides such as pro-opiomelanocortin and galanin in the arcuate nucleus of the hypothalamus was altered but not those of the CB1 receptor. Indeed, no changes in CB1 expression were found in the liver, skeletal muscle and adipose tissue. However, cannabinoid CB1 and CB2 receptor expression in the endocrine pancreas and glucagon plasma levels were decreased. No changes in plasma adiponectin, leptin, insulin and somatostatin were found. Taken together, these results suggest a role for central cannabinoid CB2 receptors in body weight control and glucose homeostasis.
Article
Evidence suggests that dietary long chain polyunsaturated fatty acids (LCPUFAs), and particularly those belonging to the n-3 family, may influence the brain fatty acid profile and, thereby, the biosynthesis of endocannabinoids in rodents. However, the doses used are usually quite high and not comparable with human intake. Recently, we have shown that relatively low doses of dietary n-3 LCPUFAs (4 weeks), in the form of either fish or krill oil, balanced for EPA and DHA content, and against a control diet with no EPA and DHA and similar contents of oleic, linoleic and α-linolenic acids, lower the concentrations of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in the visceral adipose tissue, and of AEA in the liver and heart, of obese Zucker rats. This, in turn, is associated with lower levels of arachidonic acid in membrane phospholipids and with amelioration of some metabolic syndrome parameters. We investigated here whether in Zucker rats, under the same conditions, fish and krill oil are also able to influence LCPUFA and endocannabinoid profiles in brain. Only krill oil was able to increase significantly DHA levels in brain phospholipids, with no changes in arachidonic acid. DHA increase was associated with lower levels of 2-AG in the brain, whereas AEA and its congeners, N-palmitoylethanolamine and N-oleoylethanolamine, were unchanged. We conclude that, despite the strong impact of dietary n-3 fatty acid on endocannabinoid levels previously observed in peripheral tissues, in the brain only 2-AG is affected by dietary krill oil, suggesting that the beneficial effect of the latter on the metabolic syndrome is mostly exerted by modifying peripheral endocannabinoids. Nevertheless, possible effects of dietary krill oil in the brain through modification of 2-AG levels deserve further investigation.
Article
The effect of the cannabinoid CB1 receptor antagonist, SR 141716, on food intake and body weight was assessed in adult, non-obese Wistar rats. The daily administration of SR 141716 (2.5 and 10 mg/kg; i.p.) reduced dose-dependently both food intake and body weight. Tolerance to the anorectic effect developed within 5 days; in contrast, body weight in SR 141716-treated rats remained markedly below that of vehicle-treated rats throughout the entire treatment period (14 days). The results suggest that brain cannabinoid receptors are involved in the regulation of appetite and body weight.
Article
Cannabinoid 1 (CB1) receptors have been previously detected in pancreatic β cells, where they attenuate insulin action. We now report that CB1 receptors form a heteromeric complex with insulin receptors and the heterotrimeric guanosine triphosphate-binding protein α subunit Gα(i). Gα(i) inhibited the kinase activity of the insulin receptor in β cells by directly binding to the activation loop in the tyrosine kinase domain of the receptor. Consequently, phosphorylation of proapoptotic protein Bad was reduced and its apoptotic activity was stimulated, leading to β-cell death. Pharmacological blockade or genetic deficiency of CB1 receptors enhanced insulin receptor signaling after injury, leading to reduced blood glucose concentrations and activation of Bad, which increased β-cell survival. These findings provide direct evidence of physical and functional interactions between CB1 and insulin receptors and suggest a mechanism whereby peripherally acting CB1 receptor antagonists improve insulin action in insulin-sensitive tissues independent of the other metabolic effects of CB1 receptors.
Article
The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB(1) receptor improves insulin sensitivity (S(I)). However, it is unknown whether this improvement is due to the direct effect of CB(1) blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in S(I) and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB(1) antagonist rimonabant. S(I) was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg(-1)·day(-1) RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week -6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in S(I). Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB(1) receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass.
Article
Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.
Article
Obesity-related insulin resistance contributes to cardiovascular disease. Cannabinoid receptor-1 (CB(1)) blockade improves insulin sensitivity in obese animals and people, suggesting endocannabinoid involvement. We explored the role of hepatic CB(1) in insulin resistance and inhibition of insulin signaling pathways. Wild-type mice and mice with disruption of CB(1) (CB(1)(-/-) mice) or with hepatocyte-specific deletion or transgenic overexpression of CB(1) were maintained on regular chow or a high-fat diet (HFD) to induce obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp analysis was used to analyze the role of the liver and hepatic CB(1) in HFD-induced insulin resistance. The cellular mechanisms of insulin resistance were analyzed in mouse and human isolated hepatocytes using small interfering or short hairpin RNAs and lentiviral knockdown of gene expression. The HFD induced hepatic insulin resistance in wild-type mice, but not in CB(1)(-/-) mice or mice with hepatocyte-specific deletion of CB(1). CB(1)(-/-) mice that overexpressed CB(1) specifically in hepatocytes became hyperinsulinemic as a result of reduced insulin clearance due to down-regulation of the insulin-degrading enzyme. However, they had increased hepatic glucose production due to increased glycogenolysis, indicating hepatic insulin resistance; this was further increased by the HFD. In mice with hepatocytes that express CB(1), the HFD or CB(1) activation induced the endoplasmic reticulum stress response via activation of the Bip-PERK-eIF2α protein translation pathway. In hepatocytes isolated from human or mouse liver, CB(1) activation caused endoplasmic reticulum stress-dependent suppression of insulin-induced phosphorylation of akt-2 via phosphorylation of IRS1 at serine-307 and by inducing the expression of the serine and threonine phosphatase Phlpp1. Expression of CB(1) was up-regulated in samples from patients with nonalcoholic fatty liver disease. Endocannabinoids contribute to diet-induced insulin resistance in mice via hepatic CB(1)-mediated inhibition of insulin signaling and clearance.
Article
To test the antidiabetic efficacy of ibipinabant, this new cannabinoid receptor 1 (CB1) antagonist was compared with food-restriction-induced weight loss, rosiglitazone (4 mg/kg) and rimonabant (3 and 10 mg/kg), using parameters of glycaemic control in male Zucker diabetic fatty (ZDF) rats. Body weight, food and water intake, fasted and non-fasted glucose and insulin, glucose tolerance and glycosylated haemoglobin (HbA1c) were all assessed over the course of the 9-week study. Pancreatic insulin content and islet area were also evaluated. At the end of the study, vehicle-treated ZDF rats were severely hyperglycaemic and showed signs of β-cell decline, including dramatic reductions in unfasted insulin levels. Ibipinanbant (10 mg/kg) reduced the following relative to vehicle controls: fasting glucose (-61%), glucose excursion area under the curve (AUC) in an oral glucose tolerance test (OGTT, -44%) and HbA1c (-50%). Furthermore, non-fasting insulin, islet area and islet insulin content were all increased (71, 40 and 76%, respectively) relative to vehicle controls by the end of the study. All of these effects were similar to those of rimonabant and rosiglitazone, where ibipinabant was slightly more effective than rimonabant at the lowest dose and somewhat less effective than rosiglitazone at all doses. These antidiabetic effects appear independent of weight loss because none of the parameters above were consistently improved by the comparable weight loss induced by food restriction. Ibipinabant may have weight loss-independent antidiabetic effects and may have the potential to attenuate β-cell loss in a model of progressive β-cell dysfunction.
Article
The endocannabinoid system plays a critical role in the control of energy homeostasis, but the identity and localization of the endocannabinoid signal involved remain unknown. In the present study, we developed transgenic mice that overexpress in forebrain neurons the presynaptic hydrolase, monoacylglycerol lipase (MGL), which deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). MGL-overexpressing mice show a 50% decrease in forebrain 2-AG levels but no overt compensation in other endocannabinoid components. This biochemical abnormality is accompanied by a series of metabolic changes that include leanness, elevated energy cost of activity, and hypersensitivity to β(3)-adrenergic-stimulated thermogenesis, which is corrected by reinstating 2-AG activity at CB(1)-cannabinoid receptors. Additionally, the mutant mice are resistant to diet-induced obesity and express high levels of thermogenic proteins, such as uncoupling protein 1, in their brown adipose tissue. The results suggest that 2-AG signaling through CB(1) regulates the activity of forebrain neural circuits involved in the control of energy dissipation.
Article
Cannabinoid receptor agonists are known to stimulate feeding in humans and animals and this effect is thought to be related to an increase in food palatability. On the other hand, highly palatable food stimulates dopamine (DA) transmission in the shell of the nucleus accumbens (NAc) and this effect undergoes one trial habituation. In order to investigate the relationship between the affective properties of tastes and the response of NAc shell DA we studied the effect of delta-9-tetrahydrocannabinol (THC) on behavioral taste reactivity to intraoral infusion of appetitive (sucrose solutions) and aversive (quinine and saturated NaCl solutions) tastes and on the response of in vivo DA transmission in the NAc shell to intraoral sucrose. Rats were implanted with intraoral cannulae and the effect of systemic administration of THC on the behavioral reactions to intraoral infusion of sucrose and of quinine or saturated NaCl solutions were scored. THC increased the hedonic reactions to sucrose but did not affect the aversive reactions to quinine and NaCl. The effects of THC were completely blocked by the CB1 receptor inverse agonist/antagonist rimonabant given at doses that do not affect taste reactivity to sucrose. In rats implanted with microdialysis probes and with intraoral cannulae, THC, made sucrose effective in raising dialysate DA in the shell of the NAc. As in the case of highly palatable food (Fonzies, sweet chocolate), the stimulatory effect of sucrose on shell DA under THC underwent one trial habituation. Altogether, these findings demonstrate that stimulation of CB1 receptors specifically increases the palatability of hedonic taste without affecting that of aversive tastes. Consistent with the ability of THC to increase sucrose palatability is the observation that under THC pretreatment sucrose acquires the ability to induce a release of DA in the shell of the NAc and this property undergoes adaptation after repeated exposure to the taste (habituation).
Article
The G protein-coupled receptor 119 (GPR119) mediates insulin secretion from pancreatic β cells and glucagon-like peptide 1 (GLP-1) release from intestinal L cells. While GPR119-mediated insulin secretion is glucose dependent, it is not clear whether or not GPR119-mediated GLP-1 secretion similarly requires glucose. This study was designed to address the glucose-dependence of GPR119-mediated GLP-1 secretion, and to explore the cellular mechanisms of hormone secretion in L cells versus those in β cells. GLP-1 secretion in response to GPR119 agonists and ion channel modulators, with and without glucose, was analysed in the intestinal L cell line GLUTag, in primary intestinal cell cultures and in vivo. Insulin secretion from Min6 cells, a pancreatic β cell line, was analysed for comparison. In GLUTag cells, GPR119 agonists stimulated GLP-1 secretion both in the presence and in the absence of glucose. In primary mouse colon cultures, GPR119 agonists stimulated GLP-1 secretion under glucose-free conditions. Moreover, a GPR119 agonist increased plasma GLP-1 in mice without a glucose load. However, in Min6 cells, GPR119-mediated insulin secretion was glucose-dependent. Among the pharmacological agents tested in this study, nitrendipine, an L-type voltage-dependent calcium channel blocker, dose-dependently reduced GLP-1 secretion from GLUTag cells, but had no effect in Min6 cells in the absence of glucose. Unlike that in pancreatic β cells, GPR119-mediated GLP-1 secretion from intestinal L cells was glucose-independent in vitro and in vivo, probably because of a higher basal calcium tone in the L cells.
Article
Unlabelled: It is well established that inactivation of the central endocannabinoid system (ECS) through antagonism of cannabinoid receptor 1 (CB1R) reduces food intake and improves several pathological features associated with obesity, such as dyslipidemia and liver steatosis. Nevertheless, recent data indicate that inactivation of peripheral CB1R could also be directly involved in the control of lipid metabolism independently of central CB1R. To further investigate this notion, we tested the direct effect of the specific CB1R antagonist, SR141716, on hepatic carbohydrate and lipid metabolism using cultured liver slices. CB1R messenger RNA expression was strongly decreased by SR141716, whereas it was increased by the CB1R agonist, arachidonic acid N-hydroxyethylamide (AEA), indicating the effectiveness of treatments in modulating ECS activity in liver explants both from lean or ob/ob mice. The measurement of O(2) consumption revealed that SR141716 increased carbohydrate or fatty acid utilization, according to the cellular hormonal environment. In line with this, SR141716 stimulated ß-oxidation activity, and the role of CB1R in regulating this pathway was particularly emphasized when ECS was hyperactivated by AEA and in ob/ob tissue. SR141716 also improved carbohydrate and lipid metabolism, blunting the AEA-induced increase in gene expression of proteins related to lipogenesis. In addition, we showed that SR141716 induced cholesterol de novo synthesis and high-density lipoprotein uptake, revealing a relationship between CB1R and cholesterol metabolism. Conclusion: These data suggest that blocking hepatic CB1R improves both carbohydrate and lipid metabolism and confirm that peripheral CB1R should be considered as a promising target to reduce cardiometabolic risk in obesity.
Article
The endocannabinoid system is a potential pharmacotherapy target for obesity. However, the role of this system in human food intake regulation is currently unknown. To test whether circulating endocannabinoids might functionally respond to food intake and verify whether these orexigenic signals are deregulated in obesity alongside with anorexigenic ones, we measured plasma anandamide (AEA), 2-arachidonoylglycerol (2-AG) and peptide YY (PYY) changes in response to a meal in 12 normal-weight and 12 non-diabetic, insulin-resistant obese individuals. Both normal-weight and obese subjects had a significant preprandial AEA peak. Postprandially, AEA levels significantly decreased in normal-weight, whereas no significant changes were observed in obese subjects. Similarly, PYY levels significantly increased in normal-weight subjects only. No meal-related changes were found for 2-AG. Postprandial AEA and PYY changes inversely correlated with waist circumference, and independently explained 20.7 and 21.3% of waist variance. Multiple regression analysis showed that postprandial AEA and PYY changes explained 34% of waist variance, with 8.2% of the variance commonly explained. These findings suggest that AEA might be a physiological meal initiator in humans and furthermore show that postprandially AEA and PYY are concomitantly deregulated in obesity.
Article
Changes in food availability alter the output of hypothalamic nuclei that underlie energy homeostasis. Here, we asked whether food deprivation impacts the ability of GABA synapses in the dorsomedial hypothalamus (DMH), an important integrator of satiety signals, to undergo activity-dependent changes. GABA synapses in DMH slices from satiated rats exhibit endocannabinoid-mediated long-term depression (LTD(GABA)) in response to high-frequency stimulation of afferents. When CB1Rs are blocked, however, the same stimulation elicits long-term potentiation (LTP(GABA)), which manifests presynaptically and requires heterosynaptic recruitment of NMDARs and nitric oxide (NO). Interestingly, NO signaling is required for eCB-mediated LTD(GABA). Twenty-four hour food deprivation results in a CORT-mediated loss of CB1R signaling and, consequently, GABA synapses only exhibit LTP(GABA). These observations indicate that CB1R signaling promotes LTD(GABA) and gates LTP(GABA). Furthermore, the satiety state of an animal, through regulation of eCB signaling, determines the polarity of activity-dependent plasticity at GABA synapses in the DMH.
Article
Existing monotherapies for the treatment of obesity provide only modest weight loss and/or have adverse side effects, and this is also the case with the cannabinoid receptor 1 (CB1) inverse agonist, rimonabant. We aimed to investigate the possibility of improving efficacy and reducing side effects of rimonabant by cotreatment with opioid system antagonists. Using both genetic and pharmacological removal of opioid signaling in mice, we investigated changes in body weight, food intake, and fat mass as well as behavioral outcomes of interactions between opioid ligands and the CB1 using the inverse agonist, rimonabant. The ability of rimonabant to reduce weight is enhanced by removal of with μ-opioid receptor signaling, while not being greatly affected by κ-opioid receptor blockade. Additionally, lack of opioid signaling, especially κ-opioid receptor, attenuated the ability of rimonabant to decrease immobility time in the Porsolt forced-swim test, a preclinical model of depression. These results indicate that the endogenous opioid system is involved in modulating both the metabolic and mood effects of rimonabant.
Article
Liver X receptor-α (LXRα) and its target sterol regulatory element-binding protein-1c (SREBP-1c) play key roles in hepatic lipogenesis. Rimonabant, an inverse agonist of cannabinoid receptor type 1 (CB1), has been studied as an antiobesity drug. In view of the link between CB1 and energy metabolism, this study investigated the effect of rimonabant on LXRα-mediated lipogenesis in hepatocytes and the underlying basis. Rimonabant treatment inhibited CYP7A1-LXRα response element gene transactivation and an increase in LXRα mRNA level by the LXRα agonist N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317) in HepG2 cells. Rimonabant consistently attenuated the activation of SREBP-1c and its target gene induction. The reversal by CB1 agonists on rimonabant's repression of SREBP-1c supported the role of CB1 in this effect. Rimonabant inhibited the activation of SREBP-1c presumably via Gα(i/o) inhibition, as did pertussis toxin. Adenylyl cyclase activator forskolin or 8-bromo-cAMP treatment mimicked the action of rimonabant, suggesting that Gα(i/o) inhibition causes repression of SREBP-1c by increasing the cAMP level. Knockdown or chemical inhibition of protein kinase A (PKA) prevented the inhibition of LXRα by rimonabant, supporting the fact that an increase in cAMP content and PKA activation, which catalyzes LXRα inhibitory phosphorylation, might be responsible for the antilipogenic effect. In addition, rimonabant activated liver kinase B1 (LKB1), resulting in the activation of AMP-activated protein kinase responsible for LXRα repression. Moreover, PKA inhibition prevented the activation of LKB1, supporting the fact that PKA regulates LKB1. In conclusion, rimonabant has an antilipogenic effect in hepatocytes by inhibiting LXRα-dependent SREBP-1c induction, as mediated by an increase in PKA activity and PKA-mediated LKB1 activation downstream of CB1-coupled Gα(i/o) inhibition.