Article

Rats and Humans Can Optimally Accumulate Evidence for Decision-Making

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
Science (Impact Factor: 33.61). 04/2013; 340(6128):95-8. DOI: 10.1126/science.1233912
Source: PubMed

ABSTRACT

The gradual and noisy accumulation of evidence is a fundamental component of decision-making, with noise playing a key role as the source of variability and errors. However, the origins of this noise have never been determined. We developed decision-making tasks in which sensory evidence is delivered in randomly timed pulses, and analyzed the resulting data with models that use the richly detailed information of each trial's pulse timing to distinguish between different decision-making mechanisms. This analysis allowed measurement of the magnitude of noise in the accumulator's memory, separately from noise associated with incoming sensory evidence. In our tasks, the accumulator's memory was noiseless, for both rats and humans. In contrast, the addition of new sensory evidence was the primary source of variability. We suggest our task and modeling approach as a powerful method for revealing internal properties of decision-making processes.

1 Follower
 · 
67 Reads
  • Source
    • "The impact of non-linear and non-stationary inputs on decision-making has traditionally received less attention, but recently there has been increasing interest from a number of perspectives. One aspect concerns the effect of fluctuations on fast time scales (e.g., Insabato, Dempere-Marco, Pannunzi, Deco, & Romo, 2014; Tsetsos, Usher, & McClelland, 2011; Brunton, Botvinick, & Brody, 2013), but our focus here is on the domain of slower time-scale changes. Early work in this domain examined temporal-order discrimination, where discriminative information is available only briefly, and therefore must be subsequently held in a decaying visual short-term memory (Heath, 1981). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the real world, decision making processes must be able to integrate non-stationary information that changes systematically while the decision is in progress. Although theories of decision making have traditionally been applied to paradigms with stationary information, non-stationary stimuli are now of increasing theoretical interest. We use a random-dot motion paradigm along with cognitive modeling to investigate how the decision process is updated when a stimulus changes. Participants viewed a cloud of moving dots, where the motion switched directions midway through some trials, and were asked to determine the direction of motion. Behavioral results revealed a strong delay effect: after presentation of the initial motion direction there is a substantial time delay before the changed motion information is integrated into the decision process. To further investigate the underlying changes in the decision process, we developed a Piecewise Linear Ballistic Accumulator model (PLBA). The PLBA is efficient to simulate, enabling it to be fit to participant choice and response-time distribution data in a hierarchal modeling framework using a non-parametric approximate Bayesian algorithm. Consistent with behavioral results, PLBA fits confirmed the presence of a long delay between presentation and integration of new stimulus information, but did not support increased response caution in reaction to the change. We also found the decision process was not veridical, as symmetric stimulus change had an asymmetric effect on the rate of evidence accumulation. Thus, the perceptual decision process was slow to react to, and underestimated, new contrary motion information.
    Full-text · Article · Mar 2016 · Cognitive Psychology
  • Source
    • "This model-based approach has proven valuable and has already revealed the critical role of the subthalamic nuclei for motor inhibition under conditions of ambiguity or risk (Cavanagh et al., 2011) and the effect of subthalamotomy on inhibitory behaviour (Obeso et al., 2014). Accurate fitting of the model in studies of animals and healthy participants often requires thousands of trials (Brunton et al., 2013). This would not be tolerated by patients with neurodegenerative disorders. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
    Full-text · Article · Nov 2015 · Brain
  • Source
    • "In some cases, decisions about perfectly stable stimuli appear to involve perfect accumulation, as described by drift-diffusion and related models (Gold and Shadlen, 2000; Roitman and Shadlen, 2002; Brunton et al., 2013; Hanks et al., 2015). Under those conditions, deviations from perfect accumulation in the brain may be considered as inefficient, operating under other constraints "
    [Show abstract] [Hide abstract]
    ABSTRACT: In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals, differentiation to detect unpredictable changes in those signals, or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals.
    Full-text · Article · Aug 2015 · eLife Sciences
Show more