BACKGROUND: The waste printed circuit boards (WPCBs), today, offer a wide array of metals and are of great importance because their metal concentration is much more than that in the ores. Largely, studies have been devoted to Cu bioleaching from WPCBs because it has the highest ratio among all metallic elements ( ̴ 10-30%). In the present study, an intensified mixed meso-acidophilic bacterial
... [Show full abstract] leaching of multi-metals has been studied from WPCBs of spent mobile phones, with the system operating under high oxido-reductive potentials (HORPs). ICP-OES, XRD and SEM-EDX characterization indicated the sample to have recoverable contents of Cu, Al, Ni & Zn which were targeted for bioleaching.
RESULTS: Shake flask optimization studies, under HORP of >750 mV indicated dissolutions of Cu – 98.1%, Al – 55.9%, Ni – 79.5% and Zn – 66.9% under optimized conditions of 9 g/L Fe (II), 10% pulp density, 1.8 initial pH and 10% (v/v) as initial inoculum. Under these conditions, at ORP >650 mV, Cu – 97.3%, Al – 55.8%, Ni – 79.3% and Zn – 66.8% were achieved in bench scale (1L) bioreactor systems without any significant reduction in efficiency (compared to shake flasks) in 8 days of operation.
CONCLUSION: Variations in the co-relatable parameters, to metal leaching, such as pH, ORP and Fe (II) concentrations indicated that these parameters significantly contributed to metal leaching. Operating the system under high and controlled ORPs is a faster and efficient way to leach multi-metals from WPCBs.