Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA. Electronic address: .
Chemistry & biology (Impact Factor: 6.65). 03/2013; 20(3):370-8. DOI: 10.1016/j.chembiol.2013.01.011
Source: PubMed


Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.

Download full-text


Available from: Robert C Reynolds, Sep 15, 2015
  • Source
    • "We have identified an opportunity for TB researchers to collaboratively use computational models to identify molecules with whole-cell activity and in some cases acceptable mammalian cell cytotoxicity. The weight of evidence we now submit alongside our previous studies [22]–[24], [32], [35] overwhelmingly argues for the inclusion of such computational approaches prior to additional large-scale HTS for Mtb based on their ability to identify compounds with whole cell activity alone. We can, thus, focus resources on testing compounds more likely to have favorable activity and promising selectivity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput screening (HTS) in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb) for further development towards new tuberculosis (TB) drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.
    Full-text · Article · May 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The search for compounds active against Mycobacterium tuberculosis is reliant upon high throughput screening (HTS) in whole cells. We have used Bayesian machine learning models which can predict anti-tubercular activity to filter an internal library of over 150,000 compounds prior to in vitro testing. We used this to select and test 48 compounds in vitro; 11 were active with MIC values ranging from 0.4 μM to 10.2 μM, giving a high hit rate of 22.9%. Among the hits, we identified several compounds belonging to the same series including five quinolones (including ciprofloxacin), three molecules with long aliphatic linkers and three singletons. This approach represents a rapid method to prioritize compounds for testing that can be used alongside medicinal chemistry insight and other filters to identify active molecules. Such models can significantly increase the hit rate of HTS, above the usual 1% or lower rates seen. In addition, the potential targets for the 11 molecules were predicted using TB Mobile and clustering alongside a set of over 740 molecules with known M. tuberculosis target annotations. These predictions may serve as a mechanism for prioritizing compounds for further optimization.
    No preview · Article · Jan 2013 · Tuberculosis (Edinburgh, Scotland)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neglected diseases, such as Chagas disease, African sleeping sickness, and intestinal worms, affect millions of the world's poor. They disproportionately affect marginalized populations, lack effective treatments or vaccines, or existing products are not accessible to the populations affected. Computational approaches have been used across many of these diseases for various aspects of research or development, and yet data produced by computational approaches are not integrated and widely accessible to others. Here, we identify gaps in which computational approaches have been used for some neglected diseases and not others. We also make recommendations for the broad-spectrum integration of these techniques into a neglected disease drug discovery and development workflow.
    Full-text · Article · Aug 2013 · Pharmaceutical Research
Show more