A serum-free, purified vero cell rabies vaccine is safe and as immunogenic as the reference vaccine Verorab™ for pre-exposure use in healthy adults: Results from a randomized controlled phase-II trial

Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Étoile, France. Electronic address: .
Vaccine (Impact Factor: 3.62). 03/2013; 31(18). DOI: 10.1016/j.vaccine.2013.02.058
Source: PubMed


Verorab was licensed in 1985 for both pre- and post-exposure prophylaxis of rabies. The next generation purified Vero cell rabies vaccine (PVRV-NG) is a highly purified vaccine. We performed a phase II clinical study in adults in France to assess its immunological non-inferiority and clinical safety for pre-exposure prophylaxis.

In a randomized phase-II trial, 384 healthy adult subjects were randomized (2:1) to receive a three-dose primary series of PVRV-NG or Verorab. One year later, the PVRV-NG group received a PVRV-NG booster while the Verorab group participants were randomized to receive a booster of PVRV-NG or Verorab for. Rabies virus neutralizing antibodies (RVNA) were evaluated on days 0, 28 (subgroup), 42, months 6, 12 and 12+14 days. Safety was evaluated for seven days after each dose. Adverse event between doses, until 28 days after the final dose was recorded. Serious adverse events were recorded up to 6 months after the last dose.

The criterion for non-inferiority was met in the per-protocol analysis set and confirmed in the full analysis set (FAS). In the FAS, 99.6% and 100% of subjects had RVNA titers ≥0.5 IU/mL in PVRV-NG and Verorab groups, respectively. While RVNA levels gradually decreased over the 12-month period, at 6 and 12 months after vaccination >89% and >77%, respectively, in both groups had RVNA titers ≥0.5 IU/mL. The PVRV-NG booster induced a strong response, irrespective of the vaccine given for the primary series. PVRV-NG was safe and well tolerated and its safety profile was similar to Verorab for unsolicited adverse events and solicited systemic reactions. The incidence of solicited injection-site reactions was lower with PVRV-NG than with Verorab after the primary series and the booster dose.

PVRV-NG was shown to be at least as immunogenic as Verorab and to present a similar safety profile.

26 Reads
    • "Animal cell cultures have been used for the production of rabies vaccines since the 1960s due to the neurological deleterious effects caused by first-generation vaccine based on the application of animal nervous tissue[1]. According to World Health Organization (WHO), these vaccines contain an inactivated virus and can be developed in various cell substrates such as human diploid cells, primary chicken embryo cells, Vero cells, or in primary Syrian hamster kidney cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This work objective was to define a modeling approach based on genetic algorithm (GA) for optimizing parameters of an artificial neural network (ANN); the latter describes rabies virus production in BHK-21 cells based on empirical data derived from uniform designs (UDs) with different numbers of experimental runs. The parameters considered for viral infection were temperature (34 and 37. °C), multiplicity of infection (0.04, 0.07, and 0.1), infection, and harvest times (24, 48, and 72. h), with virus production as the monitored output variable. A multilevel factorial experimental design was performed and used to train, validate, and test the ANN. Its experimental fractions (18, 24, 30, 36, and 42 runs) defined by UDs were used to simulate the neural architectures. In GA, the neural computing parameters constituted the population individuals, and the steps involved were population creation, selection, and replacement by crossover and mutation. The ANN optimized by the combined algorithm showed a good calibration for all UDs under consideration, thus demonstrating to be suitable (R >. 0.85) as a correlation method in UDs independent of the experimental runs developed. Therefore, this work could guide researchers in the efficient use of UDs in the simulation and optimization of virus production processes.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an evolution of its currently licensed rabies vaccine Verorab(®), Sanofi Pasteur has developed a next-generation, serum-free, highly purified Vero rabies vaccine (PVRV-NG). Through this Phase III clinical trial, we aimed to demonstrate the non-inferiority of PVRV-NG over Verorab when administered according to a post-exposure regimen and to assess its clinical safety. A total of 816 healthy subjects aged ≥10 years were randomized according to a 2:1 ratio to receive PVRV-NG or Verorab. Half of the subjects were aged 10-17 years, the other half were aged ≥18 years. All subjects were to receive 5 injections on days 0, 3, 7, 14 and 28. Three blood samples were taken for rabies virus neutralizing antibodies (RVNA) assessment, at baseline, on day 14 and day 42. Solicited adverse reactions (between injections 1, 2 and 3, and within 7 days post-injections 4 and 5) and adverse events (up to 28 days after the last injection) were collected for clinical safety assessment; serious adverse events were reported up to 6-months after the last injection. The proportion of subjects with an RVNA titer ≥0.5IU/mL after the third injection of PVRV-NG was non-inferior to the proportion of those who received Verorab. PVRV-NG was shown to be as immunogenic as Verorab in each age range in the per-protocol and full analysis sets. PVRV-NG induced a strong immune response in both age ranges, with high RVNA levels and increased geometric mean titers compared to baseline after each measured time point. PVRV-NG had a satisfactory safety profile after each injection, similar to Verorab with regards to the nature, frequency, duration and severity of adverse events. Two serious adverse events were reported, none was related to vaccination. This trial demonstrated the immunogenic non-inferiority of PVRV-NG over Verorab and showed that both vaccines have similar safety profiles. This trial is registered at (NCT01339312). This manuscript is the first full report of the study. An abstract of the study results was previously presented at the Rabies in the Americas (RITA) conference in October 2012 in São Paulo, Brazil. Sanofi Pasteur.
    Full-text · Article · Oct 2013 · Vaccine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The clearance of host cell DNA is a critical indicator for Vero-cell culture-derived rabies vaccine. In this study, we evaluated the clearance of DNA in Vero-cell culture-derived rabies vaccine by purification process utilizing ultrafiltration, nuclease digestion, and gel filtration chromatography. The results showed that the bioprocess of using nuclease decreased residual DNA. Dot-blot hybridization analysis showed that the residual host cell DNA was <100 pg/ml in the final product. The residual nuclease in rabies vaccine was less than 0.1 ng/ml protein. The residual nuclease could not paly the biologically active role of digestion of DNA. Experiments of stability showed that the freeze-drying rabies virus vaccine was stable and titers were >5.0 IU/ml. Immunogenicity test and protection experiments indicated mice were greatly induced generation of neutralizing antibodies and invoked protective effects immunized with intraperitoneal injections of the rabies vaccine. These results demonstrated that the residual DNA was removed from virus particles and nuclease was removed by gel filtration chromatography. The date indicated that technology was an efficient method to produce rabies vaccine for human use by using nuclease.
    No preview · Article · Aug 2014 · Biologicals
Show more