Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice

Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
Journal of biological regulators and homeostatic agents (Impact Factor: 2.04). 03/2013; 27(1):105-119.
Source: PubMed


Breast cancer is a leading cancer in women and despite the benefits of the current therapies a significant number of patients with this tumor is at risk of relapse. Some of the alterations taking place in breast cancer cells are currently exploited by molecularly targeted drugs. Different drugs have been developed which target a single molecule but, given that the tumor originates from the dysregulation of many genes, there is the need to find new drugs that have more than one molecular target. Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] (CUR), a polyphenolic compound found in the spice turmeric, is a pleiotropic molecule able to interact with a variety of molecular targets and has antitumor, anti-inflammatory, antioxidant, immunomodulatory and antimicrobial activities. Here we demonstrate that CUR inhibits the growth of breast cancer cell lines in a dose dependent manner, with IC50 values in the micromolar range, and induces an increase in the percentage of cells in sub-G0 phase, representing the apoptotic cell population. The activation of apoptosis was confirmed by PARP-1 cleavage and by the increased ratio between the pro-apoptotic Bax and the anti-apoptotic Bcl-2 protein. In addition, in CUR-treated cells the activity of ERK1/ERK2 MAP kinases was down-regulated. The cytotoxic effects of CUR were observed in breast cancer cells expressing either high or low levels of ErbB2/neu. The in vivo antitumor activity of CUR was tested in BALB-neuT mice transgenic for the neu oncogene, which develop atypical hyperplasia of the mammary gland at 6 weeks of age and invasive carcinoma at 16 weeks of age. CUR, administered to mice both early and in an advanced stage of mammary carcinogenesis, induced a significant prolongation of tumor-free survival and a reduction of tumor multiplicity. In addition, CUR administration was safe, since no modification of hematological and clinical chemistry parameters could be observed in BALB-neuT and BALB/c mice treated with this compound for several weeks. These findings support further studies on the therapeutic potential of CUR in combination with standard therapies in breast cancer patients.

  • Source
    • "The apoptosis induced by curcumin is due to the activation of a multi-signal transduction pathway. Curcumin induces apoptosis in breast cancer cell lines, and the activation of apoptosis was confirmed by PARP-1 cleavage and by the increased ratio between the pro-apoptotic Bax and the anti-apoptotic Bcl-2 proteins [19]. Moreover, apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at the G2/M phase of A549 cells [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gallbladder carcinoma is a malignant tumor with a very low 5-year survival rate because of the difficulty with its early diagnosis and the very poor prognosis of the advanced cancer state. The aims of this study were to determine whether curcumin could induce the apoptosis of a gallbladder carcinoma cell line, GBC-SD, and to clarify its related mechanism. First, the anti-proliferative activities of curcumin-treated and untreated GBC-SD cells were determined using the MTT and colony formation assays. Then, the early apoptosis of cells was detected by the annexin V/propidium iodide double-staining assay and Hoechst 33342 staining assay. Detection of mitochondrial membrane potential was used to validate the ability of curcumin on inducing apoptosis in GBC-SD cells. Cell cycle changes were detected by flow cytometric analysis. Finally, the expressions of the apoptosis-related proteins or genes caspase-3, PARP, Bcl-2, and Bax were analyzed by western blot and quantitative real time PCR assay. Statistical analyses were performed using the Student's t-test for comparison of the results obtained from cells with or without curcumin treatment. The MTT assay revealed that curcumin had induced a dose- and a time-dependent decrease in cell viability. Colony counting indicated that curcumin had induced a dose-dependent decrease in the colony formation ability in GBC-SD cells. Cells treated with curcumin were arrested at the S phase, according to the flow cytometric analysis. A significant induction of both the early and late phases of apoptosis was shown by the annexin V-FITC and PI staining. Morphological changes in apoptotic cells were also found by the Hoechst 33342 staining. After treatment with curcumin fluorescence shifted from red to green as DeltaPsim decreased. Furthermore, western blot and quantitative real time PCR assays demonstrated that the curcumin induced apoptosis in GBC-SD cells by regulating the ratio of Bcl-2/Bax and activating the expression of cleaved caspase-3. Taken together, the results indicate that curcumin may be a potential agent for the treatment of gallbladder cancer.
    Full-text · Article · Jun 2013 · Cancer Cell International
  • Source

    Preview · Article · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Liver cancer, one of the most common cancers in China, is reported to feature relatively high morbidity and mortality. Curcumin (Cum) is considered as a drug possessing anti-angiogenic, anti-inflammation and anti-oxidation effect. Previous research has demonstrated antitumor effects in a series of cancers. Materials and methods: In this study the in vitro cytotoxicity of Cum was measured by MTT assay and pro-apoptotic effects were assessed by DAPI staining and measurement of caspase-3 activity. In vivo anti-hepatoma efficacy of Cum was assessed with HepG2 xenografts. Results: It is found that Cum dose-dependently inhibited cell growth in HepG2 cells with activation of apoptosis. Moreover, Cum delayed the growth of liver cancer in a dose-dependent manner in nude mice. Conclusions: Cum might be a promising phytomedicine in cancer therapy and further efforts are needed to explore this therapeutic strategy.
    Preview · Article · Jun 2013 · Asian Pacific journal of cancer prevention: APJCP
Show more