Article

SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma

Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
Blood (Impact Factor: 10.45). 03/2013; 121(18). DOI: 10.1182/blood-2012-07-441022
Source: PubMed

ABSTRACT

Previously, we have shown that an AP-1 family member, FRA-2, is constitutively expressed in adult T-cell leukemia/lymphoma (ATL) and, together with JUND, upregulates CCR4 and promotes ATL cell growth. Among the identified potential target genes of FRA-2/JUND was SOX4. Here, we examine the expression and function of SOX4 in ATL. SOX4 was indeed consistently expressed in primary ATL cells. FRA-2/JUND efficiently activated the SOX4 promoter via an AP-1 site. Knockdown of SOX4 expression by small interfering RNA (siRNA) strongly suppressed cell growth of ATL cell lines. Microarray analyses revealed that SOX4 knockdown reduced the expression of genes such as germinal center kinase related (GCKR), NAK-associated protein 1 (NAP1), and histone deacetylase 8 (HDAC8). We confirmed consistent expression of GCKR, NAP1, and HDAC8 in primary ATL cells. We also showed direct activation of the HDAC8 promoter by SOX4. Furthermore, siRNA knockdown of GCKR, NAP1, and HDAC8 each significantly suppressed cell growth of ATL cell lines. Taken together, we have revealed an important oncogenic cascade involving FRA-2/JUND and SOX4 in ATL, which leads to the expression of genes such as GCKR, NAP1, and HDAC8.

Full-text preview

Available from: bloodjournal.org
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines are a group of structurally related secretory and transmembrane proteins whose major tasks are to coordinately recruit various leukocyte populations into target tissue sites via specific receptors. In humans, there are close to 50 chemokines, 18 signal transducing receptors and 5 decoy/scavenger receptors. Functionally, chemokines are grouped into two major categories. Inflammatory chemokines are those attracting and activating cells such as neutrophils, monocytes, and eosinophils, and thus play major roles in acute-type inflammatory conditions. They are characterized by high ligand redundancy and receptor promiscuity. This probably enables robust recruitment of inflammatory cells in acute conditions. On the other hand, immune chemokines are those mainly attracting lymphoid cells and dendritic cells, and are thus involved in immune responses and chronic inflammatory diseases. Furthermore, their ligand-receptor relationships are relatively monogamous. Chemokine receptors are all seven-transmembrane G protein-couple receptors, the class of receptors frequently targeted by many successful drugs. Thus, chemokine receptors are considered to be highly promising drug targets for inflammatory and immunological diseases, and for the last two decades, many pharmaceutical companies have been trying to develop drugs blocking specific chemokine receptors. However, there are only few instances that have reached the approval for clinical use. There are several possible reasons for the present stalemate. For example, the intrinsic functional redundancy in the chemokine system may have made blocking a single receptor useless. Furthermore, the unprecedented species differences even between humans and mice may have caused problems in determination of clinical application of each chemokine receptor blockade from animal studies and also in conducting preclinical studies of candidate drugs in animals. Thus, the potential of the chemokine system as drug targets may still remain underexplored. This review first overviews current potential clinical applications of individual chemokine receptors and then describes in detail the drugs now in clinical use : Maraviroc (CCR5 antagonist), Plerixafor (CXCR4 antagonist), and Mogamulizmab (anti-CCR4).
    No preview · Article · Sep 2013 · Japanese Journal of Clinical Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of mantle cell lymphoma (MCL) can be difficult, especially when no t(11;14) translocation and cyclin D1 overexpression can be detected. In such cases, the transcription factor SOX11 represents an important diagnostic marker, as it is expressed in most MCLs and, in particular, in all cyclin D1-negative MCLs reported so far. A reliable anti-SOX11 antibody is therefore a very useful tool for routine diagnosis. Here, we characterize the new monoclonal anti-SOX11 antibodies, suitable for Western blot assay and immunohistochemistry (IHC) on formalin-fixed paraffin-embedded tissue; we tested them on a large series of primary lymphoid tumors and compared these results with those of other routinely used antibodies. Moreover, we show that IHC results depend on transcription levels of SOX11, which suggests that posttranscriptional and posttranslational modifications do not significantly affect cutoff levels for IHC detection of SOX11.
    Full-text · Article · Oct 2013 · The American journal of surgical pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of mantle cell lymphoma (MCL) can be difficult, especially when no t(11; 14) translocation and cyclin D1 overexpression can be detected. In such cases, the transcription factor SOX11 represents an important diagnostic marker, as it is expressed in most MCLs and, in particular, in all cyclin D1-negative MCLs reported so far. A reliable anti-SOX11 antibody is therefore a very useful tool for routine diagnosis. Here, we characterize the new monoclonal anti-SOX11 antibodies, suitable for Western blot assay and immunohistochemistry (IHC) on formalin-fixed paraffin-embedded tissue; we tested them on a large series of primary lymphoid tumors and compared these results with those of other routinely used antibodies. Moreover, we show that IHC results depend on transcription levels of SOX11, which suggests that posttranscriptional and post-translational modifications do not significantly affect cutoff levels for IHC detection of SOX11.
    No preview · Article · Jan 2014 · American Journal of Surgical Pathology
Show more