Ordered multiple categorical (MC) variable has been widely considered and studied as response variable, and few studies have carefully considered it as a predictor in linear regression. When doing this, the existence of some pseudo-categories may result in overfitting, and to detect those pseudo-categories by hypothesis test of all dummy variables might have low specificity. In this paper, we
... [Show full abstract] propose a transformation method of dummy variables for such ordered MC predictors, after which a model selection method combined with BIC will be elaborated. Theoretical consistency of our model selection method is established under some common assumptions. Both simulation studies and real data analysis of a medical survey indicate that our method provides good performance and is applicable to a wide range of biomedical research.