Krüppel-Like Factor 2 Is Required for Normal Mouse Cardiac Development

Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America.
PLoS ONE (Impact Factor: 3.23). 02/2013; 8(2):e54891. DOI: 10.1371/journal.pone.0054891
Source: PubMed


Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5) in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2-/- embryos die earlier, by E11.5. E9.5 FVB/N KLF2-/- hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2-/- AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT). E10.5 FVB/N KLF2-/- hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2-/- AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2-/- embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2-/- hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2-/- embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (Ugdh), Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and Ugdh promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. In conclusion, KLF2-/- heart phenotypes are genetic background-dependent. KLF2 plays a role in EMT through its regulation of important cardiovascular genes.

Download full-text


Available from: Joyce A Lloyd, Dec 17, 2013
  • Source
    • "This type of dual analysis of embryo hearts has been conducted in zebrafish (e.g., Vermot et al., 2009) and has promise in avian systems (e.g., Groenendijk et al., 2004, 2007; Bressan et al., 2013). For the mouse model, echocardiography of embryos is the technique most often paired with the molecular studies (e.g., Chiplunkar et al., 2013; Rog-Zielinska et al., 2013). The ideal situation would be to have a marker of molecular changes that can be accessed without affecting physiological function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed.
    Full-text · Article · Sep 2014 · Frontiers in Physiology
  • Source

    Preview · Article · Jun 2013 · Circulation Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kruppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, apoptosis, development, and responses to external stress. In the present study, we aim to investigate the roles of KLF2 in the hepatic steatosis. Our resuls showed that mRNA and protein levels of KLF2 were significantly elevated in livers from obese mice. Adenoviruses-mediated overexpression of KLF2 induced accumulation of triglycerides in C57BL/6 mice, while KLF2 silencing ameliorates hepatosteatosis in ob/ob mice. At the molecular level, our data established CD36 as a novel transcriptional target of KLF2. KLF2 upregulated CD36 expression through a consensus binding site on its proximal promoter region. Additionally, the steatotic effect of KLF2 was dramatically inhibited in CD36 null mice. Therefore, our study reveals a novel link between KLF2-induced hepatic triglycerides accumulation and the expression of CD36.
    Preview · Article · Jul 2013 · The Journal of Lipid Research
Show more