ArticlePDF Available

Middle Jurassic - Early Cretaceous integrated biostratigraphy (ammonites, calcareous nannofossils and calpionellids) of the Contrada Diesi section (South-Western Sicily, Italy).

Authors:

Abstract and Figures

Facies and biostratigraphic analyses of the Contrada Diesi succession, cropping out along the northern slope of Mt. Magaggiaro (Sciacca, SW Sicily), provided new data on the Middle Jurassic-Early Cretaceous pelagic sedimentation in the Saccense domain. The richness in ammonites allowed the identification of Bathonian-Kimmeridgian Biozones and Subzones, while the Tithonian-Valanginian interval was defined mainly by calpionellids and calcareous nannofossils. Facies and microbiofacies analyses of the Jurassic-Cretaceous pelagic sediments of the area, together with ammonite, calpionellid and calcareous nannofossil integrated biostratigraphy, were very effective tools for comparison of biostratigraphic events. Many gaps in sedimentation were recognized, the most important spanning the middle and late Berriasian and part of the early Berriasian. The Contrada Diesi succession provides new lithobiostratigraphic data on the Saccense Domain. It suggests a high degree of internal variability tied to the irregular paleotopography of the carbonate platform substrate (Inici Fm.), derived from Early Jurassic tectonics. Gaps in sedimentation in the Contrada Diesi sections indicate that the environment of the Saccense Domain was characterized by a variable rate of sedimentation and energy changes.
Content may be subject to copyright.
356 Rivista Italiana di Paleontologia e Stratigrafia volume 110 no. 1 ???? 2004
1 Dipartimento di Scienze Geologiche - Università di Catania, Corso Italia 55, 95129 Catania, Italy. E-mail: marinom@unict.it
2 Dipartimento di Scienze della Terra - Università degli Studi di Perugia, Piazza Università, 06100 Perugia, Italy.
E-mail: abaldanz@unipg.it - gparisi@unipg.it
3 Dipartimento di Geologia e Geodesia, Università di Palermo - Corso Tukory 131, 90134 Palermo, Italy. E-mail: mgup@unipa.it
4 Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza” - Piazzale Aldo Moro 5, 00165 Roma, Italy.
E-mail: nino.mariotti@uniroma1.it; fabio.petti@uniroma1.it
5 Dipartimento di Scienze della Terra - Università “G. D’Annunzio” di Chieti, Via dei Vestini 30, 66013 Chieti Scalo (CH), Italy.
pp. 357-3723 pls.
MIDDLE JURASSIC - EARLY CRETACEOUS INTEGRATED BIOSTRATIGRAPHY
(AMMONITES, CALCAREOUS NANNOFOSSILS AND CALPIONELLIDS)
OF THE CONTRADA DIESI SECTION (SOUTH-WESTERN SICILY, ITALY)
MARIA CONCETTA MARINO1, GLORIA ANDREINI2, ANGELA BALDANZA2, CAROLINA
D’ARPA3, NINO MARIOTTI4, GIOVANNI PALLINI5, GUIDO PARISI2 & FABIO MASSIMO PETTI4
Received December 7, 2002; accepted October 1st , 2003
Keywords: ammonites, calcareous nannofossils, calpionellids,
biochronology, Middle-Late Jurassic-Early Cretaceous, Sicily, Italy
Abstract. Facies and biostratigraphic analyses of the Contrada
Diesi succession, cropping out along the northern slope of Mt. Magag-
giaro (Sciacca, SW Sicily), provided new data on the Middle Jurassic-Early
Cretaceous pelagic sedimentation in the Saccense domain. The richness
in ammonites allowed the identification of Bathonian-Kimmeridgian Bio-
zones and Subzones, while the Tithonian-Valanginian interval was defined
mainly by calpionellids and calcareous nannofossils. Facies and micro-
biofacies analyses of the Jurassic-Cretaceous pelagic sediments of the
area, together with ammonite, calpionellid and calcareous nannofossil
integrated biostratigraphy, were very effective tools for comparison of
biostratigraphic events. Many gaps in sedimentation were recognized,
the most important spanning the middle and late Berriasian and part of
the early Berriasian. The Contrada Diesi succession provides new litho-
biostratigraphic data on the Saccense Domain. It suggests a high degree
of internal variability tied to the irregular paleotopography of the car-
bonate platform substrate (Inici Fm.), derived from Early Jurassic tec-
tonics. Gaps in sedimentation in the Contrada Diesi sections indicate
that the environment of the Saccense Domain was characterized by a
variable rate of sedimentation and energy changes.
Riassunto. L’analisi biostratigrafica e delle litofacies della succes-
sione Contrada Diesi, affiorante sul versante settentrionale di Monte
Magaggiaro (Sciacca, Sicilia sud-occidentale), ha fornito nuovi dati ri-
guardanti l’evoluzione sedimentaria “pelagica” nel Dominio Saccense
dal Giurassico medio al Cretaceo inferiore. La ricchezza di ammoniti ha
permesso di riconoscere biozone e subzone dell’intervallo Bathoniano-
Kimmeridgiano, mentre l’intervallo Titonico-Valanginiano è stato ben
definito principalmente mediante nannofossili calcarei e calpionellidi. La
biostratigrafia integrata ad ammoniti, calpionellidi e nannofossili calcarei
ha fornito una buona opportunità di comparazione tra differenti eventi
sia litostratigrafici che biostratigrafici. Sono state individuate numerose
lacune di sedimentazione, fra cui la più imponente è quella comprenden-
te il Berriasiano medio e superiore e parte dell’inferiore. All’interno del
Dominio Saccense si delinea così un elevato grado di variabilità interna
legato, con ogni probabilità, alla paleotopografia irregolare del substra-
to carbonatico (Fm. Inici) ereditata dalle fasi distensive del Giurassico
inferiore. La ripetuta presenza di lacune consente inoltre di avanzare
l’ipotesi che l’ambiente deposizionale sia stato caratterizzato da tassi di
sedimentazione variabili e da improvvisi cambi energetici.
Introduction
The results of stratigraphic analyses carried out on a
Jurassic-Cretaceous succession of the Saccense Domain are
here presented. The succession is well exposed in the quarry
at Contrada Diesi, near Sciacca (South-Western Sicily), on
the northern slope of Mt. Magaggiaro (Fig. 1). Lithostrati-
graphic, biostratigraphic and facies-microbiofacies analyses
highlighted several aspects of the sedimentary evolution of
the Saccense pelagic succession during the Jurassic-Early
Cretaceous interval. The sediments examined consist of dif-
ferent lithologies belonging to the Inici Fm., Buccheri Fm.
and Lattimusa Fm. (Di Stefano et al. 2002). The time inter-
val ranges from the Bathonian to the late Valanginian. The
richness of different fossil groups (ammonites, calcareous
nannofossils and calpionellids) offered the opportunity to
compare and calibrate different biozonations, improving the
knowledge of Jurassic and Cretaceous biochronology.
358
359
Geological setting
The area investigated is at Mt. Magaggiaro (Sciacca,
SW Sicily) and it is part of the external portion of the
south-verging side of the Apennine-Maghrebian moun-
tain chain, a thrust system derived from slight deforma-
tion of Meso-Cenozoic units covered by syntectonic ter-
rigenous deposits (Catalano et al. 1995a, 1995b, 2000).
Structural and stratigraphic analyses in the Sciacca area
were carried out by Mascle (1970, 1974, 1979), Di Ste-
fano & Vitale (1994), and Vitale (1990, 1995). Di Stefano
& Vitale (1993) mapped the Western Sicanian Mts., com-
piling a detailed lithostratigraphic scheme which shows
high degree of variability among different successions
throughout the area.
The area studied belongs to the Saccense Domain
(Catalano & D’Argenio 1978, 1982; Mascle 1970), which
represents the outer and less deformed domain and is in-
terpreted as a Triassic carbonate platform evolving to a
pelagic carbonate platform (PCP of Santantonio 1993,
1994). In recent papers (Catalano et al. 1995a, 1995b),
due to new structural data (more internal position of the
basinal units – Imerese and Sicanian – with respect to the
carbonate platform units – Panormide, Trapanese and Sac-
cense) this paleogeographic reconstruction was changed.
In this new scheme the Saccense Domain, together with
the Panormide and Trapanese Domains, represents the
remains of an extended carbonate platform, with irreg-
ular morphology, passing to a basinal area (Imerese and
Sicanian Domain). According to this palinspastic resto-
ration, the area of Mt. Magaggiaro belongs to the Hyb-
lean-Pelagian Domain, a morphostructural high with com-
plex morphology and neritic-pelagic, locally condensed,
sedimentation that took place above continental crust of
“normal” thickness.
The Jurassic-Lower Cretaceous litostratigraphic
succession of the Saccense Domain has been the object
of accurate studies (Catalano & D’Argenio 1990; Cata-
lano et al. 1995a, 1995b; Catalano et al. 2000; Di Ste-
fano et al. 1996; Vitale 1990; Di Stefano & Vitale 1993).
The lowermost part of the succession consists of several
thousand metres of platform limestone and dolostone of
Late Triassic age, formally named Sciacca Fm. and syn-
onymous with the Gela Fm. of the Hyblean Plateau. It
is overlain by 200-300 m of shallow water carbonates of
Early Jurassic age (Inici Fm.) (Schmidt di Frieberg 1965;
Ronchi et al. 2000). This unit is followed upwards by the
Buccheri Fm. (or “Rosso Ammonitico”), consisting of
different condensed pelagites with abundant ammonites,
which spans the Early Jurassic-early Tithonian interval.
The Buccheri Fm. is replaced by the “Calcari a Calpi-
onelle”, better known as Lattimusa Fm. or Chiaramonte
Fm., equivalent to the Apenninic Maiolica Fm. The Lat-
timusa Fm. is referred to the latest Jurassic to Early Cre-
taceous time interval.
Lithostratigraphy and microfacies analysis
Section I
Section I crops out along an artificial exposure of
an active quarry (Fig. 2). It may be subdivided into six in-
formal lithostratigraphic units: (bottom to top) Bioclastic
platform limestone (Inici Fm.), Bositra limestone, Calcis-
iltitic limestone, Stromatolitic calcarenitic limestone, Peb-
bly calcarenite, Grey-reddish nodular marly limestone/
Calcari a Calpionelle (Fig. 3).
Bioclastic platform limestone (Sinemurian p.p.)
- This unit is made of thick-bedded bioclastic limestone
showing fenestral lamination, with peloids, intraforma-
tional lithoclasts, oncolites and algae. The microfossil as-
semblage is represented by Siphovalvulina sp., Textular-
ia sp., Lituosepta sp., Ammobaculites sp., Trocholina sp.,
Glomospira sp., associated with Cayeuxia sp., gastropods,
bivalves, and echinoderm fragments. The end of the car-
bonate platform sedimentation is regionally known to be
Fig. 1 - Geological map of the Monte Magaggiaro area and location
of the studied sections. 1) Limestone and dolostone of per-
itidal platform environment (Late Triassic/lower part of Early
Jurassic); 2) Condensed pelagic deposits (Pliensbachian-Ti-
thonian); 3) Calpionellid limestone (Lattimusa Fm. Auctt.,
Tithonian-Albian); (4) Scaglia Fm. (Cenomanian-Eocene); 5)
Marly limestone with intercalated nummulitic biocalcarenites
(middle-Late Oligocene); 6) Grey and pink limestone and
dolostone with Lepidocyclina (Aquitanian); 7) Glauconitic
sandstones (Burdigalian-Langhian); 8) Deltaic and turbiditic
deposits (late Tortonian-Messinian); 9) Amphistegina calcaren-
ites (Pliocene); 10) Calcarenites and marls (Early Pleistocene);
11) fault; 12) thrust; 13) location of the studied sections
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
358
359
Sinemurian in age (Di Stefano et al. 2002). The uppermost
portion of the unit is cut across by mono- and polyphase
neptunian dykes of different age ranging from latest Early
Jurassic to Late Jurassic. Carbonate platform sediments
are overlain paraconformably with a sharp contact by pe-
lagites corresponding to a stratigraphic hiatus ranging
from the Sinemurian p.p. to the late Bajocian.
Bositra limestone (lower Bathonian–middle Ox-
fordian p.p.) - The pelagic succession starts with a mas-
sive, ochre to reddish biogenic calcisiltite to calcarenite;
sheet-cracks sub-parallel to bedding occur locally. The
unit consists of packstone, more rarely wackestone, with
abundant thin-shelled bivalves (sensu Conti & Monari
1992), often chaotically arranged. Peloids and intrafor-
mational lithoclasts are also present. The representative
microfossils in this portion are foraminifers (rare small
Protoglobigerinids, Textulariids, Valvulinids, Spirillinids),
Stomiosphaera sp., ostracods and rare radiolarians, while
echinoderm fragments are common throughout. Globo-
chaete sp. is ubiquitous. Upward, the occurrence of ellip-
soidal wackestone intraclasts, several centimetres across,
indicates a facies change. Thin-shelled bivalves are rarer
than in underlying levels, while the frequency of echino-
derm fragments increases; Globochaete sp. and large Pro-
toglobigerinids are common in finer-grained portions.
A discontinuity surface at 6.75 m is marked local-
ly by a black LLH (after Logan et al. 1964) stromatolite.
This discontinuity is a distinctive horizon that can be fol-
lowed along the entire front of the quarry.
Calcisiltitic limestone (middle Oxfordian p.p.-
upper Oxfordian p.p.) - Above the discontinuity, a level
rich in ammonites lying parallel to the bedding is present.
It can be followed laterally, across the entire section and
it makes a useful marker level. The calcisiltitic limestone,
2.5 m thick, consists mainly of wackestone with Protoglo-
bigerinids and radiolarians. Many ammonites bear stro-
matolitic caps and some have domes on both sides. This
unit records the disappearance of thin-shelled bivalves,
coincident with a bloom of Protoglobigerinids. The up-
permost 2 m of the interval are made of reddish calcis-
iltitic limestone, impregnated with ferruginous minerals.
Upward, the colour shades into light brown.
Stromatolitic calcarenitic limestone (Kim-
meridgian-lowerTithonian p.p.) - This unit is about 3
m thick, massive, with stromatolites occurring both as
isolated domes and as LLH continuous structures. Weath-
ering enhances cryptalgal lamination, as well as randomly
oriented skeletal remains such as belemnites and echi-
noids. Ammonites, as well as small clasts and brachio-
pods, are frequently capped by stromatolitic domes. The
Fig. 2 - Panoramic view and shematic drawing of the lithostratigraphic units. Contrada Diesi Quarry, Section I. For the lithostratigraphic units
see Fig. 3.
????????????
360
361
texture is a laminated packstone with abundant echino-
derm fragments. Protoglobigerinids are less frequent in
levels dominated by echinoderms. At the top of this unit,
coarse calcarenites (often grainstone) contain rounded
intraclasts. Microfossils include Globochaete sp., Spirilli-
na sp., Stomiosphaera sp., Involutina sp., Lenticulina sp.,
Turrispirillina sp., Ophthalmidiids, Lagenids, and Pro-
toglobigerinids. Echinoderm debris and Lamellapthychus
fragments also occur. The first occurrence of Saccocoma
sp. is recorded at about 9.75 m of the total thickness of
the section.
Pebbly calcarenite (lower Tithonian p.p.) Up-
ward, the section continues for a thickness of nearly 2
m with alternating conglomeratic and sand-sized crinoi-
dal levels (also with belemnites, echinoid spines, bivalves
and Saccocoma sp.). Discontinuous stromatolitic levels
are present as well. The first occurrence of Cadosinids is
recorded at the top of this unit.
Grey-reddish nodular marly limestone/Calcari a
Calpionelle (lowerTithonian p.p.-lower Berriasian) -
This unit consists of grey-reddish nodular and marly lime-
stone in thin beds. The nodular limestone is a packstone
with crinoidal debris, internal moulds of ammonites and
apthychi. Nodules are made of mudstone/wackestone,
often with stylolithic contact. Microfossils include fo-
raminifers, mainly Lenticulina sp. and Spirillina sp., ra-
diolarians, Cadosinids and Saccocoma sp. Unfortunately,
ammonites are represented only by stratigraphically not
diagnostic Phylloceratids and Lytoceratids. Because of a
little tectonic disturbance, the upper part of this unit was
analysed some metres further, along the road outside the
quarry. The last occurrence of Saccocoma, together with
the first occurrence of Calpionellids, is recorded at this
site. The interval is named conventionally Calcari a Cal-
pionelle for the inception of calpionellids.
Section II
Section II is exposed in a small natural trench just
outside the quarry (Fig. 4). In the small natural trench,
near Section I, a small outcrop, about 26 m thick, of Up-
per Jurassic p.p./Lower Cretaceous p.p. sediments, corre-
sponding to the top of Section I, is visible. Section II dif-
fers slightly from Section I because the Stromatolitic in-
terval is here replaced by a calcarenitic/calcisiltitic level.
This section could be subdivided into three infor-
mal lithostratigraphic units (bottom to top): Calcarenitic/
calcisiltitic limestone, Nodular marly limestone, Calcari
a Calpionelle (Fig. 5, 6).
Fig. 3 - Chrono-lithostratigraphy and main bioevents of the Con-
trada Diesi Quarry, Section I.
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
360
361
Calcarenitic/calcisiltitic limestone (upper Kim-
meridgian-lower Tithonian p.p.) - This unit is repre-
sented by a light brown calcarenitic/calcisiltitic lime-
stone rich in thin-shelled bivalves, and by wackestone
and packstone with abundant Saccocoma and echinoid
fragments. From 3.5 m, Saccocoma increases and Pro-
toglobigerinids decrease. Protoglobigerinids disappear
at the top of the unit.
Nodular marly limestone (lower Tithonian p.p.-
upper Tithonian p.p.) - Grey-yellowish nodular marly
limestone with thin cherty levels are ascribed to this unit.
The texture is a wackestone and subordinate packstone
with Saccocoma, radiolarians and echinoid fragments.
In this unit Saccocoma decreases, while Cadosinids in-
crease.
Calcari a Calpionelle (upper Tithonian p.p.- up-
per Valanginian) - This unit is characterized at the base
by a white nodular limestone of limited thickness, which
is replaced by a thin, white well-bedded limestone. As a
whole, this interval includes wackestone and mudstone
with abundant Calpionellids, foraminifers (Textulariids
and Valvulinids), rare radiolarians, echinoid fragments and
some ammonites. Saccocoma disappears at the base of this
unit in the uppermost Tithonian; the last (rare) Saccocoma
occur together with the first Calpionellids.
Biostratigraphy
Ammonites
Section I - Ammonite-rich deposits in this sec-
tion provided new biostratigraphic data on the Bathoni-
an-Kimmeridgian interval. Bed by bed sampling yielded
more than 300 specimens. Selected ammonite species are
illustrated in Pl. 1, and the range of species observed is
reported in Fig. 3 and 7. Biostratigraphic data are referred
to the zonal schemes proposed by Meléndez & Fontana
(1993), Cariou & Hantzpergue (1997) and Meléndez et
al. (1997), including some more recent modifications by
Matyja & Wierzbowski (1997).
The first metre of the pelagic succession displays an
ammonite assemblage composed of Morphoceras sp. ind.,
Morphoceras cf. macrescens (Buckman), comparable to the
specimens illustrated by Mangold (1970b) (pl. 5, figs. 11,
12, 13), Parkinsonia sp., Parkinsonia (Gonolkites) con-
vergens (Buckman), Cadomites (C.) sp., Cadomites (Ca-
domites) daubenyi (Gemmellaro), Cadomites (Polyplec-
tites) sp., Strigoceras sp., Procerites sp. and Oppelia undat-
iruga Gemmellaro; the latter is similar to the form illus-
trated by Wendt 1964 (pl. XVIII, fig. 2) under the name
Oppelia (Oxycerites) aspidoides and is synonymous with
the specimen described by Gemmellaro, 1877 and 1882
(p. 137, pl. XVIII, fig. 8). All the forms mentioned above
may be related to the lower Bathonian Z. zig-zag Zone.
From 1.00 to 1.30 m the disappearance of Parkinsonii-
dae and of the genus Morphoceras is noteworthy; Procer-
ites sp. ind., Cadomites sp. ind., Cadomites (Cadomites)
daubenyi (Gemmellaro) (Pl. 1, figs.10-13) are still present,
together with Procerites (Procerites) cf. tmetolobus Buck-
man, Procerites (Procerites) postpollubrum Buckman and a
specimen of Bullatimorphites sp. However, the absence of
other diagnostic taxa precludes the referral of this inter-
val to the lower Bathonian P. aurigerus Zone. The interval
between 1.30 and 1.80 m is poorly fossiliferous, yielding
only two specimens of Cadomites (Cadomites) orbignyi
(de Grossouvre) (Pl. 1, fig. 12) and a single specimen of
Hecticoceras (Prohecticoceras) cf. ochraceum Elmi which
mark the beginning of the middle Bathonian P. progracilis
Zone (C. orbignyi Subzone). Oppeliidae are also present.
From 2.20 to 3.20 m no significant ammonite was found.
The upper Bathonian H. retrocostatum Zone was recog-
nized in the interval between 3.20 and 4.00 m, based on
an ammonite assemblage characterized by some diagnos-
tic taxa , i.e. Homoeplanulites (Homoeplanulites) bugesi-
acus (Dominjon) (close to the specimens illustrated by
Mangold 1970a, pl. II, figs. 2-9, H. blanazense Subzone),
Bullatimorphites hannoveranus (Roemer) (Pl. 1, fig. 11)
(similar to the specimen illustrated by Géczy & Galácz
(1998), pl. III, figs.1-2, B. hannoveranus Subzone) and
Choffatia (Choffatia) densidecorata Galàcz (Galàcz, 1980,
pl. XXXV). No ammonites related to the T. subcontrac-
tus, M. morrisi and C. bremeri Zones (middle Bathonian)
and C. discus Zone (uppermost Bathonian) were found.
From 4.65 to 5.30 m, a rich assemblage of Hecticoceras
Fig. 4 - Panoramic view and shematic drawing of the lithostratigraphic units. Contrada Diesi, Section II. For the lithostratigraphic units see
Fig. 5.
????????????
362
363
(Hecticoceras) posterius Zeiss (Pl. 1, fig. 8), resembling the
specimens illustrated by Elmi (1967) (pl. 12, figs. 4, 6, 7,
8, 9), Holcophylloceras zignodianum (d’Orbigny), Calli-
phylloceras disputabile (Zittel), Reineckeia sp. ind., Choffa-
tia sp. ind., indicate the lower Callovian M. gracilis Zone.
There are no ammonite records indicating the B. bullatus
Zone (lowermost Callovian). Between 5.30 and 5.86 m,
the occurrence of Choffatia sp., Reineckeia nodosa Till (Pl.
1, fig. 9) and Reineckeia cf. nodosa Till (Pl. 1, fig. 14) was
detected; the latter, described and illustrated by Jeannet
(1951), are related to the R. anceps Zone. At about 6.20
m, the occurrence of a truncated specimen of Passendor-
feria (Macroconch), close to the group czenstochowiensis
(Siemiradzki), suggests the upper part of the P. clarom-
ontanus Zone. Two specimens of Prososphinctes, close to
the form described Prososphinctes sp. nov. A by Bourseau
(1977) were found between 6.25 and 6.30 m. Two speci-
mens, of Neocampylites delmontanus (Oppel) and of Tara-
melliceras obumbrans Hölder respectively, come from the
same level. According to Bourseau (1977), these species
may represent the lower P. plicatilis Zone, i.e. C. vertebrale
Subzone. Upwards, at 6.50 m, a specimen of Perisphinc-
tes sp. was recovered. This specimen could represent the
macroconch of Perisphinctes montfalconensis de Loriol,
also typical of the C. vertebrale Subzone. Passendorferia
(Macroconch Passendorferia) aff. tenuis (Enay) (Pl. 1, fig.
5) also occurs in this level. At 6.75 m, the succession is
marked by a sharp discontinuity surface, where a truncate
specimen of Tornquistes sp., showing intermediate features
between Pachytornquistes (Tornquistes) kobyi de Loriol and
Pachytornquistes (Tornquistes) oxfordiense (Tornquist), was
found. This surface probably represents the P. plicatilis-G.
transversarium Zone boundary. The ammonite record indi-
cates the existence of a biostratigraphic gap comprising at
least the P. antecedens and P. parandieri Subzones.
The G. transversarium Zone is well represented in
the overlying interval, between 6.75 and 7.25 m. The P.
luciaeformis Subzone is characterized, between 6.75 m and
7.10 m, by an ammonite assemblage comprising Passend-
orferia (Macroconch Passendorferia) ziegleri (Brochwicz-
Lewinski), found just five centimetres above the discon-
tinuity surface, Sequeirosia (microconch Gemmellarites)
trichoplocus (Gemmellaro), a specimen of Gregoryceras
transversarium (Quenstedt), and several Euaspidoceras
species. The L. schilli and P. rotoides Subzones could be
recognized between 7.17 and 7.25 m, in a mixed fossil as-
semblage. The specimens recorded, representative of this
stratigraphic interval, are: a juvenile specimen of Passen-
dorferia (Macroconch) erycensis Melendez (Pl. 1, fig. 7),
Fig. 5 - Chrono-lithostratigraphy and main bioevents of the Con-
trada Diesi, Section II.
Fig. 6 - Contrada Diesi Section II: distribution chart of the studied
fossils.
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
362
363
????????????
364
365
Gregoryceras aff. G. fouquei (Kilian) and Sequeirosia (Mac-
roconch Sequeirosia) aff. trichoplocus (Gemmellaro). The
P. bifurcatus Zone can be recognized at 7.30 m. It is char-
acterized by the occurrence of Sequeirosia (Macroconch
Sequeirosia) sp. (Pl. 1, figs. 2,3), in some way comparable
to the specimen illustrated as P. (Arisphinctes) ex gr. tenuis
Enay by Brochwicz-Lewinski (1973) and several speci-
mens of Gregoryceras fouquei (Kilian) (Pl. 1, fig. 6).
The interval between 8.10 and 8.60 m yielded a few
specimens of Aspidoceras atavum (Oppel) (Pl. 1, fig. 4) and
Clambites schwabi (Oppel). This association may be typi-
cal of the E. bimammatum Zone, even though no typical
representative of the genus Epipeltoceras was found. The I.
planula Zone was recognized between 8.80 and 9.0 m. The
lower part of this Zone is characterized by a specimen of
Orthosphinctes cf. laufenensis (Siemiradzki) in association
with several specimens of Aspidoceras sp. and Physodoceras
sp. We have defined the Oxfordian-Kimmeridgian bound-
ary at the base of the I. planula Zone according to Matyja
& Wierzbowski (1997). The base of the S. platynota Zone
can be identified at about 9 m, where a specimen of Be-
nacoceras sp. (Pl. 1, fig.1) was recovered. The interval be-
tween 10 to 11.00 m yielded Nebrodites cafisii (Gemmel-
laro) (P. herbichi Zone) and several specimens of Taramel-
liceras sp. and Sowerbyceras loryi (Munier-Chalmas).
In the upper part of this section ammonites are very
rare. Some specimens of early Berriasian ammonites, i.e.
Spiticeras spitiense (Blanford) were found in the nodular
facies at about 19.30 m.
Section II - In this section the ammonites are
scanty, represented by common Phylloceratids and rare
diagnostic specimens (Fig. 6, Pl. 2). At the base of the
section the presence of Pseudowaagenia haynaldi (Her-
bich, in Neumayr), Taramelliceras gr. compsum (Oppel)
and Aspidoceras gr. acanthicum (Oppel) indicates a late
Kimmeridgian age. At 8.15 and 8.50 m, Corongoceras spp.
are present, defining the base of the upper Tithonian. At
14.50 m Tithopeltoceras paraskabensis (Fallot & Termier)
(Pl. 2, fig. 6) indicates the F. boissieri Subzone, of the low-
ermost Berriasian. Toward the top of the section, at 25
and 25.25 m, common specimens of Olcostephanus spp.
(Pl. 2, fig. 2) suggest a late Valanginian age. Lower Cre-
taceous belemnites like Duvalia lata de Blainville occur
in the same level.
Calcareous nannofossils
Section I - Seventy samples were examined for cal-
careous nannofossils using standard techniques for smear
slides preparation. Smear slides were observed under a
light polarizing microscope, at 1000x magnification. The
nannofossil zonation schemes utilized are those of Mat-
tioli & Erba (1999) for the Aalenian-Bathonian interval,
and Bralower et al. (1989) and Bown (1998) for the Ox-
fordian-Valanginian time span. The first eleven metres of
Section I are very poor in nannofossils, because the li-
thology is unfavourable to their preservation. Along the
section, ammonites are very frequent while the calcar-
eous nannofossil assemblages are poor, because of the
large amount of biodetritical supply, scarcity of micritic
sediments and additional impoverishment by diagenesis.
Watznaueria barnesae (Black) first appears at 2.00 m. The
FO of W. barnesae is reported by Mattioli & Erba (1999)
as typical for the early Bathonian. The ammonite fauna
found below this event is indeed Bathonian in age (Fig.
3). The upper portion of the section represents the op-
posite situation: the calcareous nannofossils content is
very high and the assemblages show high species diversity,
while the ammonite fauna is rare. Several calcareous nan-
nofossil events were identified during the Kimmeridgian,
Tithonian and Berriasian. The FO of Conusphaera mexi-
cana minor Bown & Cooper is found at 11.30 m in the
upper part of the Kimmeridgian, followed by C. mexica-
na mexicana Trejo and Polycostella beckmannii Thierstein
first appearences at the base of the Tithonian. The first
small specimens of the genus Nannoconus are found just
below the simultaneous occurrences of Nannoconus com-
pressus Bralower & Thierstein and Hexalithus noeliae Loe-
blich & Tappan at 14.00 m. The FO of Umbria granulosa
Bralower & Thierstein, marker for the upper Tithonian,
is found at 18.00 m. The lower Berriasian is identified
by the FO events of Nannoconus steinmannii Kamptner
subsp. minor Deres & Archéritéguy and Cruciellipsis cu-
villierii (Manivit) at 19.00 m. The last event is the FO of
N. steinmannii Kamptner subsp. steinmannii Kamptner
found at 20.20 m. These events identify the NJ20 Zone,
with both Subzone NJ20a and NJ20b, equivalent to Zone
NJK and NK1 of Bralower et al. (1989).
Section II (Fig. 5, 6) - Forty-five samples were ex-
amined, but only 30 samples were productive, with me-
dium to poor calcareous nannofossil assemblages. The
sterile samples are enriched by very fine quartz sand.
The first representative sample, at 3.50 m, contains
Watznaueria manivitae Buckry, Cyclagelosphaera deflan-
drei (Manivit), Conusphaera mexicana mexicana Trejo and
the first small specimens of Nannoconus sp. The presence
of Conusphaera mexicana mexicana and of Nannoconus
sp. characterizes the lower Tithonian.
Conusphaera mexicana mexicana increases rapidly
until 6.0 m, where P. beckmannii Thierstein is found, fol-
lowed by the first occurrence of Nannoconus compressus
which indicates the upper part of the lower Tithonian.
Up to 10 m, the assemblages are always dominated by
species of the genus Watznaueria; this is a typical conse-
quence of dissolution processes resulting in assemblages
impoverished by diagenesis. The presence of more mas-
sive and dissolution resistent taxa such as Conusphaera,
Polycostella and Nannoconus in the assemblage confirms
this interpretation.
Starting at 14.50 m, the calcareous nannofossil as-
semblage is characterized by abundant Nannoconus stein-
mannii steinmannii, Cruciellipsis cuvillieri, Watznaueria
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
364
365
barnesae, C. margerelii, C. wiedmannii, Zeugrabdothus
cooperii Bown and very rare Conusphaera mexicana mex-
icana. This assemblage is typical of the lower Berriasian.
At 15.50 m from the base of the section, the assemblage
is characterized by the presence of common Retecapsa sur-
irella (Deflandre & Fert), Retecapsa angustiforata Black,
Nannoconus steinmannii steinmannii, Cruciellipsis cuvil-
lieri, Watznaueria barnesae, W. manivitae, C. margerelii
Nöel C. wiedmannii Reale & Monechi and Zeugrabdothus
cooperii. The Calcicalathina oblongata (Worsley), marker
of the lower Valanginian, first occurs at 16.00 m, while
Conusphaera mexicana mexicana disappears. The lower
Valanginian assemblages are very rich. C. oblongata be-
comes common and Assipetra infracretacea (Thierstein)
and Diazomatholitus lehmanii Noël are also present. At
24.00 m, Eiffellithus windii Applegate & Bergen, impor-
tant marker for the lower Valanginian, first occurs, while
Zeugrabdothus diplogrammus (Deflandre), indicating the
uppermost lower Valanginian, first occurs at 24.50 m.
Calpionellids
Some studies on the region of Sicily were taken
into consideration mainly to correlate the sequence of
events (De Wever et al. 1986; Catalano & Liguori 1971;
Cecca et al. 2001; Caracuel et al. 2002). Different bios-
tratigraphic zonations (Remane 1985; Grün & Blau 1997;
Remane 1998) were utilized for the identification of the
calpionellid zones and subzones.
Fig. 7 - Contrada Diesi Quarry, Section I: Ammonite distribution chart.
????????????
366
367
Section I (Fig. 3) - The calpionellid assemblages are
very poor and the state of preservation is moderate. The
first occurrence of calpionellids is at 18.00 m and is rep-
resented by common and diversified species of Crassicol-
laria. Just above, Remaniella sp. occurs in concomitance
with the last occurrence of Saccocoma. At 19.00 m the
bloom of Calpionella alpina Lorenz, isometric specimens,
is found. This event is used to identify the Tithonian/
Berriasian boundary (Remane 1998; Oloriz et al. 1995;
Caracuel et al. 2002). Just above, the FO of Remaniel-
la duranddelgai (Pop), confirms the early Berriasian age
(Grün & Blau 1997).
Section II - Section II of Contrada Diesi shows
well preserved, diversified and abundant calpionellid as-
semblages that allow the identification of several zones
and subzones (Figs. 5, 6 and Pl. 3).
The first occurrence of calpionellids is found at
8.50 m from the base of the section and it is represent-
ed by small Tintinnopsella remanei (Colom), Calpionel-
la alpina Lorenz and Crassicollaria spp. This assemblage
identifies the Crassicollaria Zone (A Zone of Remane
1998 and Remanei Subzone of Grün & Blau 1997),
which mark the base of the upper Tithonian. From 8.90
m, the assemblage becomes more abundant and diversi-
fied with the appearance of Crassicollaria brevis Remane
(Pl. 3, fig. 3), Crassicollaria massutiniana (Colom) (Pl.
3, fig. 4), Crassicollaria intermedia (Durand-Delga) (Pl.
3, fig. 1), Crassicollaria parvula Remane (Pl. 3, fig. 2); in
this assemblage also C. alpina, Tintinnopsella carpathica
(Murgeanu & Filipescu) (Pl. 3, fig. 15) and transition-
al forms of C. alpina/Calpionella elliptica (Pl. 3, fig. 8)
(Calpionella sp. in Catalano & Liguori 1971, Pl. 2, figs.
11,12 and C alpina homeomorph of C. elliptica in Re-
mane 1985, fig. 6 and in Cecca et al. 2001) are present.
This assemblage is referable to the Crassicollaria Zone
(Intermedia Subzone). At 9.50 m, the genus Remaniella,
that marks the Catalanoi Subzone (Grün & Blau 1997),
first occurs. The finding of all three subzones of the
Crassicollaria Zone records the presence of the entire
upper Tithonian.
The Tithonian/Berriasian boundary was recognized
on the basis of the C. alpina isometric bloom (Pl. 3, fig. 9)
(explosive extention of a smaller and spherical variety of
C. alpina in Remane 1986). This event shows clearly the
decrease of the Crassicollaria genus, which is represent-
ed only by Cr. parvula (Cecca et al. 2001). The first oc-
currence of Remaniella cf. duranddelgai (Pop) (Pl. 3, fig.
7) is coeval with this bloom. On the whole, this change
inside the assemblage identifies the base of the B Zone
(Remane 1998), that corresponds to the base of the Cal-
pionella Zone (Grün & Blau 1997). Just above, Lorenziella
dacica (Filipescu & Dragastan) occurs. The assemblage
does not change until 15.50 m, where the FO of Calpi-
onellites darderi (Colom) (Pl. 3, figs. 16) marks the base
of the Valanginian (Calpionellites Zone). Ct. darderi is re-
corded together with Praecalpionellites dadayi (Knauer)
(Pl. 3, fig. 13), Calpionellopsis oblonga (Cadisch) (Pl. 3,
fig. 10) and Praecalpionellites murgeanui (Pop). At 23.50
m, Calpionellites major (Trejo), marker of the Major Sub-
zone, first occurs, indicating the upper part of the ear-
ly Valanginian. Calpionellid assemblages referable to the
middle and upper Berriasian age were not found.
Discussion and conclusion
An interpretation of the Saccense Domain sedimen-
tary evolution during the early Bathonian- late Valangin-
ian time interval was made possible by the new litho- and
biostratigraphic data collected at Mt. Magaggiaro. In ad-
dition, the comparison of bioevents related to different
fossil groups was useful to critically assess the calibrated
biostratigraphic schemes already existing.
One of the most striking features of this succes-
sion is the paraconformity between the bioclastic plat-
form limestone (Inici Fm., Sinemurian p.p.) and the over-
lying pelagic deposits, i.e. the Bositra limestone (lower
Bathonian-middle Oxfordian). This pelagic unit is fol-
lowed by a calcisiltitic limestone (middle-upper Oxford-
ian), through a sharp discontinuity surface marked by a
thin, black stromatolitic crust. The sedimentation then
evolves, through a stromatolitic level and a pebbly cal-
carenite (Kimmeridgian-Tithonian), into a nodular mar-
ly limestone (Tithonian). The nodular marly limestone
is gradually replaced by a whitish, thinly-bedded lime-
stone, the Calcari a Calpionelle of late Tithonian to late
Valanginian age.
In the lower part of the succession the biostrati-
graphic analysis was facilitated by the presence of rich
ammonite assemblages. Ammonite distribution produced
new biostratigraphic elements indicating several biozones
of the Bathonian-late Valanginian time interval. Callovian
ammonites (M. gracilis Zone, R. anceps Zone) are rela-
tively rare, while Bathonian (Z. zigzag Zone, P. progracilis
Zone, H. retrocostatum Zone), Oxfordian (P. claromon-
tanus Zone, P. plicatilis Zone, G. transversarium Zone, P.
bifurcatus Zone, E. bimammatum Zone), and early Kim-
meridgian (I. planula Zone, S. platynota Zone, P. herbichi
Zone) ammonites are well represented. The occurrence
of Corongoceras spp. indicates the base of the upper Ti-
thonian, while Tithopeltoceras paraskabensis (Fallot &
Termier) and Spiticeras spitiense (Blanford) indicate the
lower Berriasian. Furthermore, common specimens of
Olcostephanus spp. at the top of the succession suggest
a late Valanginian age.
Biofacies analysis pointed out the occurrence of
the following significant events:
- the abundance of thin-shelled bivalves character-
izes the Bathonian-Callovian interval and their disappear-
ance at the base of the middle Oxfordian is coincident
with a sharp discontinuity surface;
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
366
367
- Protoglobigerinids from the Bathonian to the
lower Kimmeridgian are replaced by Saccocoma sp.; the
first occurrence of Saccocoma is recorded in the S. platyno-
ta Zone (lower Kimmeridgian), and its last appearance is
recorded in the latest Tithonian;
- the bloom of isometric C. alpina marks the
Tithonian/Berriasian boundary, which is here included
between the FO of U. granulosa of the uppermost up-
per Tithonian and the occurrence of S. spitiense, which
indicates the base of the lowerBerriasian;
- the base of the Valanginian is marked by the first
occurrence of Ct. darderi. It was found just above the oc-
currence of Tithopeltoceras paraskabensis, early Berriasian
in age;
- just above the FO of Ct. darderi (base of the Va-
langinian), the FO of C. oblongata and LO of C. mexi-
cana mexicana occur;
- upper Valanginian ammonites and belemnites
(Olcostephanus spp. and Duvalia lata) are found togeth-
er with Tirnovella gr. alpillensis and FO of Ct. major, E.
windii and Z. diplogrammus.
These data show that the middle-upper part of the
lower Berriasian and the middle-upper Berriasian are not
recorded, indicating the presence of sedimentary gaps.
It is confirmed that the nodular marly limestone facies
persists until the lower Berriasian, as it often happens in
other high structural areas in Sicily and in other Tethy-
an areas.
The different and sudden facies changes, with am-
monites capped by stromatolitic domes, found at different
stratigraphic levels, the occurrences of many discontinuity
surfaces and the reduced thickness of the sequence, sug-
gest an environment characterized by reduced but still ac-
tive sedimentary supply, low sedimentation rate and abrupt
and quite important energy changes.
All these sedimentary features suggest a very com-
plex scenario for the depositional environment of the
pelagic sediments cropping out in the Mt. Magaggiaro
succession. Nevertheless, the existence of gaps could be
related to submarine non-deposition or erosion. The pres-
ence of pelagic sediments, together with rich biogenic
and bioclastic supply, suggest that the environment of
the Mt. Magaggiaro area was a pelagic carbonate platform
that followed the drowning of the carbonate platform..
The major deepening happened during the Valanginian.
The sediments recorded in the Saccense domain display
a high degree of facies variability, probably due to the ir-
regular pre-existing, perhaps tectonically controlled, pal-
aeomorphology.
Acknowledgments. We thank J. Cope (Cardiff), P. Di Stefano
(Palermo) and U. Nicosia (Roma) for assistance in the field. We are
grateful to A. Galácz (Budapest) and J. Remane (Neuchâtel) for their
comments and suggestions. This work was supported by the Italian Min-
istry of University and Research and by the University of Perugia and
Rome (grants to G. Parisi and U. Nicosia, COFIN1999 and 2001).
During the printing of this paper unfortunately Giovanni Pal-
lini, coauthor besides remarkable scientist and darling friend, died. All
the Authors should like to mention him and dedicate this paper to his
memory.
????????????
368
369
PLATE 1
Ammonites of Contrada Diesi Quarry, Section I: Fig.1) Benacoceras sp.; Figg. 2 and 3) Sequeirosia sp.; Fig. 4) Aspidoceras atavum (Oppel); Fig.
5) Passendorferia aff. tenuis (Eany); Fig. 6) Gregoryceras fouquei (Kilian); Fig. 7) Passendorferia erycensis (Melendez); Fig. 8) Hecticoceras posterius
Zeiss; Fig. 9) Reineckeia nodosa Till; Figg. 10 and 13) Cadomites (Cadomites) daubenyi (Gemmellaro); Fig. 11) Bullatimorphites (Bullatimorphites)
hannoveranus (Roemer); Fig. 12) Cadomites (Cadomites) orbignyi (De Grossouvre); Fig. 14) Reineckeia cf. nodosa Till.
PLATE 2
Ammonites of Contrada Diesi, Section I and II: Fig. 1) Taramelliceras sp.; Fig. 2) Olcostephanus sp.; Fig. 3) Spiticeras spitiense (Blanford); Fig. 4)
Torquatisphinctes gr. laxus Oloriz; Fig. 5) Taramelliceras pugile pugiloides (Canavari); Fig. 6) Tithopeltoceras paraskabensis (Fallot & Termier); Fig.
7) Micracathoceras micracanthum (Oppel). Scale bar = 2 cm.
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
368
369
????????????
370
371
PLATE 3
Calpionellids of Contrada Diesi, Section II: Fig. 1) Crassicollaria intermedia (Durand-Delga), sample A9.50; Fig. 2) Crassicollaria parvula Re-
mane, sample A9.50; Fig. 3) Crassicollaria brevis Remane, sample A9.50; Fig. 4) Crassicollaria massutiniana (Colom), sample A8.90; Fig. 5) Re-
maniella ferasini (Catalano), sample A8.90; Fig. 6) Remaniella catalanoi Pop, sample L9; Fig. 7) Remaniella cf. duranddelgai Pop, sample A11.30;
Fig. 8) Calpionella alpina transitional form to Calpionella elliptica, sample A11.30; Fig. 9) Calpionella alpina Lorenz isometric form, sample L9;
Fig. 10) Calpionellopsis oblonga (Cadish), sample L6; Fig. 11) Tintinnopsella longa (Colom), oblique section, sample A12.50; Fig. 12) Praecalpi-
onellites filipescui (Pop), sample L6A; Fig. 13) Praecalpionellites dadayi (Knauer), L5A; Fig. 14) Tintinnopsella longa (Colom), sample L2; Fig. 15)
Tintinnopsella carpathica (Murgeanu & Filipescu), sample L9; Fig. 16) Calpionellites darderi (Colom), sample L5; Fig.17) Calpionellites cf. major
(Trejo), sample L3A. Scale bar= 50 µm.
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
370
371
Bourseau J. P. (1977) - L’Oxfordien moyen a nodules des «terres
noires» de Beauvoisin (Drome). Nouv. Arch. Mus. Hist.
Nat. Lyon, 15: 116, Lyon.
Bown P.R. (1998) - Calcareous Nannofossils Biostratigraphy,
V. of 314 pp. Chapman & Hall, Cambridge.
Bralower T.J., Monechi S. & Thierstein H.R. (1989) - Calcareous
nannofossils Zonation of the Jurassic-Cretaceous bound-
ary interval and correlation with geomagnetic polarity
timescale. Marine Micropal., 14: 153-235, Amsterdam.
Brochwicz-Lewinski W. (1973) - Some remarks on the origin
of the subfamily Idoceratinae SPATH, 1924 (Perisphincti-
dae, Ammonoidea). Acta Paleont. Polonica, 18 (3): 299-
320, Warszawa.
Caracuel J.E., Parisi G., Bartolini A. & Mattioli E. (2002) -
Baia di Guidaloca (Scopello): integrated biostratigraphy
in the Rosso Ammonitico facies of the Guidaloca sec-
tion (Upper Jurassic - Jurassic/Cretaceous boundary). In:
Santantonio M. (ed.) General Field Trip Guidebook, 6th
Int.Symp. on the Jurassic System, GEDA, Torino.
Cariou E. & Hantzpergue P. (1997) - Biostratigraphie du Juras-
sique ouest-européen et méditerranéen. Bull. Centes Rech.
Explor. Prod. Elf. Aquitaine, Mém., 17: 155, Pau.
Catalano R. & D’Argenio B. (1978) – An essay of palinspastic
restoration across the Western Sicily. Geologica Romana,
17: 145-159, Roma.
Catalano R. & D’Argenio B. (1982) – Schema geologico della
Sicilia. In: R. Catalano & B. D’Argenio, Guida alla Geolo-
gia della Sicilia occidentale, Guide Geologiche Regionali.
Mem. Soc. Geol. It., 24 (A): 9-42, Roma.
Catalano R. & D’Argenio B. (1990) – Hammering a seismic sec-
tion. In: Catalano R. & D’Argenio B. (eds)., Field Trip in
Western Sicily. Guide Book. Dipartimento di Geologia e
Geodesia, Università di Palermo, Palermo.
Catalano R., Di Stefano P. & Vitale P. (1995a) – Structural trends
and paleogeography of the central and western Sicily belt:
new insights. Terra Nova, 7: 189-199, Oxford.
Catalano R., Di Stefano P., Sulli A. & Vitale F.P. (1995b) – Ev-
oluzione paleogeografica e strutturale della Sicilia e dei
mari adiacenti. Naturalista Siciliano, 14 (3-4): 143-187,
Palermo.
Catalano R., Franchino A., Merlini S. & Sulli A. (2000) – Cen-
tral western Sicily structural setting interpreted from
seismic reflections profiles. Mem. Soc. Geol. It., 55: 5-
16, Roma.
Catalano R. & Liguori V. (1971) - Facies a Calpionelle della
Sicilia Occidentale. In: A. Farinacci (ed), Proceedings
of the II Planktonic Conference Roma: 167-209, Tec-
noscienza Roma.
Cecca F., Savary B., Bartolini A., Remane J. & Cordey F.
(2001) – The Middle Jurassic-Lower Cretaceous Rosso
Ammonitico succession of Monte Inici (Trapanese Do-
main, western Sicily): sedimentology, biostratigraphy
and isotope stratigraphy. Bull. Soc. géol. France, 172 (5):
647-660, Paris.
Conti M.A. & Monari S. (1992) Thin-shelled bivalves from
the Jurassic Rosso Ammonitico and Calcari a Posidonia
Formations of the Umbrian-Marchean Apennine (Cen-
tral Italy). Paleopelagos, 2: 193-213, Roma.
De Wever P., Geyssant J.R., Azema J., Devos J., Duée G., Ma-
nivit G. & Vrielynck B. (1986) - La coupe de Santa Anna
(zone de Sciacca, Sicilie): Une synthèse biostratgraphique
des apports des macro-micro et nannofossiles du Juras-
sique supérieur et Crétacée inférieur? Revue Micropal.,
29 (5): 141-186, Paris.
Di Stefano P., Alessi P. & Gullo M. (1996) – Mesozoic and
Paleogene Megabreccias in Southern Sicily: New data on
the Triassic Paleomargin of the Siculo-Tunisian Platform.
Facies, 34: 101-122, Erlangen.
Di Stefano P., Mallarino G., Marino M., Mariotti N., Muraro
C., Nicosia U., Pallini G. & Santantonio M. (2002)
New stratigraphic data from the Jurassic of Contrada
Monzealese (Saccense domain, SW Sicily). Boll. Soc.
Geol. It.,121: 121-137, Roma.
Di Stefano P. & Vitale F.P. (1993) – Carta Geologica dei Monti
Sicani occidentali. Scala 1:50.000. Dipartimento di Geo-
logia e Geodesia, Palermo.
Di Stefano P. & Vitale F.P. (1994) – Propagazione dei thrust e
dinamica dei bacini sintettonici: esempi dai Monti Sica-
ni. Sicilia. 77 Congr. Soc. Geol. Ital., Bari (Italy), 26-28
september 1994, Abstract Vol., pp. 75-79.
Elmi S. (1967) - Le Lias supérieur et le Jurassique moyen de
l’Ardéche. Doc. Lab. Géol. Fac. Sci. Lyon, 19 (3): 509-
845, Lyon.
Galácz A. (1980) - Bajocian and Bathonian ammonites of Gye-
nespuszta Bakony Mts., Hungary. Geol. Hungarica, s.
Palaeontologica, 39: 1-227, Budapest.
Géczy B. & Galácz A. (1998) - Bathonian ammonites from the
classic Middle Jurassic locality of Villány, South Hungary.
Revue Paléobiol.,17 (2): 479-511, Genève.
Gemmellaro G.G. (1877) – Sopra alcuni fossili della zona con
Posidonomya alpina Gras di Sicilia. Giorn. Sc. Nat. ed
Econ. di Palermo,12: 51-81, Palermo.
Gemmellaro G. G. (1882) - Sopra alcune faune giuresi e liasiche
della Sicilia. Stabilimento Tipografico Lao, Palermo: 1-
434, A volume dated 1872-1882 and comprensive of nu-
merouses monographies, Palermo.
Grün B. & Blau J. (1997) – New aspects of the calpionellid
biochronology: proposal for a revised calpionellid zon-
al and subzonal division. Revue Paléobiol.,16 (1): 197-
214, Genève.
Jeannet A. (1951) - Stratigraphie und paläeontologie des ooli-
thischen Eisenerzlagers von Herznach und seiner Um-
gebung. Beitr. Geol. Schweiz, Geotechnische Serie, 13: 1-
545, Basel.
Logan B.W., Rezak R. & Ginsburg R.N. (1964) – Classification
and environmental significance of algal stromatolites. J.
Geol., 72: 68-83, Chicago.
Mangold C. (1970a) - Les Perisphinctidae (Ammonitina) du
Jura Meridional au Bathonien et au Callovien. Doc. Lab.
de Géol. Fac. Sci., 41 (2): 1-246, Lyon.
Mangold C. (1970b) - Morphoceratidae (Ammonitina-Peris-
phinctaceae) bathoniens du Jura méridional, de la Nièvre
et du Portugal. Geobios, 3 (1): 43-130, Lyon.
Mascle G.H. (1970) – Geological Sketch of Western Sicily. In:
W Alvarez & K. Gohbrandt (eds.): Geology and History
of Sicily. PESL: 231-243, Tripoli.
REFERENCES
????????????
372 Rivista Italiana di Paleontologia e Stratigrafia volume 110 no. 1 ???? 2004
Mascle G.H. (1974) – Réflexion sur le Jurassique condensée de
Sicile Centro-occidentale. Riv. It. Paleont., 80 (3): 389-
408, Milano.
Mascle G.H. (1979) – Étude géologique des Monts Sicani. Mem.
Riv. Ital. Paleont. Strat.,16: 1-431, Milano.
Mattioli E. & Erba E. (1999) - Synthesis of calcareous nannofos-
sil events in Tethyan Lower and Middle Jurassic succes-
sion. Riv. Ital. Paleont. Strat., 105 (3): 343-376, Milano.
Matyja B.A. & Wierzbowski A. (1997) - The quest for a unified
Oxfordian/Kimmeridgian boundary: implications of the
ammonite succession at the turn of the Bimammatum and
Planula Zones in the Wielun Upland, Central Poland. Acta
Geol. Polonica, 47 (1-2): 77-105, Warszawa.
Meléndez G. & Fontana B. (1993) - Biostratigraphic correla-
tion of the Middle Oxfordian sediments in Iberian Chain,
eastern Spain. Acta Geol. Polonica, 43 (3-4): 193-211,
Warszawa.
Meléndez G., Bello G., Delvene G. & Perez-Urresti I. (1997) -
Middle to Upper Jurassic (Callovian-Kimmeridgian) in
the “Arcos Plateau” (Ariño-Oliete area, eastern Iberian
chain, Spain): taphonomic analysis and biostratigraphy.
Cuad. Geologia Iberica, 23: 269-300, Madrid.
Olòriz F., Caracuel J.E., Marques B. & Rodrìguez-Tovar F.
(1995) – Asociaciones de tintinnoides en facies Ammo-
nitico Rosso de la Sierra Norte (Mallorca). Rev. Esp. Pale-
ont., N° Homenaje al Dr. G. Colom: 77-93, Madrid.
Remane J. (1985) – Calpionellids. In: Bolli H.M., Saunders J.B.
& Perch-Nielsen K. (eds.) – Plankton stratigraphy, Cam-
bridge University Press: 555-572, Cambridge.
Remane J. (1986) - Calpionellids and the Jurassic-Cretaceous
boundary. Acta Geol. Hung., 29 (1-2): 15-26, Budapest.
Remane J. (1998) – Les calpionelles: possibilités biostrati-
graphique et limitations paléobiogéographiques. Bull.
Soc. géol. France, 169: 829-839, Paris.
Ronchi P., Lottaroli F. & Ricchiuto T. (2000) – Sedimentary
and Diagenetic Aspects of the Liassic Inici Fm. and its
Stratigraphic Context (Sicily Channel, Italy). Mem. Soc.
Geol. It., 55: 261-269, Roma.
Santantonio M. (1993) – Facies associations and evolution of
pelagic carbonate platform/basin systems: examples from
the Italian Jurassic. Sedimentology, 40: 1039-1067, Oxford.
Santantonio M. (1994) – Pelagic carbonate platforms in the ge-
ologic record: their classification, and sedimentary and
paleotectonic evolution. AAPG Bull., 78: 122-141, Tulsa.
Schmidt Di Frieberg P.(1965) – Litostratigrafia petrolifera del-
la Sicilia. Riv. Min. Siciliana, 88-90: 198-217; 91-92; 50-
71, Palermo.
Vitale F.P. (1990) – Studi sulla Valle del Medio Belice (Sicilia cen-
tro occidentale). L’avanfossa plio-pleistocenica nel quadro
dell’evoluzione paleotettonica dell’area. PhD Thesis (un-
pablished), Università degli Studi di Palermo – Diparti-
mento di Geologia e Geodesia: 1-200, Palermo.
Vitale F.P. (1995) – Il segmento sicano della catena sud-tirrenica:
bacini neogenici e deformazione attiva. Studi Geologici
Camerti, Spec. vol.: 491-507, Camerino.
Wendt J. (1964) - Stratigraphisch-Paläontologische Untersu-
chungen im Dogger Westsiziliens. Boll. Soc. Paleont. It.,2
(1): 57-145, Modena.
M. C. Marino, G. Andreini, A. Baldanza, C. D’arpa, N. Mariotti, G. Pallini, G. Parisi & F. M. Petti
... In the 1980´s, at the Sümeg Meeting (Hungary), Remane et al. (1986) together with Trejo (1980) and Altiner & Özkan (1991) , proposed an updated bio-cronostratigraphic scheme at the Subzonal level. Recently, Pop (1994b, 1996), Oloriz et al. (1995), guori 1971) and recently by Cecca et al. (2001) and Marino et al. (2004). The present work deals with the revision of the calpionellid taxonomy, considering recently defined genera and species, in order to update the bio-chronostratigraphy for Western Sicily. ...
... Later on, during the Toarcian and Middle–Upper Jurassic, the sedimentation is mainly represented by condensed limestones, Rosso Ammonitico, including , sometimes, siliceous marls. In the uppermost Tithonian , started the deposition of the Lattimusa Formation, equivalent to the Southalpina and Northapenninic Maiolica Formation (Fm.) in the Trapanese Domain, the Rosso Ammonitico Unit is subdivided into two members, separated by a siliceous radiolaritic interval, while in the Saccense Domain this siliceous interval is absent (di Stefano & Mindszenty 2000; Chiari et al. 2004; Marino et al. 2004). ...
... The studied sections belong to the Trapanese (Guidaloca section ) and Saccense (Diesi sections) Domains. The Guidaloca area has been interpreted, palaeogeographically, as the upper part of a talus related to the structural high of the Monte Inici area (Caracuel et al. 2002; Cecca et al. 2001), while the Diesi area belongs to a complex horst-graben system related to the structural high of the Monte Magaggiaro (di Marino et al. 2004) (Fig. 1). ...
Article
A revision of the calpionellid bio-chronostratigraphy in Western Sicily ( Italy) was carried out, in order to update the taxonomy of this group, through the identification of some genera ( Borziella, Longicollaria, Chitinoidella, Dobeniella, Sturiella, Borzaiella and Praecalpionellites) and species ( Remaniella catalanoi POP, Remaniella duranddelgai POP, Remaniella colomi POP, Remaniella borzai POP, Remaniella filipescui POP) recorded for the first time in the area. The studied sections, belonging to the Trapanese and Saccense Domains ( Western Sicily), include at the base the upper portion of the Rosso Ammonitico Unit ( Upper Tithonian), followed by the Lattimusa Formation ( Lower Cretaceous). The quantitative and biostratigraphic analysis of the calpionellid assemblages allowed us to identify 13 assemblages and to define some important bioevents for the Upper Tithonian-Valangianian interval. The recorded calpionellid bioevents allowed us to recognize Zone/Subzone schema, which have been correlated with the bio-chronostratigraphy previously proposed for the Western Tethys.
... The Sciacca Plateau (Fig. 1) was a Jurassic pelagic plateau of the Saccense Domain (south-western Sicily) ( Baldanza et al., 2002;Di Stefano et al., 2002b;Santantonio, 2002, 2003;Marino et al., 2004). The best geological evidence for drowning of the plateau is a regionally widespread paraconformity, with the upper Bajocian/ Bathonian deposits of the Ammonitico Rosso lying directly on the Inici Formation ( Marino et al., 2004;Santantonio, 2002, 2003). ...
... The Sciacca Plateau (Fig. 1) was a Jurassic pelagic plateau of the Saccense Domain (south-western Sicily) ( Baldanza et al., 2002;Di Stefano et al., 2002b;Santantonio, 2002, 2003;Marino et al., 2004). The best geological evidence for drowning of the plateau is a regionally widespread paraconformity, with the upper Bajocian/ Bathonian deposits of the Ammonitico Rosso lying directly on the Inici Formation ( Marino et al., 2004;Santantonio, 2002, 2003). Locally the unconformity is angular in nature (Fig. 15). ...
Article
In the geological record a drowning process is documented by various types of shallow water-to-pelagic or shallow water to mixed benthic/pelagic carbonate transitions. Drowning unconformities are paraconformities, to disconformities, to angular unconformities, and their drowning surfaces range from planar to highly irregular morphologies. Drowning successions display a mix of products of both the benthic and pelagic carbonate factories. These successions can be also bounded by unconformities. Drowning unconformities and drowning successions are contrasted through a description and discussion of examples of escarpment-bounded platforms from the Jurassic of the Northern Apennines and, subordinately, from Sicily and other Tethyan sectors. The areal distribution of drowning unconformities and successions is discussed with reference to a complex depositional system whose architecture was the product of the rift-induced fragmentation of a regional Hettangian carbonate megabank. The examples in this study show drowning unconformities to be exclusive to intrabasinal highs, while drowning successions are found both on highs and in hangingwall basins. Drowning unconformities, with their long associated hiatuses, and drowning successions are often seen to merge laterally into one another over very short distances on the same intrabasinal high. The deposits of the drowning succession are sometimes missing on the top of the platform, while they are found forming clinoforms along its flanks, evidence that sediment could be permanently swept from the highs in these depositional systems at this stage.
... Only very few anomuran and brachyuran remains were actually found by us, but similar to the situation at Kotouč quarry (Štramberk, Moravia, Czech Republic), it would appear that decapod crustaceans are preferentially preserved in relatively small, pocket-like structures and more detailed fieldwork is needed to recover better material at Gemmellaro's localities in Sicily. Especially the extended sections at Santa Maria di Gesù (Palermo) and Contrada Diesi (Marino et al., 2004) look promising for future explorations. During the 2014 field trip also the collections of the Museo Geologico G.G. Gemmellaro at Palermo were consulted, and despite the fact that Schweitzer and Feldmann (2010, p. 176) noted that, 'The current location of Gemmellaro's material is unknown (A. ...
Article
A recent field trip to Sicily and an examination of decapod crustacean collections at the Museo Geologico G.G. Gemmellaro in the centre of Palermo, Sicily (Italy), has demonstrated that most of the anomuran and brachyuran material described by Gemmellaro (Gemmellaro GG. 1869. Studi paleontologici sulla fauna del Calcare à Terebratula janitor del nord di Sicilia. Palermo: Lao, vol. 1, pp. 11-18) from the Tithonian of that island is still present. Interestingly, a single specimen in this lot was never mentioned, described or illustrated by that author. The species to which this particular individual is here shown to belong, Gastrosacus tuberosus, was first described and named 26 years later, in 1895, by Remes. The holotype of G. tuberosus (Remes M. 1895. Beiträge zur Kenntniss der Crustaceen der Stramberger Schichten. Bulletin international de l'Académie des Sciences de l'Empereur François Joseph I, Classe des Sciences mathématiques et naturelle 2:200-201) has recently been rediscovered; this shows that both Galathea eminens Blaschke (Blaschke F. 1911. Zur Tithonfauna von Stramberg in Mähren. Annalen des kaiserlich-königlichen Naturhistorischen Hofmuseums 25:143-221) and Galatheltes tuberosiformus Lörenthey, in Lorenthey and Beurlen (Lörenthey E, Beurlen K. 1929. Die fossilen Dekapoden der Länder der Ungarischen Krone. Geologico Hungarica 3:1-420) are junior synonyms. The Sicilian record constitutes the southernmost mention of G. tuberosus to date.
... Stratigraphically upwards, representatives of Kilianiceras are frequent in the Occitanica Zone, those of Negreliceras are typical of the Boissieri Zone, while the genus Spiticeras is only scarcely represented in the lowermost Valanginian (Le Hégarat, 1973). In addition to the Southeastern France records (Djanélidzé, 1922; Le Hégarat, 1973), Spiticeras has also been collected from Berriasian strata of Spain (Énay and Geyssant, 1975; Company and Tavera, 1982; Tavera et al., 1986; Aguado et al., 2000), Italy (Cecca, 1982; Rossi, 1984; Marino et al. 2004), Morocco (Benzaggagh et al., 2010 ), Bulgary (Nikolov, 1960), Austria (Bujtor et al., 2013), Tunisia ...
Article
The earliest records of the genus Spiticeras Uhlig in Western Gondwana occur in the Upper Jurassic–Lower Cretaceous deposits of the Vaca Muerta Formation in the Neuquén Basin, Argentina. Those records involve two species, Spiticeras acutum Gerth and Spiticeras hauthali Gerth, which were firstly described from Arroyo Durazno, Mendoza. A systematic revision and reconsideration of the biostratigraphic distribution of both species was performed based on the study of type material and new bed-by-bed collections in the type locality and other southern Mendoza sections. S. acutum and S. hauthali display a succession of ornamentation stages that, together with other morphological characters, sustain their assignation to the genus Spiticeras. Addidionally, macroconchiate and microconchiate specimens were identified in both taxa. The record of S. acutum from the lowermost beds assigned to the Late Tithonian–Early Berrisian Substeueroceras koeneni Assemblage Biozone substantiates the downwards extension of the known range of the species in the Neuquén Basin. Given that the basal portion of the S. koeneni Biozone can be correlated with the Late Tithonian Standard “Durangites” Zone and that these early spiticeratins records have been found to be associated with a Late Tithonian secondary nannofossil bioevent (Raghodiscus asper (Stradner) first occurrence) in two of the studied sections, a Late Tithonian age is suggested for the earliest records of Spiticeras in Gondwana.
... The mass occurrence of Saccocoma sp. is an ecological event that at regional scale is dated at the latest early Kimmeridgian (e.g. Winterer & Bosellini, 1981; Cecca et al. 1990; Manni, Nicosia & Tagliacozzo 1997; Marino et al. 2004), and in the analysed area the first occurrence of Saccocoma sp. is recorded c. 4 m below the ichthyosaur-bearing level. In the Central and Northern Apennines, two species of Saccocoma are described: S. tenella and S. vernioryi (Nicosia & Parisi, 1979; Manni & Nicosia, 1984). ...
Article
Full-text available
The first ophthalmosaurid ichthyosaur from the Upper Jurassic deposits of the Central–Northern Apennines (Marche, Italy) is here described for the first time. The specimen is relatively complete and is referred to Gengasaurus nicosiai gen. et sp. nov. based on a unique combination of characters, including a peculiar condition of the preaxial accessory facet on the humerus. The faunal association of the ichthyosaur-bearing level indicates a late Kimmeridgian – earliest Tithonian age, and its finding contributes significantly to our knowledge of the diversity of Late Jurassic ichthyosaurs from the Western Tethys. Two shark teeth assigned to the order Hexanchiformes were also recovered in association with the ichthyosaur specimen, suggesting that scavenging of the carcass might have occurred. Gengasaurus can be referred to Ophthalmosauridae based on the reduced extracondylar area of the basioccipital, and the presence of a preaxial digit. It differs from Ophthalmosaurus spp. in several respects, including the shape of the posterior basisphenoid, the shape of the supraoccipital, the anteriorly deflected preaxial facet of the humerus, and a proximodistally shortened ulna. The new taxon actually shares diagnostic characters with both members of the two main lineages recovered in previous phylogenetic analyses, more nested within Ophthalmosauridae. The affinities of Gengasaurus to genera from both the northern and southern hemispheres also suggest that connectivity between pelagic habitats was high during the early Late Jurassic, allowing dispersal of some forms, followed by local, endemic divergence.
Article
The latest Jurassic was a crucial time for calcareous nannoplankton as a major speciation episode took place with the appearance and rapid evolution of several new genera and species, particularly of highly calcified nannoliths at low latitudes: this origination pulse provides the opportunity to achieve high-resolution biostratigraphic data amplifying the possibility of dating and correlating. A thorough revision of published as well as newly updated nannofossil biostratigraphies across the Tithonian-lowermost Berriasian interval was achieved to quantitatively evaluate the reliability of individual nannofossil events. Our database comprises 95 land and oceanic sites from different paleogeographic settings and latitudes (Europe, Atlantic Ocean, America, South Asia). We excluded sections with hiatuses or characterized by uncertain calcareous nannofossil biostratigraphy due to scarcity of data and/or poor preservation, as well as taxonomic incongruities. For each stratigraphic section, the critical assessment took into account sampling rates, nannofossil preservation, abundance and taxonomy: biohorizons based on single samples, questionably determined, or based on ambiguous/mismatching taxonomic concepts were excluded. We first performed calibration of nannofossil events against magnetostratigraphy to highlight reproducibility and time variability through the CM22–CM17 interval. The time uncertainties of individual nannofossil events were calculated, considering sampling and sedimentation rates derived from magnetostratigraphy. The reproducibility and variability of nannofossil events were also estimated relative to calpionellid biostratigraphy, as the latter is the primary tool selected by the Berriasian Working Group (ICS) for the definition of the Cretaceous base. We distinguished highly reliable events characterized by maximum reproducibility, shorter time variability, common and continuous occurrence; moderately reliable events are distinguished by intermediate reproducibility and time variability; unreliable events have minimum reproducibility and longest time variability. The quantitative evaluation of 37 events against magnetostratigraphy in the CM22–CM17 interval allowed to discriminate among 9 highly reliable first occurrences, 4 reliable first occurrences, 10 moderately reliable events (7 first occurrences, 2 last occurrences and 1 last common occurrence), 6 poorly reliable events (5 first occurrences and 1 last occurrence) and 8 unreliable first occurrences. The evaluation of 18 events against the calpionellid zonation resulted in 4 highly reliable first occurrences. The revisited taxonomy and reliability assessment of calcareous nannofossil events were used to revise the calcareous nannofossil zonation of the Tithonian–early Berriasian time interval: one zone (NC 0 Zone) and four subzones (NC 0a, NC 0b, NJT 14a, NJT 14b Subzones) are newly defined here. Moreover, one zonal definition is emended (NJT 17 Zone) and the age of top/bases of four zones (NJT 14, NJT 15; NJT 16, NC 1 Zones) are revised. The first appearance datum of Nannoconus wintereri, showing the highest reproducibility and lowest time variability, correlates with magnetochron 19n-2n and results to be the calcareous nannofossil event best approximating the base of the Calpionella alpina Zone equated to the Jurassic/Cretaceous boundary.
Article
During Late Jurassic – Early Cretaceous the Pontides were the site of a wide carbonate platform facing the Tethys ocean in the south. In the western Pontides the Upper Jurassic – Lower Cretaceous shallow marine carbonates abut the Tethyan İzmir-Ankara suture with no evidence for platform margin deposits. The Sivrihisar klippe 50 km south of the İzmir-Ankara suture preserves a record of the missing platform margin. In the Upper Jurassic – Lower Cretaceous carbonates exposed in this Sivrihisar klippe, two coeval but dissimiliar rock packages, separated by a thrust fault, have been detected. The lower succession is composed of Kimmeridgian – Valanginian slope to basin deposits. Within these carbonates the following biozones are defined: Globuligerina oxfordiana – Mohlerina basiliensis Zone (Kimmeridgian), Saccocoma Zone (Lower Tithonian), Protopeneroplis ultragranulata Zone (Upper Tithonian), Crassicollaria Zone (massutiana Subzone - uppermost Tithonian), Calpionella Zone (alpina, Remaniella, elliptica Subzones - Lower Berriasian), Calpionellopsis Zone (simplex, oblonga Subzones - Upper Berriasian) and Calpionellites Zone (darderi Subzone - Lower Valanginian). These slope to basin deposits are overthrust from north to south by Kimmeridgian shallow marine carbonates. Within this unit Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian) is recognized. Based on the distribution of microfacies types and fossil assemblages, a Kimmeridgian – Valanginian depositional model is proposed for the western Sakarya Zone Carbonate Platform (SCP). The position of the studied sections with respect to the SCP, biofacies and microfacies associations suggest that the studied basin and slope deposits represent the remnants of the southern margin and slope of this carbonate platform largely truncated by erosion. The slope and basinal carbonates overthrusted by the coeval shallow marine deposits in a region situated to the south of the main İzmir-Ankara suture indicates an important imbrication and shortening related to the closure of the Tethys ocean.
Article
This contribution focuses on the Perisphinctoidea ammonite taxa from the Upper Tithonian of Charens (Drôme, south-east France). Emphasis is laid on five genera that belong to the families Himalayitidae and Neocomitidae. We document the precise vertical range of the index-species Micracanthoceras microcanthum, and a comparative ontogenetic-biometric analysis sheds new light on its range of variation and dimorphism by comparison with the best-known Spanish populations. As herein understood, the lower boundary of the M. microcanthum Zone (base of the Upper Tithonian) is fixed at the FAD of its index species. The faunal assemblages and species distribution of the P. andreaei Zone is rather similar to those described at the key-section of Le Chouet as confirmed by the co-occurrence of the genera Protacanthodiscus, Boughdiriella and Pratumidiscus. New palaeontological evidence supports the view that the basal Neocomitidae Busnardoiceras busnardoi derives from Protacanthodiscus andreaei in the upper part of the P. andreaei Zone.
Article
Full-text available
Sulla base di un contributo di dati originale vengono di­scussi alcuni aspetti legati alla tettonica di sovrascorrimento ed alla stratigrafia dei depositi sintettonici nel settore centro-occidentale dei Monti Sicani (Sicilia occidentale). L'area stu­diata costituisce un settore esterno della catena sicula che si presta particolarmente agli studi sulla cinematica della defor­mazione tardo neogenica e quaternaria; la complessità strut­turale e la bontà delle esposizioni del substrato deformato e dei bacini satelliti, insieme con i dati di sottosuolo disponibili, ne fanno un'area chiave per la comprensione dei processi di deformazione superficiale e profonda della catena. I profili geologici evidenziano il fatto che le strutture attualmente os­servabili in superficie, formatesi tra il Messiniano ed il Plei­stocene inferiore, ereditano ampiamente le strutture da duplex piú antiche. I duplex si sono individuati nel substrato carbo­natico mesozoico, mentre le coperture terziarie sono state scol­late passivamente al di sopra di essi come un complesso di "roof-thrust". Dalle informazioni raccolte si evince che il roof­thrust, durante le prime fasi di accrezione, non è stato tronca­to in superficie dalle faglie attive nel substrato carbonatico me­sozoico. Sulla base di questa constatazione e considerando l'età di importanti superfici di discordanza riscontrate nelle coper­ture terziarie, si conclude che l'inizio della tettonica compres­siva nota in quest'area deve essere abbondantemente retroda­tato. Le fasi piú antiche della deformazione vengono ascritte al Miocene inferiore-medio per l'accrezione di tipo duplex; al contempo, vengono riconosciuti e datati numerosi eventi di riattivazione dei thrust a partire dal Messiniano superiore, quando la catena era sostanzialmente già formata, fino al Plei­stocene inferiore, epoca in cui un piegamento in superficie piut­tosto blando accompagna gli ultimi eventi riconosciuti di ac­erezione al fronte più esterno in offshore. Le informazioni oggi disponibili sulla cronologia e sulle modalità di propagazione dei sovrascorrimenti in questo settore indicano, al di là di ogni ragionevole dubbio, che i thrust sono stati contemporaneamen­te attivi attraverso un segmento di catena esteso oltre cinquanta chilometri, secondo diversi eventi di deformazione succeduti­si durante gli ultimi sei milioni di anni. Ciò metterebbe in di­scussione l'applicabilità integrale del modello della "piggyback sequence of thrusting" almeno in questo settore di catena e nell'arco di tempo considerato. ABSTRACT The thrust propagation in the Sicani Mountains (western Sicily) and the late Neogene evolution of the related satellite basins are illustrated by three regional profiles constructed by number of new geologic cross-sections of minor scale. The ge­ologic profiles, based on both originai outcrop data and pub­lished subsurface informations from wells and offshore seis­mics, have been constructed taking into account the generai rules of cross-section balancing. The thrust propagation events are dated mainly using the stratal pattern modifications ob­served in the syntectonic basin-fill. The evolution of the Sica­nian segment passed through three fundamental stages: dur­ing an early phase of deformation, duplexes of Meso-Cenozoic carbonates, both platform and basin-derived, developed un­der a roof-thrust complex consisting mainly of Tertiary siliciclastic shelf deposits. The roof-thrust is supposed to be involved at first in wide detachment folds that were affected by progressive uplift and pinge erosional truncations since the lowermost Miocene times. The angular unconformity point­ed out at the base of the Aquitanian-Burdigalian Glauconitic horizons post-date the first phase of deformation, that conse­quently appear considerably older than the estimations provid­ed by the recent literature. A new phase of the deformation began since the upper Miocene and appear characterised by the contemporaneous activity of younger emergent thrust fronts involving both the Meso-Cenozoic duplex and the roof­thrust complex. The age constraints, provided by the high­resolution biostratigtraphy coupled with the sequence strati­graphic interpretations of the Messinian-early Pleistocene syn­tectonic basin-fill, dated the latest deformative events charac­terised by the growth of fault-related folds and minor thrust­ing. All these events appear to be present across the whole sec­tor of the belt with very similar ages. On these basis, a new kinematic model of the Sicanian segment is proposed: alter­natively to the fundamental assumptions of the classical "pig­gyback sequence of thrusting", the scheme emphasises the con­temporaneous activity of the thrusts and the fault piane­reactivations documented across the 50 km-wide array of the Sicanian thrusts for the last six millions of years.
Thesis
Full-text available
Questo lavoro di tesi rappresenta lo studio geologico di superficie di una porzione dei Monti Sicani sud-occidentali; è limitata ad Ovest dalla Valle del Belice, a Nord dalla dorsale di Poggioreale, a Sud e ad Est dai rilievi di M. Magaggiaro e di Pizzo Telegrafo. Nell'area, più nota come regione di Sciacca, affiorano terreni di età compresa tra il Lias inferiore ed il Pleistocene. L'interesse principale su quest'area è motivato essenzialmente: a) dalla sua posizione intermedia tra la catena a pieghe e a falde della Sicilia nord occidentale, e le zone di avampaese del canale di Sicilia a sud; b) dalla buona esposizione complessiva dei corpi litologici maggiori e delle grandi strutture tettoniche; c) da una relativamente abbondante disponibilità di dati regionali, utilizzabili per confronto, provenienti da precedenti studi di superfi­cie, dai dati provenienti dalle interpretazioni di linee sismiche a riflessione in offshore, che da perforazioni profonde per ricerche petrolifere. Fino ai primi anni '80, l'area era stata considerata dagli autori come un'area di avampaese, con substrato sostanzialmente radicato o debolmente deformato, affetto da tettonica distensiva recente. Studi più recenti avevano ipotizzato, anche sulla base dell'analisi di profili sismici in offshore, la presenza di faglie inverse e sovrascorrimenti. OBIETTIVI a) verificare il ruolo geologico regionale svolto da quest'area (avampaese, avanfossa deformata, avampaese deformato)nelle varie tappe evolutive da ricostruirsi attraverso lo studio delle successioni sedimentarie ; b) riconoscere quali regimi tettonici l'hanno interessata, collocandoli nello spazio e nel tempo geologico; c) inquadrare le caratteristiche riconosciute nelle unità stratigrafiche presenti, in un contesto deposizionale appropriato; d) distinguere gli effetti della tettonica sulla sedimentazione da quelli indotti dalle variazioni eustatiche. METODI La ricerca dei dati in affioramento, estesa a tutti i terreni di età compresa tra il Lias inferiore e il Pliocene superiore, si è focalizzata soprattutto: a) sull'esecuzione di un rilevamento geologico di dettaglio alle scale 1:10.000 e 1:5.000, qui presentato alla scala 1:50.000; b) sull'analisi strutturale a grande scala e, limitatamente, a media scala; c) sull'analisi delle facies, sulla stratigrafia fisica e sulla biostratigrafia di alcune successioni di particolare interesse; e d) sulla stratigrafia fisica di alcune successioni, la cui analisi di facies rendeva attendibile l'applicazione dei modelli e dei metodi della stratigrafia sequenziale (Vaii et al., 1977, 1984, 1987). Il presente lavoro, pur nei suoi limiti, costituisce il primo tentativo di applicazione di quest'ottica metodologica nello studio della geologia di superficie dell'area siciliana. NUOVI DATI ACQUISITI a) identificati su basi principalmente litologiche una serie di unità strati-grafiche cartografabili; b) distinte le superfici di discordanza a carattere regionale che separano le principali successioni stratigrafiche o che sono presenti al loro interno; c) definite su questa base unità sintemiche e miosintemiche (nota : il loro uso è stato di recente riproposto dalla commissione internazionale di stratigrafia, fig. 2) e, dove i dati erano sufficienti, definire i limiti e la composizione interna di sequenze deposizionali (sensu Vail et al., 1977, 1984, 1988); d) datati, con biostratigrafia e stratigrafia fisica integrate, eventi sia deposizionali che erosivi; e) datati con buona precisione gli eventi tettonici succedutisi e riconosciute le caratteristiche geometriche ed i trend delle strutture tettoniche generate da ciascun evento; f) descritti gli effetti fisici sulle strutture dovuti all'interferenza tra tettonica e sedimentazione; g) elaborato un possibile schema strutturale a scala locale e regionale sulla base delle sezioni geologiche profonde e parzialmente bilanciate eseguite nell'area. RISULTATI e CONCLUSIONI Gli studi compiuti e i dati originali acquisiti hanno permesso di individuare un bacino sedimentario che occupa l'attuale valle del medio Belice. A partire dalla base del Pliocene superiore (Piacenziano) la sedimentazione marina cresce su un substrato meso-cenozoico precedentemente e contemporaneamente interessato da una tettonica compressiva, e localmente da erosione. Il riempimento del bacino avviene ad opera di sedimenti soprattutto terrigeni, ed in misura minore bioclastici, che costituiscono il gruppo della "Formazione Marnoso Arenacea della Valle del Belice" (MAB). In essa sono state riconosciute due principali sequenze deposizionali, limitate al tetto e al letto da superfici di discordanza, e, all'interno della sequenza inferiore, anche i system tract che la compongono. I caratteri del bacino della MAB, il cui riempimento sedimentario si ispessisce verso Nord e si rastrema verso Sud, indicano che la sua evoluzione era controllata da una attiva tettonica sinsedimentaria, e suggeriscono una sua comparazione con alcuni bacini di tipo "piggyback", presenti nell'offshore della Sicilia meridionale e formatisi a seguito di una tettonica compressiva infrapliocenica. Una fase tettonica più tardiva (infra pleistocenica) ha successivamente deformato gli i depositi della MAB.
Article
Full-text available
The exceptionally rich Middle Jurassic ammonite fauna of the Villany Hills is well-known from the monographs of TILL and LOCZY jun., both published in the beginning of this century. In LOCZY's monograph, along with the overwhelming Callovian forms, some ammonites have indicated that the ammonite-rich bank of Villany may contain Bathonian species. This assumption was first expressed by ARKELL, then other authors. The detailed sedimentological investigations of the sections by A. VOROS cleared that just below the main Callovian fossil bed, there is an erosional remnant bed of different lithology, and this is the source of the Bathonian fossils. New collections in the exposures and revision of the formerly collected museum material revealed nearly two dozen Bathonian ammonite species. The evaluation of these forms indicates the Bullatimorphites (B.) hannoveranus Subzone (= Retrocostatum horizon) of the Upper Bathonian Prohecticoceras retrocostatum Zone. Nevertheless, the presence of Prohecticoceras angulicostatum suggests that the basal part of the Clydoniceras discus Zone (i.e. the P. angulicostatum faunal horizon) may be also represented. Most characteristic forms are the representatives of Prohecticoceras, Paroecotraustes, Bullatimorphites and some perisphinctids. As special elements, Parapatoceras and Berbericeras, the latter previously known only from the Lower and Middle Bathonian, also occur. Palaeobiogeographically the ammonite fauna indicates the Submediterranean region, with a faunal composition very similar to those Bathonian ones which occur in the Munti Apuseni (Transylvanian Romania) and the Southern Carpathians.
Article
A correlation scheme is presented for the eastern part of the Iberian Chain on the base of representatives of the family Perisphinctidae, which is intended to serve as a basis for the setting of a standard zonal scheme for the Tethyan Oxfordian. Several new biohorizons, widely recognized at a basin scale, are tentatively proposed, to refine the zonal scheme which is characterized now by: the Iberica horizon at the middle part of the Schilli Subzone, the Jelskii and Wartae horizons within the Rotoides Subzone, and the Grossouvrei, Bifurcatus and Ariniensis horizons within the Grossouvrei Subzone. -from Authors