Pressure-induced phase transitions in AgClO_ {4}

Physical review. B, Condensed matter (Impact Factor: 3.66). 04/2012; 84(6). DOI: 10.1103/PhysRevB.84.064103


AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has been found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.

Download full-text


Available from: Lourdes Gracia, Jan 07, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band-gap have been accurately determined. X-ray-diffraction, Raman, and optical-absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is isostructural, maintaining the monoclinic symmetry of the crystal, and having important consequences in the physical properties; among other a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO4. The results are discussed in comparison with related compounds and the effects of pressure in the electronic structure explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained.
    Full-text · Article · Nov 2011 · Physical Review B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Room-temperature angle-dispersive x-ray diffraction measurements on zircon-type TbVO and CeVO were performed in a diamond-anvil cell up to 50 GPa using neon as a pressure-transmitting medium. In TbVO, we found at 6.4 GPa evidence of a nonreversible pressure-induced structural phase transition from zircon to a scheelite-type structure. A second transition to an M-fergusonite-type structure was found at 33.9 GPa, which is reversible. Zircon-type CeVO exhibits two pressure-induced transitions: first, an irreversible transition to a monazite-type structure at 5.6 GPa and, second, at 14.7 GPa, a reversible transition to an orthorhombic structure. No additional phase transitions or evidences of chemical decomposition are found in the experiments. The equations of state and axial compressibility for the different phases are also determined. Finally, the sequence of structural transitions and the compressibilities are discussed in comparison with other orhtovanadates and the influence of nonhydrostaticity commented.
    Full-text · Article · Jan 2012 · Physical Review B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical investigations concerning possible calcium sulfate, CaSO(4), high-pressure polymorphs have been carried out. Total-energy calculations and geometry optimizations have been performed by using density functional theory at the B3LYP level for all crystal structures considered. The following sequence of pressure-driven structural transitions has been found: anhydrite, Cmcm (in parentheses the transition pressure) → monazite-type, P2(1)/n (5 GPa) → barite-type, Pnma (8 GPa), and scheelite-type, I4(1)/a (8 GPa). The equation of state of the different polymorphs is determined, while their corresponding vibrational properties have been calculated and compared with previous theoretical results and experimental data.
    Full-text · Article · Feb 2012 · Inorganic Chemistry
Show more