ArticlePDF Available

Differences in Median Ultraviolet Light Transmissions of Serial Homeopathic Dilutions of Copper Sulfate, Hypericum perforatum, and Sulfur

Authors:

Abstract and Figures

Homeopathic remedies are produced by potentising, that is, the serial logarithmic dilution and succussion of a mother tincture. Techniques like ultraviolet spectroscopy, nuclear magnetic resonance, calorimetry, or thermoluminescence have been used to investigate their physical properties. In this study, homeopathic centesimal (c) potencies (6c to 30c) of copper sulfate, Hypericum perforatum, and sulfur as well as succussed water controls were prepared. Samples of these preparations were exposed to external physical factors like heat, pressure, ultraviolet radiation, or electromagnetic fields to mimic possible everyday storage conditions. The median transmissions from 190 nm to 340 nm and 220 nm to 340 nm were determined by ultraviolet light spectroscopy on five measurement days distributed over several months. Transmissions of controls and potencies of sulfur differed significantly on two of five measurement days and after exposure to physical factors. Transmissions of potencies exposed to ultraviolet light and unexposed potencies of copper sulfate and Hypericum perforatum differed significantly. Potency levels 6c to 30c were also compared, and wavelike patterns of higher and lower transmissions were found. The Kruskal-Wallis test yielded significant differences for the potency levels of all three substances. Aiming at understanding the physical properties of homeopathic preparations, this study confirmed and expanded the findings of previous studies.
This content is subject to copyright. Terms and conditions apply.
  
    
      

Research Article
Differences in Median Ultraviolet Light
Transmissions of Serial Homeopathic Dilutions of Copper
Sulfate, Hypericum perforatum, and Sulfur
Sabine D. Klein,
1
Annegret Sandig,
1
Stephan Baumgartner,
1, 2
and Ursula Wolf
1
1
Institute of Complementary Medicine (KIKOM), University of Bern, 3010 Bern, Switzerland
2
Society for Cancer Research, Hiscia Institute, 4144 Arlesheim, Switzerland
       
           
   
                    
                
                 
             
                 Hypericum
perforatum                  
               
                    
                  
                 
                 
                
                
       
1. Introduction
      
        
        
         
         
           
       
      
      
         
      
         
     
     
   
      
         
         
          
         
       
        
     
      
        
      
        
        
  
Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 370609, 11 pages
http://dx.doi.org/10.1155/2013/370609
    
2. Materials and Methods
2.1. Materials.      

4
      
 
8
     
     
%     

      
        
     Ω  
       
        
Ω   
      
        


        
        
         
       
     
   
        
       
       
      Ω   
        
          
       
          
        
       
        
       
        
      
 
2.2. Sample Preparation.      
        
       
         
       
4
 
8
     
     
        
         

4
      
   
8
    
          
      
       

        
        
        
       
         
  
      
        
         
          
 
2.3. Exposure to External Physical Factors.    
         
      
 
           
        
       
      
   
        
        
            
          
     
2.4. UV Spectroscopy.       
        
          
     
   
        
      
          
       
        
        
  Ω     
         
         Ω  
         
        
        
       
        

         
 
2.5. Data Analysis.    
         
       
         
        
         
 
      
           
       
 U   
         
        
    
Time (days)
Preparation of samples
Measurement 1
Measurement 2
UV
EMF
Measurement 4
Measurement 3
Measurement 5
Measurement 5
0
1
28
35
36
42
43
49
105
161
204
Incubation
Autoclave
(CuSO
4
)
( , hypericum)S
8
                      
           
              
                     
 
        
  
         
         
       %
%     
 
4

8
     
    
        
   
3. Results
         
         
        
        

4
     
         
8
         
         
        
   
      
       
       
8
          

4
      

8
    
        
      
4
        
 
8
      
        
       

        
           
       
       
 
8
      
        
  
4
     
   
         
        
        
        
          
       
4

          
        
       
       
8
        
        
        
          
      
        

4
     
8
  
   
4
     

8
        
       
4
        
       
          
     
8
  
         
         
 
4 Evidence-Based Complementary and Alternative Medicine
T 1: Comparison
a
between light transmissions of controls
b
and potencies (6c–30c)
c
of CuSO
4
, hypericum, and S
8
.
CuSO
4
Hypericum S
8
190 nm–340 nm 220 nm–340 nm 190 nm–340 nm 220 nm–340 nm 190 nm–340 nm 220 nm–340 nm
Measurement
1
Mean controls 0.999990 1.000002 0.999995 0.999999 0.999998 1.000001
SD controls 0.000573 0.000539 0.000279 0.000258 0.000260 0.000246
Mean hp 1.000037 1.000058 0.999826 0.999851 1.000093 1.000075
SD hp 0.000637 0.000601 0.000349 0.000331 0.000279 0.000266
0.910 0.955 0.160 0.171 0.299 0.363
 −0.019 0.010 0.238 0.232 0.171 0.149
Measurement
2
Mean controls 0.999996 0.999998 1.000004 1.000001 1.000010 1.000006
SD controls 0.000311 0.000311 0.000393 0.000371 0.000594 0.000578
Mean hp 1.000062 1.000058 1.000005 1.000053 1.000648 1.000583
SD hp 0.000500 0.000465 0.000460 0.000431 0.000676 0.000639
0.791 0.806 0.596 0.488 0.012 0.013
 −0.045 0.042 0.090 0.117 0.411 0.408
Measurement
3
Mean controls 0.999997 1.000007 1.000003 1.000020 1.000014 1.000010
SD controls 0.000383 0.000338 0.001094 0.000984 0.000493 0.000478
Mean hp 0.999810 0.999817 0.999663 0.999662 1.000684 1.000602
SD hp 0.000492 0.000422 0.000955 0.000893 0.000610 0.000576
0.449 0.241 0.454 0.476 0.004 0.005
 −0.130 0.201 0.127 0.120 0.475 0.464
Measurement
4
Mean controls 0.999992 1.000000 0.999999 0.999997 0.999997 0.999991
SD controls 0.001013 0.000905 0.000549 0.000484 0.000365 0.000366
Mean hp 0.999624 0.999670 0.999660 0.999721 1.000506 1.000478
SD hp 0.000896 0.000791 0.000780 0.000682 0.000844 0.000782
0.450 0.364 0.154 0.177 0.071 0.068
 −0.130 0.156 0.241 0.228 0.297 0.300
Measurement
5
Mean controls 1.000002 1.000009 1.000008 1.000008 0.999992 0.999994
SD controls 0.000860 0.000792 0.001375 0.001247 0.000712 0.000659
Mean hp 0.999926 0.999916 0.999673 0.999736 1.000170 1.000122
SD hp 0.000800 0.000718 0.001312 0.001205 0.000793 0.000735
0.985 0.821 0.701 0.688 0.973 0.864
 −0.003 0.039 0.065 0.068 0.006 0.028
Autoclave
Mean controls 0.999994 0.999997 0.999993 0.999997 1.000002 1.000002
SD controls 0.000629 0.000536 0.000557 0.000465 0.000519 0.000470
Mean hp 0.999915 0.999943 0.999801 0.999802 1.000557 1.000497
SD hp 0.000567 0.000517 0.000673 0.000587 0.000563 0.000520
0.610 0.664 0.391 0.298 0.011 0.014
 −0.087 0.075 0.145 0.176 0.416 0.403
EMF
Mean controls 1.000001 0.999998 1.000002 0.999996 1.000008 1.000002
SD controls 0.000409 0.000376 0.000333 0.000302 0.000567 0.000527
Mean hp 0.999765 0.999779 0.999845 0.999866 1.000661 1.000594
SD hp 0.000475 0.000423 0.000588 0.000519 0.000715 0.000677
0.198 0.219 0.913 0.942 0.013 0.013
 −0.221 0.211 0.019 0.012 0.408 0.408
Incubation
Mean controls 0.999998 1.000003 1.000009 0.999997 0.999986 0.999997
SD controls 0.000406 0.000371 0.000677 0.000632 0.001174 0.001122
Mean hp 0.999629 0.999649 0.999999 1.000009 1.000649 1.000571
SD hp 0.000431 0.000409 0.000383 0.000334 0.000623 0.000587
0.020 0.026 0.289 0.298 0.041 0.115
 −0.399 0.382 0.179 0.176 0.336 0.259
    
  

 
                 

       
       
       
       
  0.015 0.024 0.002 0.002
      
                   
   
 
      
    
       
  
      
      

 
                 
       
      

      
      
     
     

      
      
     
      

      
      
0.006 0.005    
      

      
      
0.001 0.001 0.029 0.033  
      
                   
   
                    
    
       
     
       

        
   U   
   
      
        
  
3.6. Comparison of Previous Works.     
          
        
           

4. Discussion
4.1. Development of Light Spectroscopy Studies.  
       
         
         
       
        
       
         
       
       
      
       
      
          
         
         
        
   
    
Control 3
Control 4
Control 5
Control 6
Control 7
Control 8
Control 9
Control 10
Control 2
Control 1
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
8
7
6
1.003
1.002
1.001
1
0.999
0.998
0.997
Normalised transmission
Potency (c)
(median 190 nm–340 nm)

Control 3
Control 4
Control 5
Control 6
Control 7
Control 8
Control 9
Control 10
Control 2
Control 1
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
8
9
7
6
Potency (c)
1.003
1.002
1.001
1
0.999
0.998
0.997
Normalised transmission
(median 190 nm–340 nm)

Control 3
Control 4
Control 5
Control 6
Control 7
Control 8
Control 9
Control 10
Control 11
Control 12
Control 2
Control 1
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
8
9
7
6
Potency (c)
1.003
1.002
1.001
1
0.999
0.998
0.997
Normalised transmission
(median 190 nm–340 nm)

               
   
 
                       
         U      
   
      
    
Evidence-Based Complementary and Alternative Medicine 7
T 3: Comparison of publications investigating homeopathic preparations with UV, visible and/or near infrared light spectroscopy.
Publication Substances tested and controls Methods Findings
Ludwig, 1991 [18] Belladonna (30x, 200x), 43%ethanol
Absorbance 190–220 nm
comparison of spectra (no statistical
analysis)
Belladonna 30x and 200x showed different UV spectra with a
broader peak for 200x.
Zacharias, 1995
[21]
2 sets of samples of Lycopodium
clavatum (6c, 12c, 100c), 40%water
and ethanol mixture (unsuccussed, 3c,
6c)
Absorbance 220–800 nm (near zero
beyond 400 nm)
comparison of average spectra (5 spectra
for each sample; no statistical analysis)
e spectra for each set of Lycopodium and succussed solvent were
similar and differed from that of the inert solvent. e 2 sets of
succussed Lycopodium samples showed signi�cant differences.
e possible introduction of contaminants during the
dynamisation process was suggested.
Zacharias, 1995
[22]
3 sets of potentised hydroalcoholic
solutions, 2 prepared in pharmacies
(3c, 6c), one prepared under rigorous
conditions of cleanness (3c, 6c, 9c, 12c)
Absorbance 220–800 nm (near zero
beyond 400 nm)
comparison of average spectra (5 spectra
for each sample; no statistical analysis)
e dynamisation process caused changes in the UV absorption
spectra of hydroalcoholic solutions prepared in homeopathic
pharmacies, but not between unsuccussed and potentised
solutions prepared under more rigorous conditions.
It was concluded that the changes were caused by the introduction
of contaminants during preparation of the samples.
Sukul et al., 2001
[20]
Nux vomica 30c (succussed and
unsuccussed), 90%ethanol
Absorbance 190–500 nm
comparison of spectra (no statistical
analysis)
Unsuccussed Nux vomica 30 had its peak at 240 nm with an
absorbance of 3.67, succussed Nux vomica 30 had one at 242 nm
with an absorbance of 3.66. 90%ethanol had its peak at 206nm
with an absorbance of 2.23.
Korenbaum et al.,
2006 [17]
7 homoeopathic nosodes (DNA-tox,
bacteria, manus, fungus, toxic metal,
virus, vanilmandelic acid) and a blank
placebo were “imprinted” onto
ampoules with saline.
Absorbance 600–800 nm
centering of spectra, comparison of
electronic-homeopathic copies (EHC) to
every of the 3 placebo groups, registration
of all wavelengths between 700–800 nm
with signi�cant differences,
Mann-Whitney-test
e spectra of each placebo group did not essentially differ from
those of the other placebo groups.
e spectrum of EHC manus differed signi�cantly from all three
placebo groups. e spectra of EHCs DNA-tox and toxic metal
differed signi�cantly from two placebo groups. e spectra of
EHCs bacteria and vanilmandelic acid differed signi�cantly from
only one of the placebo groups. e spectra of EHCs fungus and
virus did not differ from any of the placebo groups.
Rao et al., 2007
[19]
Nux vomica, Natrum muriaticum (6c,
12c, 30c in 95%ethanol), unsuccussed
and succussed ethanol
Absorbance 200–500 nm
comparison of spectra (no statistical
analysis)
Natrum muriaticum and Nux vomica had different UV-spectra.
e spectrum of unsuccussed ethanol was signi�cantly different
from that of succussed ethanol and the succussed homeopathic
remedies, Natrum muriaticum and Nux vomica.
Wolf et al., 2011
[24]
SiO
2
(10c–30c), S
8
(11x–30x), CuSO
4
(11c–30c), water succussed but not
potentised
Transmission 190–290 nm, 215–290 nm
mean transmission, correction for daily
variations, -test, ANOVA
UV transmission of CuSO
4
hp (homeopathic preparations) was
signi�cantly lower than of controls. e transmission was also
lower for both SiO
2
and S
8
, but not signi�cantly. e presence of
contaminations was ruled out by inductively coupled plasma mass
spectroscopy.
An increase in the solvent’s molecular dynamics for homeopathic
preparations was suggested.
Marschollek et al.,
2010 [23]
S
8
(10x–30x), CuSO
4
(6c–30c), water
succussed but not potentised
Samples were additionally exposed to
UV light for 12 h, 37
C for 24 h or 90
C
for 15 min.
Transmission 190–340 nm, 220–340 nm
median transmission, correction for daily
variations, -test, Levene test
For CuSO
4
(butnotS
8
) lower UV transmission and higher variance
was found for aged (26–110 days) hp compared to controls.
Incubation of CuSO
4
(butnotS
8
)hpat37
C resulted in
signi�cantly lower transmission compared to controls. For each
type of exposure, transmission of CuSO
4
hp was signi�cantly
reduced compared to unexposed hp. For S
8
, a signi�cant reduction
in transmission was observed aer incubation at 37
C.
    
  
      
   
 
 

   
  
    
     
    
     
    
    
    
 
 
      
   
         
          

       
          
       
        

    
0
0.1
0.2
0.3
0.4
0.5
Difference of means (%)
4
CuSO , 0.1 day [24]
CuSO
4
, 61 day [24]
CuSO
4
, 20 day [24]
SiO
2
, 7.5 days [24]
S
8
, 6 days [24]
CuSO
4
[23]
S
8
[23]
CuSO
4
(present study)
Hypericum (present study)
S
8
(present study)
CuSO
4
(all studies)
S
8
(all studies)
−0.1
−0.2
            % %     
      
4
 
8
                
        
4.2. Reproducibility of Our Experiments.   
       
         
         

4
    
        
        
4
  
       
        
8
       
        
        
       
       
        
 
8
       
        
      
    
8
   
4
  
         
 
          
4

      
     
     
  
8
     
  
4
      
    
8

8
   
           
      
          
 
8
      
8
   
         
        
         
         
    
8
     
   
8
    
 
4
       
 
4
        
 
8
      
       
        
4

      
          
         
 
4.3. Possibility of Contaminations in hp.  
       
          
         
       
         
         
        
          
       
        
          
4.4. Models Assume Changes in Water Structure.   
         
        
     
       
     
          
        
         
      
       
         
   
4
   
8
  
        
           
           
         
         
         

4.5. Limitations of is Work.    
        
        
     <%    

        
           
 
4
      

        
   
4
      
       
           
      
         
  
       
4
 
8
         
        
      
        
       

         
       
        
    
 
        
      
         
          
           
        
     
  
         


      
        


      
Bioethics      
         
       
Bioethics       
        
 Bioethics       
       Bioethics
      
            
      
   Medicine,HealthCareandPhilosophy  
            
          
        
Complementary erapies in Medicine
  
           
      
Homeopathy       
          
       
   Forschende
Komplementarmedizin       
           
        
      
European Journal of Pediatrics      

          
        
  Journal of Alternative and Complementary
Medicine       
            
       
       e Lancet
      
              
  e Lancet     
 
           
British Medical Journal     
 
            
       
 e Lancet      

           
        
 European Journal of Clinical Pharmacology 
     
            
      Jour-
nal of Alternative and Complementary Medicine
  
     
            
    
       
     
  
      
     
  
   
               
       
       
              
        
       
         
       
    
        
        
     
     
          
         
      
    

           
       
    
        
  
       
     
       
           
      
          
      
     
           
      
        
       
  
          
     
       
     
1
   
      
      
         
1
1
 
2
     
2
 
       
       
         
       
      
          
         
       
 
         
    
        
        

            
      
         
     
   
        
       
            
        
         
     
      
              
        
        
    
    
             
      
      
 
... In this regard the term "regression toward the mean" is used to describe the shift of extreme values (e.g. when a disease is active) over time towards the mean value. A statistical analysis of the quality of life data from this large cohort study did not suggest a sole "regression toward the mean" effect (10). ...
... 9 Reliable study as per Mathie 2014, i.e. at least bias category B1, and free of bias in the Cochrane ranges 1, 2, 3a and 3b. 10 Risk of bias in Lökken 1995 (as per Cochrane ranges): unclear in range 1 (i.e. unclear whether the randomisation sequence was adequately generated), and low risk of bias in all other ranges. ...
... In the planning of a study this alternative approach to assessing the course must at least be considered -this requirement again tends to conflict, however, with the methodologically standardised, pre-defined examination times for the respective primary endpoints of a study. 10 Also to be considered, however, are other clinical courses and how they can be given adequate consideration in the design of a study. 11 These issues are also mostly relevant to chronic indications and largely negligible in the case of acute diseases. ...
Technical Report
Full-text available
This report on the current state of homeopathic research provides a summary on the research areas of healthcare research, randomised controlled clinical trials, meta-analyses and basic research. It aims to contribute to the discussion within the field of homeopathy concerning the need for research, the relevance of individual research fields and methods and their role in future research strategies. A summary analysis of the clinical research data offers sufficient evidence of the therapeutic effectiveness of homeopathic treatment. The results from numerous placebo-controlled trials and basic research experiments suggest, moreover, that potentised medicines offer specific efficacy. Put in perspective, there are many important open research areas – notably: Basic research into the optimisation of laboratory models and the understanding of the mode of action, Independent replications of studies in clinical and basic research, Exploration of the provision of homeopathic care in reality, also combined with conventional medicine and Health economic analyses to evaluate the costs and benefits (cost effectiveness).
... One study assessed combined results of three independent investigations and observed an increased absorbance of Cuprum Sulfuricum compared with succussed controls. 69 One further study reported general changes in the shape of the spectra compared with unsuccussed controls (UV-Vis: Natrum Muriaticum and Nux vomica 25 ). ...
... Ten experiments (nine publications) explore the effect of temperature and other possible influence. 39,40,66,69,71,103,114,137,147 Some experiments assessed the effect of heating and UV radiation on homeopathic samples. High temperatures (>70°C) seemed to abolish specific properties of homeopathic preparations in most studies, 40 whereas incubation at moderate temperatures (30°C-50°C) tended to increase differences to controls. ...
Article
Objectives: In parts I and II of our review of physicochemical research performed on homeopathic preparations, we identified relevant publications and analyzed the data in terms of individual experiments, looking for the most promising techniques that were used in the past. In this third part, we analyze the results of the experiments seeking to extract information about the possible modes of action underpinning homeopathic preparations. Methods: We summarized the results from the 11 experimental areas previously introduced, extracting the general findings and trends. We also summarized the results in terms of specific research topics: aging, medium used for potentization, sample volume, temperature, material of potentization vessel, and, finally, the use of molecules to probe homeopathic samples. Results: We identified a number of effects that appear consistently throughout the data: Differences to controls seem to increase with: time, moderate temperature, small samples volume, and in ionic medium, whereas high temperatures seem to abolish differences to controls. Based on the present analysis, there is no consistent evidence to date for the nanoparticle hypothesis to explain specific homeopathic treatment effects. However, the quantum coherence domain hypothesis, the dynamic water cluster hypothesis, and the weak quantum theory are still contenders and need to be further assessed experimentally. Conclusions: The field requires further targeted experimentation to validate past findings reporting differences between homeopathic dilutions and controls, and to expand these findings by specifically testing the three main working hypotheses that are currently at hand.
... In order to extract bioactive constituents from H. perforatum, organic solvents were preferred, as ethanolic H. perforatum extracts showed the highest anti-bacterial potential against diverse Gram-positive and Gram-negative bacteria 37 . In the literature, other H. perforatum hydroethanolic extracts such as tinctures with a high alcohol content ranging from 45 to 50% have been widely used in complementary medicine 62 . In a recent report, 60% or above of ethanol was utilized to obtain the highest yields of lipophilic hyperforin 63 . ...
Article
Full-text available
Due to increasing antibiotic resistance, the application of antimicrobial photodynamic therapy (aPDT) is gaining increasing popularity in dentistry. The aim of this study was to investigate the antimicrobial effects of aPDT using visible light (VIS) and water-filtered infrared-A (wIRA) in combination with a Hypericum perforatum extract on in situ oral biofilms. The chemical composition of H. perforatum extract was analyzed using ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS). To obtain initial and mature oral biofilms in situ, intraoral devices with fixed bovine enamel slabs (BES) were carried by six healthy volunteers for two hours and three days, respectively. The ex situ exposure of biofilms to VIS + wIRA (200 mWcm−2) and H. perforatum (32 mg ml−1, non-rinsed or rinsed prior to aPDT after 2-min preincubation) lasted for five minutes. Biofilm treatment with 0.2% chlorhexidine gluconate solution (CHX) served as a positive control, while untreated biofilms served as a negative control. The colony-forming units (CFU) of the aPDT-treated biofilms were quantified, and the surviving microorganisms were identified using MALDI-TOF biochemical tests as well as 16 S rDNA-sequencing. We could show that the H. perforatum extract had significant photoactivation potential at a concentration of 32 mg ml−1. When aPDT was carried out in the presence of H. perforatum, all biofilms (100%) were completely eradicated (p = 0.0001). When H. perforatum was rinsed off prior to aPDT, more than 92% of the initial viable bacterial count and 13% of the mature oral biofilm were killed. Overall, the microbial composition in initial and mature biofilms was substantially altered after aPDT, inducing a shift in the synthesis of the microbial community. In conclusion, H. perforatum-mediated aPDT using VIS + wIRA interferes with oral biofilms, resulting in their elimination or the substantial alteration of microbial diversity and richness. The present results support the evaluation of H. perforatum-mediated aPDT for the adjunctive treatment of biofilm-associated oral diseases.
Article
Objectives: In Part 1 of the review of physicochemical research performed on homeopathic preparations the authors identified relevant publications of sufficient reporting quality for further in-depth analysis. In this article, the authors analyze these publications to identify any empirical evidence for specific physicochemical properties of homeopathic preparations and to identify most promising experimental techniques for future studies. Methods: After an update of the literature search up to 2018, the authors analyzed all publications in terms of individual experiments. They extracted information regarding methodological criteria such as blinding, randomization, statistics, controls, sample preparation, and replications, as well as regarding experimental design and measurement methods applied. Scores were developed to identify experimental techniques with most reliable outcomes. Results: The publications analyzed described 203 experiments. Less than 25% used blinding and/or randomization, and about one third used adequate controls to identify specific effects of homeopathic preparations. The most promising techniques used so far are nuclear magnetic resonance (NMR) relaxation, optical spectroscopy, and electrical impedance measurements. In these three areas, several sets of replicated high-quality experiments provide evidence for specific physicochemical properties of homeopathic preparations. Conclusions: The authors uncovered a number of promising experimental techniques that warrant replication to assess the reported physicochemical properties of homeopathic preparations compared with controls. They further discuss a range of experimental aspects that highlight the many factors that need to be taken into consideration when performing basic research into homeopathic potentization. For future experiments, the authors generally recommend using succussed (vigorously shaken) controls, or comparing different homeopathic preparations with each other to reliably identify any specific physicochemical properties.
Article
Introduction There are two critical pillars of homeopathy that contrast with the dominant scientific approach: the similitude principle and the potentization of serial dilutions. Three main hypotheses about the mechanisms of action are in discussion: nanobubbles-related hormesis; vehicle-related electric resonance; and quantum non-locality. Objectives The aim of this paper is to review and discuss some key points of such properties: the imprint of supramolecular structures based on the nanoparticle-allostatic, cross-adaptation-sensitization (NPCAS) model; the theory of non-molecular electromagnetic transfer of information, based on the coherent water domains model, and relying (like the NPCAS model) on the idea of local interactions; and the hypothesis of quantum entanglement, based on the concept of non-locality. Results and Discussion The nanoparticles hypothesis has been considered since 2010, after the demonstration of suspended metal nanoparticles even in very highly diluted remedies: their actual action on biological structures is still under scrutiny. The second hypothesis considers the idea of electric resonance mechanisms between living systems (including intracellular water) and homeopathic medicines: recent findings about potency-related physical properties corroborate it. Finally, quantum theory of ‘non-local’ phenomena inspires the idea of an ‘entanglement’ process among patient, practitioner and the remedy: that quantic phenomena could occur in supra-atomic structures remains speculative however. Conclusion Further studies are needed to ascertain whether and which of these hypotheses may be related to potential cellular effects of homeopathic preparations, such as organization of metabolic pathways or selective gene expression.
Article
Full-text available
Objectives: The last systematic review of physicochemical research performed on homeopathic preparations was published in 2003. The aim of the study is to update and expand the current state of knowledge in the area of physicochemical properties of homeopathic preparations. In part 1 of the study, we aim to present an overview of the literature with respect to publication quality and methods used. In part 2, we aim to identify the most interesting experimental techniques. With this, we aim to be in a position to generate meaningful hypotheses regarding a possible mode of action of homeopathic preparations. Methods: A two-step procedure was adopted: (1) an extensive literature search, followed by a bibliometric and quality analysis on the level of publications and (2) a thorough qualitative analysis of the individual physicochemical investigations found. In this publication, we report on step (1). We searched major scientific databases to find publications reporting physicochemical investigations of homeopathy from its origin to the end of 2015. Publications were assessed using a scoring scheme, the Manuscript Information Score (MIS). Information regarding country of origin of the research and experimental techniques used was extracted. Results: We identified 183 publications (compared to 44 in the last review), 122 of which had an MIS ≥5. The rate of publication in the field was ∼2 per year from the 1970s until 2000. Afterward, it increased to over 5.5 publications per year. The quality of publications was seen to increase sharply from 2000 onward, whereas before 2000, only 12 (13%) publications were rated as "high quality" (MIS ≥7.5); 44 (48%) publications were rated as "high quality" from 2000 onward. Countries with most publications were Germany (n = 42, 23%), France (n = 29, 16%), India (n = 27, 15%), and Italy (n = 26, 14%). Techniques most frequently used were electrical impedance (26%), analytical methods (20%), spectroscopy (20%), and nuclear magnetic resonance (19%). Conclusions: Physicochemical research into homeopathic preparations is increasing both in terms of quantity and quality of the publications.
Article
Full-text available
The World Health Organization (WHO) has called for the increased statutory regulation of traditional and complementary medicine practitioners and practices, currently implemented in about half of nations surveyed. According to recent WHO data, however, the absence of policy guidelines in this area represents a significant barrier to implementation of such professional regulations. This commentary reviews several key challenges that distinguish the statutory regulation of traditional medicine practitioners and practices from biomedical professional regulation, providing a foundation for the development of policy making parameters in this area. Foremost in this regard are the ongoing impacts of the European colonial encounter, which reinforce biomedicine's disproportionate political dominance across the globe despite traditional medicine's ongoing widespread use (particularly in the global South). In this light, the authors discuss the conceptual and historical underpinnings of contemporary professional regulatory structures, the tensions between institutional and informal traditional medicine training pathways, and the policy challenges presented by the prospect of standardizing internally diverse indigenous healing approaches. Epistemic and evidentiary tensions, as well as the policy complexities surrounding the intersection of cultural and clinical considerations, present additional challenges to regulators. Conceptualizing professional regulation as an intellectual property claim under the law, the authors further consider what it means to protect traditional knowledge and prevent misappropriation in this context. Overall, the authors propose that innovative professional regulatory approaches are needed in this area to address safety, quality of care, and accessibility as key public interest concerns, while prioritizing the redress of historical inequities, protection of diverse indigenous knowledges, and delivery of care to underserved populations.
Article
Full-text available
Very dilute aqueous solutions have properties which are of importance for wastewa-ter treatment, toxicology and pharmacol-ogy. Such solutions typically have concentrations below about 10-6-10-10 mol/liter. According to the customary theories, such solutions and distilled water should have similar structural, physicochemical and biological properties. However, previous experimental studies revealed that this is not always the case. When these solutions are prepared by serial dilutions and vigorous shaking after each dilution step, their properties may considerably differ from those of distilled water. Their properties may also significantly differ from those of serially diluted solutions with the same chemical composition, which were not vigorously shaken after each dilution step. In the current study, the following phenomena of serially diluted, vigorously shaken aqueous solutions are analyzed: (a) their self-similar topology, (b) their emission of ultra low frequency (ULF) radiation; (c) 7.85 Hz alternating magnetic fields affecting their structure, and (d) their structure after dilution below 10-24 mol/liter. Since ambient electromagnetic fields affect these phenomena, the analyses are carried out within the context of quantum electro-dynamics (QED). The analyses show that the QED model for serially diluted, vigorously shaken aqueous solutions, as developed by Yinnon and Yinnon [Int J Mod Phys B 25:3707-3743 (2011)], provides consistent explanations for phenomena (a)-(d).
Article
Full-text available
Medicamentos homeopáticos são toda forma farmacêutica de dispensação ministrada segundo o princípio da semelhança e/ou identidade, com finalidade curativa e/ou preventiva. O princípio hipocrático da semelhança foi experimentado por Hahnemann, que assim o definiu em 1796: “Toda substância que administrada em doses ponderais, até mesmo tóxica para o homem de boa saúde, desencadeia distúrbios precisos, torna-se, depois de diluída e agitada, capaz de induzir o desaparecimento desses mesmos distúrbios em indivíduos doentes”. Este é considerado até os dias de hoje o grande paradigma homeopático e, no presente estudo, o discutimos com base na literatura acadêmico-científica. Os trabalhos realizados com diferentes modelos evidenciam que as altas diluições homeopáticas são soluções que possuem atividade farmacológica e que, portanto, não podem ser consideradas placebos. O cenário atual é bastante promissor, uma vez que a qualidade metodológica, assim como a compreensão acerca dos alvos celulares e moleculares disparados pelo estímulo homeopático, têm conferido status científico a esta terapêutica baseada em evidências. O avanço na compreensãodos mecanismos de ação depende de alguns desafios que precisam ser superados, tais como: aumento do número de pesquisadores interessados na compreensão dos sistemas dinamizados; ampliação dos modelos experimentais capazes de registrar alterações físicas, químicas e biológicas disparadas pelos medicamentos homeopáticos; e reprodutibilidade dos resultados experimentais. Estes e outros aspectos devem ser estimulados no ambiente acadêmico e profissional, a fim de romper as barreiras e os paradigmas que se contrapõem ao avanço desta Prática Integrativa e Complementar de Saúde.
Article
Cavitation in agitated liquids has been discussed for over five decades as a phenomenon that could play a role in the appearance of structural changes in the solvent of potentised dilutions. However, its lack of specificity as well as the absence of experimental confirmation have so far confined the idea to theory. The light emission associated with cavitational bubble collapse can be used to detect and study cavitation in fluids. The phenomenon has been extensively studied when driven by ultrasound, where it is called sonoluminescence. Sonoluminescence spectra reflect extremely high temperature and pressure in the collapsing bubbles and are parameter sensitive. This article tries to examine whether, despite objections and difficulties, the detection or the study of cavitational luminescence in solutions during potentisation could be useful as a physical tool in high dilution research.
Article
Full-text available
Low-field (0.02–4 MHz) proton nuclear magnetic resonance (NMR) longitudinal relaxometry was applied to ultrahighly diluted aqueous solutions in order to detect physical modifications induced in the solvent by the dilution process. A mixture of silica-lactose (1.67·10−5 M silica, 2.92·10−2 M lactose) was initially solubilized in water or in saline, then submitted to eighteen iterative centesimal dilutions in water or in saline under vigorous vortex agitation and rigorously controlled atmospheric conditions, and compared to similarly treated pure water and saline as controls. Several independent series of samples were measured according to a blind protocol (total of 140 code-labelled samples). A slight frequency dispersion (about 4%) was found within the 0.02–4 MHz range, centered around 0.55 MHz, and ascribed to combined effects of silica and trace paramagnetic contaminants, both concentrated and in a reduced motion at the borosilicate wall tube interface. The iterative dilution-agitation process in pure water and saline induced no significant effect on relaxivity. Slightly increased relaxivity compared to solvent was found in the initial silica-lactose dilution (especially in saline, about 4%), which vanished unexpectedly slowly upon dilution, as adjusted to an arbitrary log-linear model. Statistical analysis was applied to succeed in discriminating solutions from their solvents beyond the 10−12 level of dilution. No clear explanation emerged, but post-experiment chemical analysis revealed high amounts (6 ppm) of released silica from the glass material used, with excess in silicalactose samples, and lower amounts of trace paramagnetic contaminants in highly diluted silica-lactose samples, which could provide a clue.
Article
We tested, under independent conditions, the reproducibility of evidence from two previous trials that homoeopathy differs from placebo. The test model was again homoeopathic immunotherapy. 28 patients with allergic asthma, most of them sensitive to house-dust mite, were randomly allocated to receive either oral homoeopathic imm;notherapy to their principal allergen or identical placebo. The test treatments were given as a complement to their unaltered conventional care. A daily visual analogue scale of overall symptom intensity was the outcome measure. A difference in visual analogue score in favour of homoeopathic immunotherapy appeared within one week of starting treatment and persisted for up to 8 weeks (p=0.003). There were similar trends in respiratory function and bronchial reactivity tests. A meta-analysis of all three trials strengthened the evidence that homoeopathy does more than placebo (p=0.0004). Is the reproducibility of evidence in favour of homoeopathy proof of its activity or proof of the clinical trial's capacity to produce false-positive results?
Article
We tested, under independent conditions, the reproducibility of evidence from two previous trials that homoeopathy differs from placebo. The test model was again homoeopathic immunotherapy. 28 patients with allergic asthma, most of them sensitive to house-dust mite, were randomly allocated to receive either oral homoeopathic immunotherapy to their principal allergen or identical placebo. The test treatments were given as a complement to their unaltered conventional care. A daily visual analogue scale of overall symptom intensity was the outcome measure. A difference in visual analogue score in favour of homoeopathic immunotherapy appeared within one week of starting treatment and persisted for up to 8 weeks (p = 0.003). There were similar trends in respiratory function and bronchial reactivity tests. A meta-analysis of all three trials strengthened the evidence that homoeopathy does more than placebo (p = 0.0004). Is the reproducibility of evidence in favour of homoeopathy proof of its activity or proof of the clinical trial's capacity to produce false-positive results?
Article
An extensive thermodynamic study has been carried out on aqueous solutions, obtained through the iteration of two processes: a dilution 1:100 in mass and a succussion. The iteration is repeated until extreme dilutions are reached (less than 1⋅10–5 mol kg–1 ) to the point that we may call the resulting solution an 'extremely diluted solution'. We conducted a calorimetric study, at 25C, of the interaction of those solutions with acids or bases. Namely, we measured the heats of mixing of acid or basic solutions with bidistilled water and compared them with the analogous heats of mixing obtained using the 'extremely diluted solutions'. Despite the extreme dilution of the latter solutions, we found a relevant exothermic excess heat of mixing, excess with respects to the corresponding heat of mixing with the untreated solvent. Such an excess has been found in about the totality of measurements, and of a magnitude being well beyond one that could arise any issue of sensibility of the instrumental apparatus. Here we thus show that successive dilutions and succussions can permanently alter the physico-chemical properties of the solvent water. The nature of the phenomena here described still remains unexplained, nevertheless some significant experimental results were obtained.
Article
Ultra-high dilutions of lithium chloride and sodium chloride (10−30gcm−3) have been irradiated by X- and γ-rays at 77K, then progressively rewarmed to room temperature. During that phase, their thermoluminescence has been studied and it was found that, despite their dilution beyond the Avogadro number, the emitted light was specific of the original salts dissolved initially.
Article
2 sets of homoeopathic medicines prepared from Lycopodium clavatum (6cH, 12cH and 100cH) and the dynamized water and ethanol mixture used (3cH and 6cH) were analysed using ultraviolet spectroscopy. The spectra for each set of Lycopodium and dynamized solvent were similar and differed from that of the inert solvent. The 2 sets of dynamized medicines nevertheless showed significant differences. These results suggest the possible introduction of contaminants during the dynamization process, the effects of which on clinical results are considered.
Article
Objective: To establish, using a systematic review and meta-analysis, whether there is any evidence from randomised controlled clinical trials of the efficacy of homeopathic treatment in patients with any disease. Data sources: Published and unpublished reports of controlled clinical trials available up to June 1998, identified by searching bibliographic databases (Medline, Embase, Biosis, PsychInfo, Cinahl, British Library Stock Alert Service, SIGLE, Amed), references lists of selected papers, hand searching homeopathic journals and conference abstracts, and contacting pharmaceutical companies. Trials selection: Trials were selected using an unblinded process by two reviewers. The selection criteria were randomised, controlled trials in which the efficacy of homeopathic treatment was assessed relative to placebo in patients using clinical or surrogate endpoints. Prevention trials or those evaluating only biological effects were excluded. One hundred and eighteen randomised trials were identified and evaluated for inclusion. Sixteen trials, representing 17 comparisons and including a total of 2617 evaluated patients, fulfilled the inclusion criteria. Data extraction: Data were extracted by two reviewers independently, using a summary form. Disagreements were resolved by a third person. Data synthesis: The evidence was synthesised by combining the significance levels (P values) for the primary outcomes from the individual trials. The combined P value for the 17 comparisons was highly significant P=0.000036. However, sensitivity analysis showed that the P value tended towards a non-significant value (P=0.08) as trials were excluded in a stepwise manner based on their level of quality. Conclusions: There is some evidence that homeopathic treatments are more effective than placebo; however, the strength of this evidence is low because of the low methodological quality of the trials. Studies of high methodological quality were more likely to be negative than the lower quality studies. Further high quality studies are needed to confirm these results.