ArticlePDF Available
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright
Author's personal copy
The Catalão I niobium deposit, central Brazil: Resources, geology and
pyrochlore chemistry
Pedro Filipe de Oliveira Cordeiro
a,
, José Affonso Brod
a,b
, Matheus Palmieri
a,c
,
Claudinei Gouveia de Oliveira
a
, Elisa Soares Rocha Barbosa
a,b
, Roberto Ventura Santos
a
,
José Carlos Gaspar
a
, Luis Carlos Assis
c
a
Universidade de Brasília, Campus Darcy Ribeiro ICC Central, Instituto de Geociências, Brasília-DF, 70910-900 Brazil
b
Universidade Federal de Goiás, Campus Samambaia, Instituto de Estudos Sócio-Ambientais, Universidade Federal de Goiás, Goiânia-GO, 74001-970 Brazil
c
Anglo American Brazil LTDA, Avenida Interlândia 502, Setor Santa Genoveva, Goiânia-GO, 74672-360 Brazil
abstractarticle info
Article history:
Received 24 March 2010
Received in revised form 23 June 2011
Accepted 24 June 2011
Available online 22 July 2011
Keywords:
Catalão I
Carbonatite
Phoscorite
Nelsonite
Pyrochlore
The Catalão I alkalinecarbonatitephoscorite complex contains both fresh rock and residual (weathering-
related) niobium mineralization. The fresh rock niobium deposit consists of two plug-shaped orebodies
named Mine II and East Area, respectively emplaced in carbonatite and phlogopitite. Together, these
orebodies contain 29 Mt at 1.22 wt.% Nb
2
O
5
(measured and indicated). In closer detail, the orebodies consist
of dike swarms of pyrochlore-bearing, olivine-free phoscorite-series rocks (nelsonite) that can be either
apatite-rich (P2 unit) or magnetite-rich (P3 unit). Dolomite carbonatite (DC) is intimately related with
nelsonite. Natropyrochlore and calciopyrochlore are the most abundant niobium phases in the fresh rock
deposit. Pyrochlore supergroup chemistry shows a compositional trend from CaNa dominant pyrochlores
toward Ba-enriched kenopyrochlore in fresh rock and the dominance of Ba-rich kenopyrochlore in the
residual deposit. Carbonates associated with Ba-, Sr-enriched pyrochlore show higher δ
18
O
SMOW
than
expected for carbonates crystallizing from mantle-derived magmas. We interpret both the δ
18
O
SMOW
and
pyrochlore chemistry variations from the original composition as evidence of interaction with low-
temperature uids which, albeit not responsible for the mineralization, modied its magmatic isotopic
features. The origin of the Catalão I niobium deposit is related to carbonatite magmatism but the process that
generated such niobium-rich rocks is still undetermined and might be related to crystal accumulation and/or
emplacement of a phosphateiron-oxide magma.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction
Brazil is the largest niobium producer in the World due to mining
of residual deposits overlying the Araxá and Catalão I and II
carbonatite complexes. These deposits represent more than 85% of
the world's niobium supply. Although these complexes have been
mined for more than 30 years, data from the Araxá niobium deposit is
virtually unavailable and information on the Catalão I (Cordeiro et al.,
2010, 2011) and Catalão II (Palmieri, 2011) deposits was published
only recently. Not only general information is restricted but genetic
interpretation of these niobium deposits is limited to weathering of
carbonatite related rocks(Carvalho and Bressan, 1981; Gierth and
Baecker, 1986).
Cordeiro et al. (2010, 2011) studied the primary fresh ore and
determined that pyrochlore occurs mostly in apatite- and magnetite-rich
rocks that crosscut previous phoscorites and phlogopitites. According to
the classication of Yegorov (1993) for olivine-poor member of the
phoscorite series these unusual rocks are named nelsonite. At Catalão I,
nelsonites are intimately associated with dolomite carbonatites and form
two main swarms of densely-packed thin dikes near the center of the
complex (East Area and Mine II orebodies). The direct relationship
between phoscorite-series rocks and niobium mineralization in fresh
rock has also been suggested in the Catalão II (Palmieri, 2011)andAraxá
niobium deposits (Nasraoui and Waerenborgh, 2001).
Although it is only the second largest niobium deposit in Brazil,
Catalão I is the best understood. Mining of the Catalão I residual deposit
started in 1976 with a reserve of 19 Mt at 1.08 wt.% Nb
2
O
5
(Hirano et al.,
1990; Rodrigues and Lima, 1984)andwasdiscontinuedin2001witha
remaining residual reserve of 9.65 Mt at 1.19 wt.% Nb
2
O
5
(our data)
while mining focused on the Boa Vista mine in Catalão II. Recent
modeling of the fresh rock deposit indicate a unpublished resource of
21.8 Mt at 1.22 wt.% Nb
2
O
5
for the East Area orebody and 7.2 Mt at
1.23 wt.% Nb
2
O
5
for the Mine II, adding up to a total reserve of
approximately 29 Mt at 1.22 wt.% Nb
2
O
5
for the Catalão I complex.
In this paper we studied drill core samples from the fresh rock
Catalão I deposit collected between depths of 100 and 500 m. Our
Ore Geology Reviews 41 (2011) 112121
Corresponding author. Tel.: +55 61 38779639.
E-mail address: cordeiropfo@gmail.com (P.F.O. Cordeiro).
0169-1368/$ see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.oregeorev.2011.06.013
Contents lists available at ScienceDirect
Ore Geology Reviews
journal homepage: www.elsevier.com/locate/oregeorev
Author's personal copy
main aim is to describe the deposit and provide information on
pyrochlore chemistry in order to establish the main crystal chemistry
features and substitutions. We also compare Catalão I pyrochlore
chemical composition with that of Lueshe (Nasraoui and Bilal, 2000),
Oka (Gold et al., 1986; Zurevinski and Mitchell, 2004) and Sokli (Lee et
al., 2006) to contribute for a broader model of pyrochlore evolution in
carbonatite complexes. Finally, we address some points of signicance
for the bearing of magmatic processes in the origin of a phoscorite-
related niobium deposit.
2. Niobium deposits
Most commercial niobium is from carbonatite-related sources, but
minor production comes as a byproduct of tantalum and tin mining in
pegmatites. In Table 1 we compiled and updated data from Woolley
and Kjarsgaard (2008) on the World's niobium reserves. When
possible, we report only measured, indicated and historical reserves,
hence several resources listed in Table 1 are smaller compared to what
is found in the literature.
There are several carbonatite related niobium deposits worldwide,
comprising residual and/or fresh rock resources, but only the Boa
Vista (Catalão II), CBMM (Araxá) and Niobec (Saint Honoré) deposits
are currently in production (Fig. 1). The number of untapped niobium
deposits in Africa and the general lack of information on the Brazilian
underground resources is noteworthy. Detailed information on
Brazilian carbonatite-related deposits is given by Biondi (2005), but
an equivalent study of African niobium deposits is still to be made.
3. The Alto Paranaíba Igneous Province (APIP)
The APIP is a NW trending province of Late-Cretaceous alkaline
igneous rocks intruding Neoproterozoic rocks of the Brasília Belt,
between the NE border of the Paleozoic Paraná Basin and the SW border
of the Archean São Francisco Craton. The province origin is attributed to
the initialimpact of the Trindade Mantle Plumebeneath Central Brazil at
ca. 85 Ma. According to Gibson et al. (1995) and Thompson et al. (1998),
thinningof the lithosphereunder the BrasíliaBelt allowed mantleplume
heat to penetrate by conduction and advection causing melting of
readily fusible, K-rich parts of the lithospheric mantle.
Xenoliths of perovskite-rich pyroxenite (bebedourite) and pyroxe-
nite in APIP kamafugite lavas and pyroclastics are analogous to
ultramac rocks occurring in the carbonatite complexes, thus providing
evidence of the intimate association between kamafugites and
Fig. 1. Grade-tonnage data showing metal grades (wt.% Nb) for carbonatite-related
niobium deposits (please refer to Table 1 for references). Stars are deposits in
production and circles represent resources.
Table 1
Comparison of carbonatite-related niobium deposits (adapted from Woolley and Kjarsgaard, 2008).
Complex Country Status Style Association Resources Reserve Mt Nb
2
O
5
% Nb% Main references
St-Honoré Canada Active mine Primary Nb+REE Measured and indicated 32 0.56 0.39 www.iamgold.com (Resources 2009)
Araxá Brazil Active mine Residual Nb +Fe+P 462 2.48 1.73 Rodrigues and Lima (1984),
Hirano et al. (1990)
Catalão II Brazil Active mine Residual Nb Probable reserve 3.4 1.67 1.17 http://www.cbmm.com.br/ (conference
paper by Guimarães and Weiss)
Lueshe Congo Past producer Residual Nb 30 1.34 0.94 Deans (1966)
Sukulu Uganda Past producer Residual P+ Nb 230 0.25 0.17 Deans (1966); van Straaten (2002)
Oka Canada Past producer Primary Nb Measured, Indicated
and historical reserves
37.5 0.53 0.37 http://www.niocan.com/
(Technical Report February 10 2010)
Catalão I Brazil Past producer
and resource
Residual Nb+ Fe+ P 19 1.08 0.76 Rodrigues and Lima (1984), Hirano et al.
(1990)
Catalão I Brazil Resource Primary Nb +Fe+P Measured and indicated 29 1.22 0.85 This paper
Araxá Brazil Resource Primary Nb+Fe+ P 940 1.6 1.12 Issa Filho et al. (1984)
Tapira Brazil Resource Residual Nb 166 0.73 0.51 Melo (1997)
Bonga Angola Resource Primary Nb 824 0.48 0.34 Pena (1989); Kamitani and Hirano
(1991)
Bingo Congo Resource Residual Nb + P 13 3.3 2.31 Woolley (2001)
Mrima Kenya Resource Residual Nb+REE 75 0.7 0.49 Deans (1966); Notholt et al. (1990);
Pell (1966); Woolley (2001)
Ondurakorume Namibia Resource Primary P+Nb+REE 8 0.3 0.21 Verwoerd (1967, 1986); Woolley
(2001)
Mbeya
(Panda Hill)
Tanzania Resource Primary Nb+P 125 0.3 0.21 Deans (1966); Woolley (2001);
van Straaten (2002)
Aley Canada Resource Primary N+P +REE 20 0.7 0.49 Richardson and Birkett (1996)
Bone Creek
(Fir)
Canada Resource Primary Ta+ Nb Indicated 23.1 1.14 0.80 www.commerceresources.com
(Technical Report June 20 2007)
Argor Canada Resource Primary Nb+P +Zr 62.5 0.52 0.36 Stockford (1972); Woolley (1987);
Sage (1988)
Martison Lake Canada Resource Residual P +Nb Measured and indicated 62.2 0.34 0.24 Woolley (1987);www.sedar.com
(Technical Report May 31 2007)
Nemegosenda
Lake
Canada Resource Primary Nb Inferred 49.9 0.43 0.30 www.sarissaresources.com
(Technical Report July 2009)
Seis Lagos Brazil Resource Residual Nb Measured and indicated 239 2.47 1.73 Justo and Souza (1986)
113P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
carbonatites in the APIP (Brod, 1999; Brod et al., 2000, 2001). Those
authors argued in favor of a common subcontinental lithospheric
mantle origin for kamafugites and the parental magma of APIP
complexes (phlogopite picrite). The temporal and spatial association
between these alkaline rocks denes a kamafugiticcarbonatitic
association in the APIP, similar to those occurring in Italy (Stoppa et
al., 1997; Stoppa and Cundari, 1995)andChina(Yang and Woolley,
2006).
APIP carbonatite complexes also host phosphate (Araxá, Catalão I
and II, Tapira and Salitre), titanium (Serra Negra, Salitre, Tapira and
Catalão I), and rare earth (Catalão I) deposits, as well as occurrences of
vermiculite, copper, barite and magnetite. Thus, the APIP is of great
economic interest and can provide key information for mineral
exploration of carbonatite-related deposits.
4. The Catalão I Carbonatite Complex
The Catalão I Complex (Fig. 2) is located in Central Brazil at 18°08
S, 47°48W, near the cities of Catalão and Ouvidor. The complex has
intruded quartzites and schists of the Late Proterozoic Araxá Group as
a vertical pipe with a diameter of ~6 km at surface, creating a dome-
like structure. The age of the intrusion is reported by Sonoki and Garda
(1988) as 85 ±6.9 Ma (KAr, phlogopite). The complex can be divided
into an outer zone dominated by phlogopitite and an inner zone
composed mostly of dolomite carbonatites and phoscorite-series
rocks.
The outer zone comprises phlogopitites and rare dunites, pyroxe-
nites and bebedourites (perovskite-rich pyroxenites). Phlogopitite is
interpreted as the result of interaction of former ultramacrockswith
carbonatite uids (Brod et al., 2001). Ultramac relicts within
phlogopitite, which sometimes retain the original mineral assemblage
unaffected by uid alteration, are a very strong evidence for phlogopi-
tization. The dominance of phlogopitite over other rock types in the
outer zone attests to the extremely intense carbohydrothermal
alteration that occurred in the complex.
The inner zone is composed of magnetiteapatite-rich rocks and
carbonatite. The Catalão I fresh rock deposit is intimately related to
these rocks and can be divided into Mine II and East Area orebodies
(Fig. 3). Mine II is a roughly oval, pipe-like body, 200 m long and 100 m
wide, hosted mainly by dolomite carbonatite. East Area is an L-shaped
orebody, 400 m long, 200 m wide hosted by phlogopitite. Both
orebodies are open at depth and deep drilling conrmed their
extension at until a depth of at least 800 m.
Fig. 4 shows the general pipe-like geometry of East Area and Mine
II orebodies. Despite their shape, the orebodies do not represent
single, homogeneous pyrochlore-bearing magnetiteapatite rocks,
but rather dike swarms up to 2 m wide and plugs up to 10 m wide.
The main Nb-mineral within the orebodies is pyrochlore. Aside
from pyrochlore modal content, ore grades are also controlled by
Fig. 2. Geological sketch of the Catalão I Complex. The fresh rock niobium deposit occurs in the center of the complex comprising the nelsonite unit.
Adapted from Brod et al. (2004).
Fig. 3. Combination of an Ikonos image showing the roughly circular Mine II open pit
and a 3-D model of the Mine II and East Area orebodies.
114 P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
frequency and width of nelsonite dikes and can be largely diluted by
barren wallrocks (Fig. 5A, phlogopitite). Because of their dike-like,
plug-like and vein-like shape, these terms are used in a generally
descriptive sense.
The occurrence of magnetiteapatite rich rocks, named phoscorite,
in carbonatite complexes was reported by several authors (Krasnova
et al., 2004 and references therein) and due to their rarity,
nomenclature remains problematic. A discussion on phoscorite series
rocks is provided in Krasnova et al. (2004). We favor an adapted
version of the nomenclature of Yegorov (1993) as used by Cordeiro et
al. (2010, 2011). Therefore, phoscorite is an olivine-, phlogopite-,
apatite- and magnetite-bearing rock and nelsonite is a phlogopite-,
apatite- and magnetite-bearing rock.
In Catalão I, the phoscorite-series can be divided into two stages,
according to mineral chemistry and modal mineralogy. Early-stage
phoscorites are grouped under the P1 unit (Fig. 5B). Their main
characteristics are a) breccia structure; b) emplacement as small plugs
and dikes; c)no obvious direct relationship with carbonatite; d) olivine
occurs as altered to minute tetra-ferriphlogopite, indicating interaction
with carbohydrothermal uids; and e) pyrochlore is rare (although this
stage is an important source of apatite for the Catalão I residual
phosphate deposit). Late-stage P2 and P3 units (Fig. 5B and C) are
nelsonites and represent the bulk of the fresh rock niobium mineral-
ization. Nelsonites can be distinguished from early-stage phoscorites by
a) emplacement as dikes and small plugs; b) occurrence of internal
pockets of dolomite carbonatite; c) no visible evidence of carbohy-
drothermal alteration; d) absence of olivine; e) abundant pyrochlore,
reaching up to 50 vol.% in some samples.
Dolomite carbonatite is abundant, but upto 15 m wide plugs and up
to 2 m wide dikes of calcite carbonatite occur. Phoscorite is intensely
crosscutby dolomite carbonatite dikes, whichoriginates the breccia-like
aspect of these rocks. Widespread alteration of olivine crystals within
phoscorite to tetra-ferriphlogopite suggests that the inner zone was also
affected by carbohydrothermal uids. Nelsonite, on the other hand,
shows no sign of metasomatic alteration, indicating that its emplace-
ment occurred later, after the widespread alteration event.
Carbonatites, particularly dolomite carbonatites, dikes and plugs
are widespread in Catalão I and are especially abundant within P1.
One particular set of dolomite carbonatite, designated here DC, is
intimately related to P2 and P3 and may occur within them as
centimetric to metric pockets as well as dikes and plugs. DC can be
easily discriminated from earlier generations of dolomite carbonatites
by the absence of olivine and presence of pyrochlore and ilmenite.
4.1. Primary ore
Primary (fresh) rock ore in Catalão I is represented by nelsonite
dikes, but subordinate DC dikes with more than 1% modal pyrochlore
occur. P2 nelsonite is apatite-rich and its essential silicate phases are
tetra-ferriphlogopite crystals with phlogopite cores. Apatite is
prismatic, frequently zoned with cores surrounded by a uid
inclusions-rich rim. Magnetite is interstitial and may contain very
thin (ca. b0.01 mm) ilmenite lamellae.
P3 is magnetite-rich (apatite/magnetite b0.8 vol.%) and its
essential silicate phase is tetra-ferriphlogopite. In contrast to P2,
aluminous phlogopite cores are virtually absent. Apatite is prismatic
to rounded, but also occurs as aggregates of anhedral crystals, usually
associated with massive anhedral magnetite clusters. Magnetite
forms interstitial masses and may reach up to 71 vol.%.
Dolomite carbonatite (DC) occurs as pockets within nelsonites and
also as independent dikes and veins. Although other dolomite
carbonatite phases occur in the complex, the variety genetically
related to nelsonites crosscuts all rock types. DC dikes are believed to
Fig. 4. Schematic model of the fresh rock niobium ore, where apatite nelsonite P2, magnetite nelsonite P3, and dolomite carbonatite DC crosscut phlogopitite. The detail shows the
common textural feature of DC pockets.
Fig. 5. Main rock types of the Catalão I Nb-deposit. A. Phlogopitite with relicts of the
original ultramac rock cut by a magnetite nelsonite dike (P3) with dolomite
carbonatite (DC) pockets. B. Coarse-grained phoscorite (P1), cut by P3 dikes with DC
pockets. C. Equigranular apatite nelsonite (P2) with DC pockets.
115P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
represent the product of extraction of carbonatite from the nelsonite
crystallizing assemblage (Cordeiro, 2009). The pyrochlore content in
DC varies, but it is hardly more than 5 vol.%.
Pyrochlore from P2 and P3 nelsonites are texturally similar and
generally ne-grained. They occur as anhedral to subhedral brownish
or yellowish crystals often showing optical zoning (Fig. 6A, B). DC
pyrochlore is often euhedral to subhedral and may occur as inclusions
in ilmenite, together with betate and columbite, and in magnetite
(Cordeiro, 2009). It is medium- to ne-grained, often optically zoned
(Fig. 6C). Aggregates of pyrochlore and apatite occur within DC
(Fig. 6D).
5. Pyrochlore chemistry
Pyrochlore composition was determined by WDS using a CAMECA
SX-50 electron microprobe at the University of Brasília. The analytical
conditions were beam diameter 2 μm, 20 kV, 20 nA and two minute
count times. Detection limits varied between 0.01 and 0.05 wt.%,
except Nb and Ta (0.07%) and La, Ce and Y (0.2%).
The pyrochlore general formula is A
2m
B
2
X
6w
Y
1n
·pH
2
O(Atencio
et al., 2010; Lumpkin and Ewing, 1995). The Asite is occupied by large
anions suchas As, Ba, Bi, Ca, Cs, K, Mg, Mn, Na, Pb, REE, Sb,Sr, Th, U and Y.
The Bsite comprises smaller and highly charged cations such as Nb, Ta,
Ti, Zr, Fe
3+
, Al and Si (Zurevinski and Mitchell, 2004)andrarelyW
+5
(Caprilli et al., 2006). The Yand Xanions can be O, OH and F. Vacancies
arecommonintheAand Ysites. In this paper, pyrochlore has been
calculated to produce a total of 2 cations in the Bsite (Wall et al., 1996).
Pyrochlore classication is originally described by Hogarth (1977)
but an up to date CNMNC-IMA-approved nomenclature was published
by Atencio et al. (2010). The new nomenclature is composed of two
prexes and a root name based on the content of Y,Aand Bsites. The Y
site content (cation, anion, H
2
O or vacancy) determines the rst prex
and the A site content refers to the second prex. The dominant
element in the Bsite determines the root name: pyrochlore (Nb),
microlite (Ta), roméite (Sb), betate (Ti) and elsmoreite (W).
The abundance of Nb over other Bsite elements classies Catalão I
pyrochlore supergroup minerals within the pyrochlore group (Fig. 7).
Pyrochlore representative compositions are shown in Table 2.Data
published by Fava (2001) indicates that more than 95% of all Catalão I
fresh rock pyrochlore exceeds 0.5 apfu and therefore should have the
prexuor. However, we haven't analyzed uorine and Atencio et al.
(2010) suggest prexes should be droped in face of lack of data to avoid
misclassication. Therefore the rst prex won't be used in this paper.
Fig. 6. Texturalcharacteristicsof nelsonitespyrochlore.A. P2 nelsonite withsubhedral, brownto orange pyrochlore.B. P3 nelsonitewith anhedral tosubhedral brownto orange pyrochlore.
C. Sector zoning in pyrochlore from DC. D. P2 aggregates within DC, crossed polars. (Mag = magnetite; Apt = apatite; TFP = tetra-ferriphlogopite; Carb= carbonate; Pcl = piroclore).
Fig. 7. Triangular NbTiTa pyrochlore classication scheme (Atencio et al., 2010;
Hogarth, 1977, 1989) showing fresh rock pyrochlore as black circles. Outlines for
pyrochlore compositions from the Catalão I residual deposit (square pattern, Fava,
2001), Oka (gray, Gold et al., 1986; Zurevinski and Mitchell, 2004), Sokli (solid black
outline; Lee et al., 2004, 2006) and Salitre (dotted black outline, Barbosa, 2009) are
shown for comparison. BET = betate, PCL = piroclore, MCL = microlite.
116 P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
Nb
2
O
5
content varies from 50 to 70 wt.%. The average TiO
2
content
ranges from 3 to 5 wt.%, but may reach up to 17 wt.% in natropyrochlore
inclusions in ilmenite from DC. Most analysis show low Ta
2
O
5
, ranging
from b1 wt.% to a maximum of 2 wt.% in one grain from P2 and in
pyrochlore crystals within DC ilmenite. ZrO
2
and SiO
2
reach up to 5 and
3 wt.% respectively.
Pyrochlore from fresh rock nelsonite has Ca and Na as the main A
site elements, ranging up to 19 and 8 wt.%, respectively. Therefore
calciopyrochlore dominates in the Catalão I Nb deposit followed by
natropyrochlore. Ba is one of the most common substitutes for both
Na and Ca in this site and BaO content reaches 18 wt.% whereas SrO
may reach 7 wt.%. The sum of the analyzed rare earth (La+Ce+Y)
oxides varies from 3.5 to 6 wt.%. ThO
2
is up to 6 wt.% but its average
content is b2 wt.%. UO
2
is up to 4 wt.%, averaging b1 wt.%. FeO may
reach 3 wt.%, and MnO is always below 1 wt.%. Several analyses
indicate the occurrence of kenopyrochlore (zero-valent-dominant
pyrochlore) in the Catalão I Nb fresh rock deposit but according to
data from Fava (2001) they are dominant in the residual ore.
Several studies tried to explain the evolution of pyrochlore
composition throughout magmatic evolution (Chakhmouradian and
Williams, 2004; Hogarth et al., 2000; Knudsen, 1989). During the early
stages of carbonatite magmatism Nb and Ta are probably transported
as phosphate and uorine complexes, which might explain the
common correlation between the occurrence of apatite and pyrochlore
(Hogarth et al., 2000; Knudsen, 1989). Knudsen (1989) argued that
during the carbonatitic magmatism Nb is more soluble than Ta, which
could explain the occurrence of Ta-rich pyrochlore in primitive
magmas and Nb-rich, Ta-poor pyrochlore in more evolved, late stage
ones. Hogarth et al. (2000) concluded that the normal path of
evolution of pyrochlore in carbonatites is one of progressive
enrichment in Na, Ca and Nb and depletion in Ta, Th, REE, Ti and U. A
more detailed evolution scheme is proposed by Chakhmouradian and
Williams (2004) where Th-enriched CaNa dominant pyrochlore
evolves toward BaSr-rich compositions in calcitedolomite carbona-
tites from Kola carbonatite complexes.
Pyrochlore from the Catalão I fresh rock deposit seems to t well
into the proposed scheme, but early TaThU enriched pyrochlore
phases are not present. Pyrochlore analyses of several stages of Sokli
phoscorites (Lee et al., 2004; 2006) conrm the trend of early TaUTh
pyrochlore toward evolved CaNa compositions. Thus, CaNa pyro-
chlore in P2 and P3 nelsonites and related DC dolomite carbonatites
can be interpreted as belonging to a more evolved phase, similar to the
late-stage D5 dolomite carbonatite phase in the Sokli complex.
5.1. Chemical evolution of pyrochlore
The range of P2 and P3 pyrochlore chemical compositions overlaps
widely and we could not nd an applicable chemical criterion to
Table 2
Representative compositions of pyrochlore group minerals from the Catalão I primary niobium deposit (b.d. = below detection limit; calcio = calciopyrochlore; keno =
kenopyrochlore; natro = natropyrochlore).
Sample 178-
2C
192B-
2
192B-
8
056-2 178-1 183-
03
339-
3C
157B-
06
157B-
2
230B-
2B
230B-
2B
149-1 093-
3
056-
1
183-
05
304B-
2
170-
6
170-4 230A-
2
170-
2
Type calcio calcio calcio calcio calcio calcio calcio calcio calcio calcio calcio calcio keno keno keno keno keno natro natro natro
Unit P2 P2 P2 DC P2 P3 P2 P3 P3 P3 P3 DC P3 DC P3 P3 DC DC P2 DC
Nb
2
O
5
62.66 59.26 55.76 59.93 61.68 55.58 55.26 64.26 63.14 63.39 63.39 68.71 59.99 50.10 62.17 52.26 63.96 72.56 63.76 52.85
Ta
2
O
5
0.15 b.d b.d. b.d. 0.33 0.70 0.16 b.d. b.d. b.d. b.d. 0.28 0.81 0.77 0.57 0.80 0.81 1.61 0.37 0.92
SiO
2
b.d. b.d. 0.16 0.12 0.61 0.57 b.d. b.d. 0.04 b.d. b.d. b.d. 1.20 2.93 b.d. 0.61 1.10 b.d. b.d. b.d.
TiO
2
3.52 4.64 5.59 6.15 3.15 4.16 3.67 3.91 4.71 4.35 4.35 2.04 3.16 5.27 4.87 2.37 1.26 0.78 4.20 17.35
ZrO
2
0.17 2.05 0.90 2.13 0.13 3.95 0.26 1.78 1.65 0.53 0.53 0.53 b.d. 2.44 0.32 3.20 0.75 b.d. 0.94 0.09
UO
2
0.36 b.d. b.d. 1.02 0.59 2.35 0.19 0.14 b.d. b.d. b.d. b.d. 0.77 1.01 1.17 3.72 0.12 b.d. 0.82 b.d.
ThO
2
1.08 3.39 2.13 2.04 1.09 2.69 1.44 1.12 1.13 2.40 2.40 0.22 0.41 2.15 4.66 4.94 0.74 0.19 1.72 b.d.
La
2
O
3
1.21 0.39 0.75 0.62 1.14 0.62 0.87 0.95 0.68 0.71 0.71 1.63 1.30 0.32 1.13 0.42 0.92 0.37 0.96 0.35
Ce
2
O
3
4.20 2.90 2.85 2.37 3.42 2.92 3.09 2.47 2.00 2.72 2.72 3.26 3.37 2.91 4.09 3.04 3.54 0.73 2.68 0.24
Y
2
O
3
0.44 0.57 0.49 0.55 0.32 0.26 0.34 0.45 0.46 0.53 0.53 0.57 0.26 0.40 0.48 0.20 0.68 0.39 0.55 0.20
FeO 0.14 0.50 0.70 0.40 0.94 1.93 0.31 0.86 0.46 0.20 0.20 0.18 0.69 4.47 0.40 1.49 0.77 0.18 0.16 4.22
MnO b.d. b.d. b.d. b.d. b.d. 0.36 b.d. b.d. b.d. b.d. b.d. 2.00 0.11 b.d. b.d. 0.08 b.d. b.d. b.d. 0.90
CaO 9.02 14.31 14.46 16.14 7.46 8.53 14.50 13.11 15.74 11.86 11.86 9.87 5.11 2.80 8.51 3.34 0.12 11.32 12.05 10.98
BaO 0.35 b.d. 0.24 b.d. 4.89 3.67 0.13 b.d. b.d. b.d. b.d. b.d. 11.03 14.61 2.81 12.24 15.20 0.18 b.d. b.d.
SrO 2.78 0.69 1.06 1.17 3.95 3.48 2.41 2.29 1.59 2.35 2.35 2.50 4.65 2.23 2.03 3.56 0.75 4.61 2.08 3.01
Na
2
O 5.59 4.23 3.83 4.71 4.09 2.52 2.96 5.94 6.09 5.93 5.93 7.31 0.34 0.77 1.16 0.38 1.29 7.83 6.46 7.75
Total 91.67 92.97 89.07 97.41 93.87 94.28 85.59 97.32 97.81 95.04 95.04 97.17 93.25 93.18 94.43 92.65 92.01 100.84 96.78 98.92
Structural formulae calculated based on B-site elements = 2
Nb 1.82 1.71 1.68 1.65 1.80 1.62 1.79 1.77 1.73 1.78 1.78 1.88 1.75 1.46 1.75 1.70 1.83 1.94 1.77 1.28
Ta b.d. b.d. b.d. b.d. 0.01 0.01 b.d. b.d. b.d. b.d. b.d. 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.01
Si b.d. b.d. 0.01 0.01 0.04 0.04 b.d. b.d. b.d. b.d. b.d. b.d. 0.08 0.19 b.d. 0.04 0.07 b.d. b.d. b.d.
Ti 0.17 0.22 0.28 0.28 0.15 0.20 0.20 0.18 0.22 0.20 0.20 0.09 0.15 0.26 0.23 0.13 0.06 0.04 0.19 0.70
Zr 0.01 0.06 0.03 0.06 b.d. 0.13 0.01 0.05 0.05 0.02 0.02 0.02 b.d. 0.08 0.01 0.11 0.02 b.d. 0.03 b.d.
B
site
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
U 0.01 b.d. b.d. 0.01 0.01 0.03 b.d. b.d. b.d. b.d. b.d. b.d. 0.01 0.01 0.02 0.06 b.d. b.d. 0.01 b.d.
Th 0.02 0.05 0.03 0.03 0.02 0.04 0.02 0.02 0.02 0.03 0.03 b.d. 0.01 0.03 0.07 0.08 0.01 b.d. 0.02 b.d.
La 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0.01 0.03 0.01 0.02 0.01 0.02 0.01
Ce 0.10 0.07 0.07 0.05 0.08 0.07 0.08 0.06 0.04 0.06 0.06 0.07 0.08 0.07 0.09 0.08 0.08 0.02 0.06 b.d.
Y 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01
Fe2 0.01 0.03 0.04 0.02 0.05 0.10 0.02 0.04 0.02 0.01 0.01 0.01 0.04 0.24 0.02 0.09 0.04 0.01 0.01 0.19
Mn b.d. b.d. b.d. b.d. b.d. 0.02 b.d. b.d. b.d. b.d. b.d. b.d. 0.01 b.d. b.d. 0.01 b.d. b.d. b.d. 0.04
Ca 0.62 0.98 1.03 1.05 0.52 0.59 1.11 0.86 1.02 0.79 0.79 0.64 0.35 0.19 0.57 0.26 0.01 0.72 0.79 0.63
Ba 0.01 b.d. 0.01 b.d. 0.12 0.09 b.d. b.d. b.d. b.d. b.d. b.d. 0.28 0.37 0.07 0.35 0.38 b.d. b.d. b.d.
Sr 0.10 0.03 0.04 0.04 0.15 0.13 0.10 0.08 0.06 0.08 0.08 0.09 0.17 0.08 0.07 0.15 0.03 0.16 0.07 0.09
Na 0.70 0.52 0.50 0.55 0.51 0.32 0.41 0.70 0.72 0.71 0.71 0.86 0.04 0.10 0.14 0.05 0.16 0.90 0.77 0.81
A
site
1.60 1.70 1.75 1.79 1.50 1.42 1.79 1.79 1.91 1.73 1.73 1.73 1.03 1.12 1.09 1.14 0.75 1.83 1.78 1.78
117P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
discriminate pyrochloresfrom the two units. According to Cordeiro et al.
(2010) other minerals from P2 and P3, such as phlogopite and apatite,
aren't discernible from each other. This suggests only minor chemical
differences in the magmas that produced the two units. Therefore, the
compositional spread seenin our data might be related to factors such as
a) zoning (Chakhmouradian and Mitchell, 2002; Hogarth et al., 2000);
b) hydrothermal alteration (Chakhmouradian and Mitchell, 1998;
Geisler et al., 2004); c) weathering (Lumpkin and Ewing, 1995; Wall
et al., 1996). Chakhmouradian and Zaitsev (1999) point out that several
types of pyrochlore may be found in the same complex or even within
the same facies. Hence, in order to address the compositional variation
we need a classication criterion other than lithology.
Lumpkin and Ewing (1995) argued that Asite large cations such as
K, Ba and Sr can be useful in the identication of pyrochlore chemical
variation because their occurrence is related to the host rock
alteration. Accordingly, we adopted a division based on the variation
of the Asite content, allowing us to discriminate between three
pyrochlore groups (Fig. 8): a) calciopyrochlore; b) natropyrochlore;
and c) kenopyrochlore.
The occurrence of vacancy in pyrochlore from the fresh rock deposit
is an important feature of its evolution. Vacancy, sometimes accompa-
nied by Ba-enrichment, was attributed to alteration at Sokli (Lee et al.,
2006), to hydrothermal overprint at Oka (Zurevinski and Mitchell,
2004) and Lueshe (Nasraoui and Bilal, 2000) and to both oscillatory
zoning and alteration in the Bingo carbonatite (Williams et al., 1997).
The trend from calciopyrochlore and natropyrochlore toward
kenopyrochlore illustrated in Fig. 8 is related to the exchange of Ba for
Ca+Na, and consequent vacancy, in the Asite. Similar trends can be
found in Lueshe (Nasraoui and Bilal, 2000) and Bingo (Williams et al.,
1997) pyrochlore, described as product of weathering, and in Kola
carbonatites pyrochlore (Chakhmouradian and Williams, 2004), as
derived from supergene or low-temperature hydrothermal alteration.
An additional trend from calciopyrochlore toward natropyrochlore
can be considered. Despite considerable scatter, calciopyrochlore,
natropyrochlore and the elds of Oka and Salitre fresh rock pyrochlore
show an overall alignment to the 1:1 line in a Na vs. Ca diagram. This
trend is even more marked in crystal core composition from the
Catalão I weathered pyrochlore deposit (Fava, 2001). Taking into
account that most natropyrochlore are inclusions in ilmenites from
the last stage of magmatic evolution in the deposit (DC unit) and that
ilmenite is one of the last minerals to crystallize, natropyrochlore
formed at such stage would represent the most evolved pyrochlore
composition. Therefore, we interpret that the negative correlation of
Ca and Na represent the evolution from earlier calciopyrochlore
toward a late stage natropyrochlore.
5.2. Comparison with pyrochlore from the residual deposit
Pyrochlore chemistry from the Catalão I fresh rock and residual
deposits shows no clear differences in the Bsite, but some important
substitutions occur the Asite. Fava (2001) described the mineralogical
characteristics of pyrochlore from the residual deposit developed over
Catalão I nelsonites and carbonatites and concluded that weathering
induced substitutions in the Asiteandoriginatedbariopyrochlore,
renamed here as Ba-enrichedkenopyrochlore according to the
nomenclature of Atencio et al. (2010). On the other hand, Catalão I fresh
rock and residual Ba-enriched kenopyrochlore are different from each
other. Fresh rock crystals show a negative SrCa correlation that leads
toward Sr-enriched kenopyrochlore and the same correlation occurs in
the residual deposit pyrochlore crystal cores (Fava, 2001). However, the
majority of pyrochlore in the residual deposit is Ba-enriched kenopyro-
chlore that lack a negative SrCa correlation. These features suggest that
different processes originated fresh rock kenopyrochlore and the residual
deposit kenopyrochlore.
We suggest that the chemical shift from calciopyrochlore and
natropyrochlore toward kenopyrochlore in the Catalão I fresh rock
deposit is due to interaction with hydrothermal uids that also carried
Sr. Later weathering-related uids originated the residual deposit Ba-
enriched kenopyrochlore by depleting pyrochlore from Ca and Na.
With weathering progression even Ba is eventually leached from
pyrochlore leading to its destruction and consequent formation of
secondary Nb-enriched minerals in the soil (Wall et al., 1999).
6. Carbon and oxygen isotopes
Carbon and oxygen isotopes from DC pockets dolomite (Table 3)
were analyzed to establish a correlation with the pyrochlore chemistry
(Fig. 9). Carbonates were extracted from pockets with a manual
tungsten-carbide drill to avoid interference from different carbonate
generations or contamination with externalsources. Oxygen and carbon
Fig. 8. Ternary plots of Ca, Na and Asite vacancy. Compositional pyrochlore elds of other deposits are shown for comparison. Data sources as in Fig. 7, plus the Bingo eld from
Williams et al. (1997).
118 P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
isotope data were obtained reacting carbonate samples with 100%
H
3
PO
4
at 72 °C, using a Gas Bench II System connected to a Delta V
Advantage gas-source mass spectrometer at the University of Brasília.
Results are expressed in delta notation, relative to the PDB(carbon) and
SMOW (oxygen) standards.
Data from Table 3 show that gray fresh dolomite (093 G1, 056) has
a mantle-like carbon- and oxygen-isotope signature, interpreted as
magmatic, whereas white brittle dolomite in the same samples has
higher δ
18
O
SMOW
values than gray calcite and is interpreted as affected
by low temperature H
2
O-rich uids probably of meteoric origin. The
same uids are likely to have altered pyrochlore, leaching Ca and Na
and leaving vacancy while partially replacing them with Ba. This
hypothesis is supported by comparison between calciopyrochlore or
natropyrochlore cores with Ba-enriched kenopyrochlore rims, sug-
gesting uid interaction. This would be consistent with general
alteration models (Wall et al., 1999).
7. Genetic implications
The dike-like emplacement of nelsonites and its relationship with
DC pockets is an important feature of the Catalão I Nb deposit,
suggesting a magmatic origin for the Nb-ore. Cordeiro et al. (2011)
showed that DC pockets within nelsonites have mantle-like C- and O-
isotope signatures and suggested Rayleigh fractionation and mag-
matic degassing as important processes for the evolution of such
rocks. The authors' results have also shown that metasomatism and
weathering played a role in the carbon and oxygen isotopic variations
of DC carbonates, albeit unrelated to the formation of pyrochlore.
Accordingly, we interpret the occurrence of pyrochlore in nelsonites
and dolomite carbonatite as an igneous process.
The genesis of late-stage phoscorite-series rocks, and therefore of
the Catalão I fresh rock niobium deposit, is still a matter of
controversy. Krasnova et al. (2004) argues in favor of AFC and/or
liquid immiscibility in generating phoscorites. Lee et al. (2004)
described chemical discrepancies between Sokli carbonatites and
related phoscorites as evidence for immiscibility that generated both a
carbonatite and a phoscorite melt. However, the authors point out
that experimental evidence for such process is still lacking.
The best evidence we could nd for the occurrence of phoscorite
melts is given by Panina and Motorina (2008).Theystudiedmelt
inclusions from the Krestovskii carbonatite complex, in the Maimecha
Kotui province, Russia, and suggested a carbonatite immiscibility event
that originated alkali-rich phosphate melts. Evidence of FePTi-rich
melts exists in carbonatite-unrelated settings such as the andesitic
Antauta subvolcanic complex in Peru (Clark and Kontak, 2004). The
authors describe Fe-rich melt inclusions that are interpreted as derived
from nelsonite-like magma, indicating that such unusual magmas may
indeed occur naturally.
Formation of cumulates is another possible mechanism in the
generation of apatitemagnetite rich rocks. Mitchell (2005) argues
that potential niobium ore rocks in carbonatites do not represent
liquid compositions nor reect the Nb content of the parental magma.
Based on melt inclusion data, Veksler et al. (1998) argue that crystal
fractionation resulted in the formation of calcite carbonatites, which
evolved to forsteriteapatitemagnetitephlogopite carbonatites
with subordinate phoscorite cumulates and dolomite carbonatites.
According to Downes et al. (2005) the Kola Alkaline Province
phoscoritecarbonatite rocks series are the result of complex
differentiation of an extremely phosphorous and iron enriched
carbonatesilicate melt. They also favor the formation of cumulates
as a mean of generating phoscorites.
Table 3
Representative analysis of carbon and oxygen isotopes of carbonates from pyrochlore-bearing DC pockets.
Sample 056 056E 93 093G1 178G1 178G2 192G1
Type Carbonatite Carbonatite DC pocket in P2 DC pocket in P2 DC pocket in P2 DC pocket in P2 DC pocket in P2
δ
13
C
PDB
5.53 5.86 5.38 5.53 5.85 5.16 6.14
δ
18
O
SMOW
11.80 20.23 19.99 10.42 15.92 11.06 8.59
Fig. 9. Comparison between pyrochlore composition and carbonoxygen isotope signatures of carbonates within the same pocket. Note that pyrochlore rims from samples 093 and
056 have systematically higher Asite vacancies than corresponding cores. In sample 056, the core is calciopyrochlore and the rim is Ba-enriched kenopyrochlore, while samples 192B
and 178 show only a slight Ba-enrichment and little vacancy. Carbon and oxygen isotopes show that samples with kenopyrochlore rims have wider variation in the δ
18
O
SMOW
content
while less altered samples preserve the original composition. Stable isotope elds are from Cordeiro et al. (2011).
119P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
At this stage we are unable to determine which of the described
mechanisms was involved in the formation of the Catalão I fresh rock
niobium deposit. Despite the occurrence of phosphate melts within
carbonatite complexes, crystal accumulation is likely to be involved in
the generation of nelsonites. DC pockets within nelsonite dikes are
sometimes interconnected and low viscosity carbonatite lava could
ow in the open space. Apatite, pyrochlore, magnetite and phlogopite
(i.e. nelsonite) could crystallize in situ until all open spaces were lled
and ow would stop. Such mechanism could explain both the
occurrence of DC pockets and the related pyrochlore-bearing
magnetiteapatite-rich rocks.
Whereas magmatic controls were vital in the formation of the
fresh rock niobium deposit, weathering played an important role in its
enrichment, consequently forming the residual deposit. All rocks
within the Catalão I Complex are easily weathered compared to the
country-rocks (fenites and quartzites). The dome-like structure
prevents erosion and allows the establishment of very thick soil
cover over the alkaline rocks. On average, soil depth is 80 m, but
reaches at least 150 m over phoscorite-series rocks. A similar pattern
occurs at Seblyavr in the Kola Alkaline Province, Russia (Balaganskaya
et al., 2007) where a weathering crust up to 200 m deep is developed
over phoscorite-series rocks in the intrusion core. We believe that the
abundance of fractured easily-weathered carbonatites, either as dikes
cutting early-stage phoscorites or as DC pockets within nelsonites,
contributed to the development of such deep soils and the generation
of the residual deposit.
8. Conclusions
1) The pipe-like niobium orebodies at Catalão I consist of dike
swarms of late-stage phoscorite-series rocks (nelsonites) that cut
previous phlogopitite and carbonatite.
2) Weathering of such rocks originated the residual deposit, where
leaching of carbonates induced a residual concentration of
pyrochlore and other weathering-resistant phases.
3) Catalão I phocorite-series rocks can be divided into phoscorites (P1),
and the niobiumores apatite nelsonite (P2) and magnetite nelsonite
(P3). The mineralization can be classied as Nb (+Fe+P) on the
grounds of high modal content of apatite and magnetite. Dolomite
carbonatites (DC) associated with nelsonites are a subordinate
source of pyrochlore but their grades are comparatively low, hardly
above 0.3 wt.% Nb
2
O
5
.
4) The dominance of calciopyrochlore over other Nb-bearing phases
in the fresh rock deposit and its chemical variability are
independent of lithology. This indicates that pyrochlore formation
chemical conditions were similar in P2, P3, and DC.
5) Substitution of NaCa for Ba in the fresh rock pyrochlore structure,
leading to the formation of Ba-enriched kenopyrochlore, and the
high δ
18
O
SMOW
signature of the associated carbonates suggest
interaction with hydrothermal uids. These uids affected
nelsonites but had no role in the formation of the fresh rock
niobium deposit itself.
6) We could not uniquely constrain the nelsonite formation process in
Catalão I although it is clear that they are genetically related to
carbonatite magmatism. Possible alternatives for the formation and
evolution of these rocks are: (a) crystallization from a phoscorite
magma (Lee et al., 2004, 2006); (b) crystal accumulation from a
carbonatite magma (Veksler et al., 1998); and (c) crystal accumu-
lation from a carbonated-silicate magma (Downes et al., 2005).
Acknowledgments
We are indebted to Anton Chakhmouradian, Nigel Cook and two
anonymous reviewers for their helpful review of the original
manuscript. This work was supported by the Brazilian Council for
Research and Technological Development (CNPQ), through grants to
the rst author, JAB and ESRB, as well as by Mineração Catalão and the
Anglo American Brazil Exploration Division. The University of Brasília
is gratefully acknowledged for eldwork support and access to
laboratory facilities.
References
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R., Kartashov, P.M., 2010. The pyrochlore
supergroup of minerals: nomenclature. Can. Mineral. 48, 673698.
Balaganskaya, E.G., Downes, H., Demaiffe, D., 2007. REE and SrNd isotope compositions
of clinopiroxenites, phoscorites, and carbonatites of the Seblyavr Massif, Kola
Peninsula, Russia. Mineral. Pol. 38, 2945.
Barbosa, E.S.R., 2009. Mineralogia e Petrologia do Complexo Carbonatítico-Foscorítico
de Salitre, MG, Unpublished Ph.D. Thesis, University of Brasília, Brazil. 432 pp.
Biondi, J.C., 2005. Brazilian mineral deposits associated with alkaline and alkaline
carbonatite complexes. In: Comin-Chiaramonti, P., Gomes, C.B. (Eds.), Mesozoic to
Cenozoic alkaline magmatism in the Brazilian Platform. Editora da Universidade de
Sao Paulo: Fapesp, São Paulo, pp. 707750.
Brod, J.A., 1999. Petrology and geochemistry of the Tapira alkaline complex, Minas
Gerais State, Brazil: Unpublished Ph.D. Thesis, University of Durham, U.K., 486 pp.
Brod, J.A., Gibson, S.A., Thompson, R.N., Junqueira-Brod, T.C., Seer, H.J., Moraes, L.C.,
Boaventura, G.R., 2000. Kamafugite afnity of the Tapira alkalinecarbonatite
complex (Minas Gerais, Brazil). Rev. Bras. Geociências 30, 404408.
Brod, J.A., Gaspar, J.C., Araújo, D.P., Gibson, S.A., Thompson, R.N., Junqueira-Brod, T.C.,
2001. Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes:
petrogenetic constraints and implications for mineral-chemistry systematic. J.
Asian Earth Sci. 19, 265296.
Brod, J.A., Ribeiro, C.C., Gaspar, J.C., Junqueira-Brod, T.C., Barbosa, E.S.R., Riffel, B.F., Silva,
J.F., Chaban, N., Ferrari, A.J.D., 2004. Geologia e Mineralizações dos Complexos
Alcalino-Carbonatíticos da Província Ígnea do Alto Paranaíba. 42º Congresso
Brasileiro de Geologia, Araxá, Minas Gerais, Excursão, p. 1 (29 pp.).
Caprilli, E., Della Ventura, G., Williams, T.C., Parodi, G.C., Tuccimei, P., 2006. The crystal
chemistry of non-metamict pyrochlore-group minerals from Latium, Italy. Can.
Mineral. 44, 13671378.
Carvalho, W.T., Bressan, S.R., 1981. Depósitos minerais associados ao Complexo
ultramáco-alcalino de Catalão I Goiás. In: Schmaltz, W.H. (Ed.), Os principais
depósitos minerais da Região Centro Oeste, 6. DNPM, Brasília, pp. 139183.
Chakhmouradian, A.R., Mitchell, R.H., 1998. Lueshite, pyrochlore and monazite-(Ce)
from apatitedolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula,
Russia. Mineral. Mag. 62, 769782.
Chakhmouradian,A.R., Mitchell,R.H., 2002. New dataon pyrochlore-and perovskite-group
mineralsfrom the Lovozero alkalinecomplex, Russia. Eur. J. Mineral. 14, 821836.
Chakhmouradian, A.R., Williams, C.T., 2004. Mineralogy of high-eld-strength elements
(Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula,
Russia. I. In: Wall, F., Zaitsev, A.N. (Eds.), Phoscorites and Carbonatites from Mantle
to Mine: the Key Example of the Kola Alkaline Province: Mineralogical Society
Series, London, pp. 293340.
Chakhmouradian, A.R., Zaitsev, A.N., 1999. Calciteamphiboleclinopyroxene rock from
the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to
carbonatites. I. Oxide minerals. Can. Mineral. 37, 177198.
Clark, A.H., Kontak, D.J., 2004. FeTiP oxide melts generated through magma mixing in
the Antauta subvolcanic center, Peru: implications for the origin of nelsonite and
iron oxide-dominated hydrothermal deposits. Econ. Geol. 99, 377395.
Cordeiro, P.F.O., 2009. Petrologia e metalogenia do depósito primário de nióbio do
Complexo Carbonatítico-Foscorítico de Catalão I, GO. Unpublished M.Sc. Thesis,
University of Brasília, Brazil, 140 pp.
Cordeiro, P.F.O., Brod, J.A., Dantas, E.L., Barbosa, E.S.R., 2010. Mineral chemistry, isotope
geochemistry and petrogenesis of niobium-rich rocks from the Catalão I
carbonatitephoscorite complex, Central Brazil. Lithos 118, 223237.
Cordeiro, P.F.O., Brod, J.A., Santo, R.V., Dantas, E.L., Oliveira, C.G., Barbosa, E.S.R., 2011.
Stable (C, O) and radiogenic (Sr, Nd) isotopes of carbonates as indicators of
magmatic and post-magmatic processes of phoscorite-series rocks and carbona-
tites from Catalão I, central Brazil. Contrib. Mineral. Petrol. 161, 451464.
Deans, T., 1966. Economic geology of African carbonatites. In: Tuttle, O.F., Gittins, J.
(Eds.), Carbonatites. Wiley, New York, pp. 385413.
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., Demaiffe, D., 2005. Petrogenetic
processes in the ultrmac, alkaline and carbonatitic magmatism in the Kola
Alkaline Province: a review. Lithos 85, 4875.
Fava, N., 2001. O manto de intemperismo e a química do pirocloro de Catalão I (GO): Um
estudo preliminar: Unpublished M.Sc. Thesis, University of Brasília, Brazil, 124 pp.
Geisler, T., Berndt, J., Meyer, H.W., Pollok, K., Putnis, A., 2004. Low temperature aqueous
alteration of crystalline pyrochlore: correspondence between nature and exper-
iment. Mineral. Mag. 68, 905922.
Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P., Mitchell, J.G., 1995. The Late
Cretaceous impact of the Trindade mantle plume evidence from large-volume,
mac, potassic magmatism in SE Brazil. J. Petrol. 36, 189229.
Gierth, E., Baecker, M.L., 1986. A mineralização de nióbio e as rochas alcalinas associadas
no complexo Catalão I, Goiás. In: Schobbenhaus, C., Queiroz, E.T., Coelho, C.E.S.
(Eds.), Principais depósitos minerais do Brasil, 2. MME/DNPM, Brasília, pp. 455462.
Gold, D.P., Eby, G.N., Bell, K., Vallee, M., 1986. Carbonatites, diatremes, and ultra-alkaline
rocks in the Oka area, Quebec. Geological Association of Canada, Mineralogical
Association of Canada, Canadian Geophysical Union, Joint Annual Meeting,
Ottawa'86, Field Trip 21: Guidebook, p. 51.
120 P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
Author's personal copy
Hirano, H., Kamitani, M., Sato, T., Sudo, S., 1990. Niobium mineralization of Catalão I
carbonatite complex, Goiás, Brazil. Bull. Geol. Surv. Japn. 41, 619626.
Hogarth, D.D., 1977. Classication and nomenclature of the pyrochlore group. Am.
Mineral. 62, 403410.
Hogarth, D.D., 1989. Pyrochlore, apatite and amphibole: distinctive minerals in
carbonatite. In: Bell, K. (Ed.), Carbonatites Genesis and Evolution. Unwin
Hyman, London, pp. 105148.
Hogarth, D.D., Williams, C.T., Jones, P., 2000. Fresh rock zoning in pyrochlore group
minerals from carbonatites. Mineral. Mag. 64, 683697.
Issa Filho, A., Lima, P.R.A.S., Souza, O.M., 1984. Aspectos da geologia do complexo
carbonatítico do Barreiro, Araxá, Minas Gerais, Brasil. In: Rodrigues, C.S., Lima, P.R.A.S.
(Eds.), Companhia Brasileira de Metalurgia e Mineração, pp. 2044.
Justo, L.J.E.C., Souza, M.M., 1986. In: Schobbenhaus, C. (Ed.), Jazida de nióbio do Morro
dos Seis Lagos, Amazonas. : Principais depósitos minerais do Brasil, 2. MME/DNPM,
Brasília, pp. 463468.
Kamitani, M., Hirano, H., 1991. Important carbonatitealkaline/alkaline complexes and
related mineral occurrences in the world. Bull. Geol. Surv. Japn. 41, 631640.
Knudsen, C., 1989. Pyrochlore group minerals from the Qaqarssuk carbonatite complex.
In: Möller, P., Cerný, P., Saupé, F. (Eds.), Lanthanides, Tantalum and Niobium.
Springer-Verlag, Berlin-Heidelberg, pp. 8099.
Krasnova, N.I., Petrov, T.G., Balaganskaya, E.G., Garcia, D., Moutte, D., Zaitsev, A.N., Wall,
F., 2004. Introduction to phoscorites: occurrence, composition, nomenclature and
petrogenesis. In: Wall, F., Zaitsev, A.N. (Eds.), Phoscorites and Carbonatites from
Mantle to Mine: the Key Example of the Kola Alkaline Province. Mineralogical
Society Series, London, pp. 4579.
Lee, M.J., Garcia, D., Moutte, J., Williams, C.T., Wall, F., 2004. Carbonatites and
phoscorites from the Sokli complex, Finland. In: Wall, F., Zaitsev, A.N. (Eds.),
Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola
Alkaline Province. Mineralogical Society Series, London, pp. 133162.
Lee, M.J., Lee, J.I., Garcia, D., Moutte, J., Williams, C.T., Wall, F., Kim, Y., 2006. Pyrochlore
chemistry from the Sokli phoscoritecarbonatite complex, Finland: implications for
the genesis of phoscorite and carbonatite association. Geochem. J. 40, 113.
Lumpkin, G.R., Ewing, R.C., 1995. Geochemical alteration of pyrochlore group minerals:
pyrochlore subgroup. Am. Mineral. 80, 732743.
Melo, M.T.V., 1997. Depósitos de fosfato, titânio e nióbio de Tapira. Minas Gerais. In:
Schobbenhaus, C., Queiroz, E.T., Coelho, C.E.S. (Eds.), Principais depósitos minerais
do Brasil, 2. MME/DNPM, Brasília, pp. 4156.
Mitchell, R.H., 2005. Mineralogical and experimental constraints on the origin of
niobium mineralization in carbonatites. In: Linnen, R.L., Samson, I.M. (Eds.), Rare
Element Geochemistry and Mineral Deposits, 17. Geological Association of Canada,
Canada, pp. 201216 (Short Course Notes).
Nasraoui, M., Bilal, E., 2000. Pyrochlores from the Lueshe carbonatite complex
(Democratic Republic of Congo): a geochemical record of different alteration
stages. J. Asian Earth Sci. 18, 237251.
Nasraoui, M., Waerenborgh, J.C., 2001. Fe speciation in weathered pyrochlore-group
minerals from the Lueshe and Araxá (Barreiro) carbonatites by
57
Fe Mössbauer
spectroscopy. Can. Mineral. 39, 10731080.
Notholt, A.J.G., Highley, D.E., Deans, T., 1990. Economic minerals in carbonatites and
associated alkaline igneous rocks. Trans. Ins. Min. Metall. 99, 5980.
Palmieri, M., 2011. Modelo geológico e avaliação de recursos minerais do depósito de
nióbio do Morro do Padre, Complexo alcalino carbonatítico de Catalão II, GO.
Unpublished M.Sc thesis, University of Brasília, Brazil, 130 pp.
Panina, L.I., Motorina, I.V., 2008. Liquid immiscibility in deep-seated magmas and the
generation of carbonatite melts. Geochem. Int. 46, 448464.
Pell, J., 1966. Mineral deposits associated with carbonatites and related alkaline igneous
rocks. In: Mitchell, R.H. (Ed.), Undersaturated Alkaline Igneous Rocks: Mineralogy,
Petrogenesis and Economic Potential: Mineralogical Association of Canada, 24,
pp. 271310 (Short Course).
Pena, P.E., 1989. Perl analítico do pirocloro (Nióbio), 2nd edition. DNPM, Boletim, 18
(59 pp.).
Richardson, D.G., Birkett, T.C., 1996. Carbonatite-associated deposits. In: Eckstrand, O.R.,
Sinclair, W.D., Thorpe, R.I. (Eds.), Geology of Canadian Mineral Deposit Types:
Decade of North American Geology, Geology of Canada, 8, pp. 557566.
Rodrigues, C.S., Lima, P.R.A., 1984. Carbonatite Complexes of Brazil: Geology.
Companhia Brasileira de Metalurgia e Mineração, São Paulo. (44 pp.).
Sage, R.P., 1988. Geology of carbonatitealkalic rock complexes in Ontario: Argor
carbonatite complex, District of Cochrane. Ontario Geological Survey, p. 41 (90 pp.).
Sonoki, I.K., Garda, G.M., 1988. Idades KAr de rochas alcalinas do Brasil Meridional e
Paraguai Oriental: compilação e adaptação as novas constants de decaimento. Bol.
IG USP 19, 6385.
Stockford, H.R., 1972. The James Bay pyrochlore deposit. Can. Min. Metall. Bull. 65,
6179.
Stoppa, F., Cundari, A., 1995. A new Italian carbonatite occurrence at Cupaello (Rieti)
and its genetic signicance. Contrib. Mineral. Petrol. 122, 275288.
Stoppa, F., Sharygin, V.V., Cundari, A., 1997. New mineral data from the kamafugite
carbonatite association: the melilitolite from Pian di Celle, Italy. Mineral. Petrol. 61,
2745.
Thompson, R.N., Gibson, S.A., Mitchell, J.G., Dickin, P., Leonardos, O.H., Brod, J.A.,
Greenwood, J.C., 1998. Migrating CretaceousEocene magmatism in the Serra do
Mar alkaline province, SE Brazil: melts from the deected Trindade mantle plume?
J. Petrol. 39, 14391526.
Van Straaten, P., 2002. Rocks for Crops: Agrominerals of Sub-Saharan Africa.
International Centre for Research in Agroforestry, Nairobi, Kenya. (338 pp.).
Veksler, I.V., Nielsen, T.F.D., Sokolov, S.V., 1998. Mineralogy of crystallized melt
inclusions from Gardiner and Kovdor ultramac alkaline complexes: implications
for carbonatite genesis. J. Petrol. 39, 20152031.
Verwoerd, W.J., 1967. The Carbonatites of South Africa and South West Africa.
(Handbook) Geological Survey of South Africa.
Verwoerd, W.J., 1986. Mineral deposits associated with carbonatites and alkaline rocks.
In: Anhaeusser, C.R., Manske, S. (Eds.), Mineral Deposits of Southern Africa.
Geological Society of South Africa, Johannesburg, pp. 21732191.
Wall, F., Williams, C.T., Woolley, A.R., Nasraoui, M., 1996. Pyrochlore from weathered
carbonatite at Lueshe, Zaire. Mineral. Mag. 60, 731750.
Wall, F., Williams, C.T., Woolley, A.R., 1999. Pyrochlore in niobium ore deposits. In:
Stanley, C.J., et al. (Ed.), Mineral Deposits: Processes to Processing, Proceedings of
the 5th BiennialSGA meeting and 10th Quadrennial IAGOD Symposium London, U.K.
Balkema, Rotterdam, pp. 687690.
Williams, C.T., Wall, F., Woolley, A.R., Phillipo, S., 1997. Compositional variation in
pyrochlore from the Bingo carbonatite, Zaire. J. Afr. Earth Sci. 25, 137145.
Woolley, A.R., 1987. The Alkaline Rocks and Carbonatites of the World. Part 1: North
and South America. British Museum, Natural History, London.
Woolley, A.R., 2001. Alkaline Rocks and Carbonatites of the World. (Part 3) The
Geological Society, London.
Woolley, A.R., Kjarsgaard, B.A., 2008. Carbonatite occurrences of the world: map and
database. Geol. Surv. Can. 5796 (Open File Report).
Yang, Z., Woolley, A., 2006. Carbonatites in China: a review. J. Asian Earth Sci. 27,
559575.
Yegorov, L.S., 1993. Phoscorites of the MaymechaKotuy ijolitecarbonatite association.
Int. Geol. Rev. 35, 346358.
Zurevinski, S.E., Mitchell, R.H., 2004. Extreme compositional variation of pyrochlore-
group minerals at the Oka carbonatite complex, Quebec: evidence of magma
mixing? Can. Mineral. 42, 11591168.
121P.F.O. Cordeiro et al. / Ore Geology Reviews 41 (2011) 112121
... Pyrochlore supergroup minerals are common ore phases in Nb deposits [21][22][23][24][25] and are the most important minerals hosting Nb in the Boziguoer deposit [17,[26][27][28][29]. Previous work discovered a new pyrochlore supergroup mineral (fluornatropyrochlore) in the Boziguoer deposit [20]. The chemistry of pyrochlore group minerals can be used to elucidate the crystallization environment, equilibrium melt properties and magma evolution [23,[30][31][32][33][34][35][36][37][38][39][40][41]. ...
... Pyrochlore supergroup minerals are common ore phases in Nb deposits [21][22][23][24][25] and are the most important minerals hosting Nb in the Boziguoer deposit [17,[26][27][28][29]. Previous work discovered a new pyrochlore supergroup mineral (fluornatropyrochlore) in the Boziguoer deposit [20]. The chemistry of pyrochlore group minerals can be used to elucidate the crystallization environment, equilibrium melt properties and magma evolution [23,[30][31][32][33][34][35][36][37][38][39][40][41]. ...
... The red arrow indicates their compositional evolution. The pyrochlore supergroup mineral data for carbonatite are from [23,31,37,41]; data for nepheline syenite are from [35]. ...
Article
Full-text available
Alkaline rocks are generally enriched in rare metals (e.g., Nb, Ta, and Zr) and rare earth elements (REE), but the key factors controlling Nb-Ta-REE enrichment remain unclear. The Boziguoer Nb (Ta-Zr-Rb-REE) deposit in Southwest Tianshan (northern margin of Tarim Basin) is China’s largest, with reserves of 0.32 Mt Nb2O5 and 0.02 Mt Ta2O5. It is an alkaline felsic complex 4.45 km in length and 0.5–1.3 km in width, composed of alkalic granite and syenite, which can be subdivided into syenite I and syenite II. The main minerals in each lithofacies are the same (albite, K-feldspar, quartz, arfvedsonite and aegirine). The Nb in the deposit is mainly hosted in pyrochlore supergroup minerals, ubiquitous in alkalic granite and syenite of the Boziguoer deposit. The wide variation in cations (Ca, Na, REE, U, Th) in the A-site further classifies the Boziguoer pyrochlore supergroup minerals as fluornatropyrochlore, fluorcalciopyrochlore and fluorkenopyrochlore. All Boziguoer pyrochlore supergroup minerals are Nb-rich and Ta-poor at the B-site and dominated by F at the Y-site. These cation occurrence illustrate a new mechanism of substitution in the Boziguoer pyrochlore supergroup minerals (2Ca2+ +Ti4+ +4Ta5+ = REE3+ +A-V + 5Nb5+, where A-V is the A-site vacancy). This substitution mechanism is different from that in the pyrochlore supergroup minerals from other rocks such as carbonatite and nepheline syenite, which are dominated by the replacement of Ba (Rb, Sr) with Ca+ Na + A-V. In addition, the substitution of REE (mainly La, Ce) for Ca in the Boziguoer pyrochlore supergroup minerals is likely a result of either REE enrichment or a change in the REE partition coefficient during the evolution of the alkaline magma. Both the pyrochlore supergroup minerals and their host rocks display negative large ion lithophile element (LILE; K, Rb, Sr, and Ba) anomalies, positive high-field-strength element (HFSE) anomalies and light rare earth element (LREE) enrichment with negative Eu anomalies. This is consistent with the crystallization of the pyrochlore supergroup minerals from the magma rather than from hydrothermal fluids, suggesting a magmatic origin. These findings indicate that the mechanisms of pyrochlore supergroup minerals crystallization in alkaline magma may be significantly different from those in carbonatite and nepheline syenite, and that magmatic differentiation processes may have played a role in the enrichment of the Boziguoer deposit by Nb.
... However, most of the world production of Nb comes from carbonatite complexes of the Alto Paranaíba Igneous Province in Brazil. Historical and active mines include giant reserves in the Araxá Complex (Issa Filho et al., 1984;Silva, 1986) and smaller deposits in the Catalão I (Baecker, 1983;Gierth et al., 1985;Gierth and Baecker, 1986;Cordeiro et al., 2010Cordeiro et al., , 2011 and Catalão II Complexes (Machado Junior, 1991;Palmieri, 2011;Jácomo et al., 2015). Although mining of these deposits represents ~90% of global niobium production and has been ongoing for more than 50 years, their geologic features and the metallogenetic controls are still poorly known. ...
... In addition to magmatic processes associated with the phoscorite, bebedourite, and carbonatite series, carbohydrothermal and weathering processes were also involved in producing economic niobium and phosphate deposits in the Alto Paranaíba Igneous Province, as well as large unexploited titanium, vermiculite, and rare earth element (REE) reserves (Berbert, 1984;Carvalho and Bressan, 1984;Issa Filho et al., 1984;Gierth and Baecker, 1986;Silva, 1986;Torres, 1996;Brod et al., 2004;Cordeiro et al., 2011;Ribeiro et al., 2014;Grasso, 2015). Complexes such as Catalão I, Serra Negra, Salitre I, and Tapira formed dome structures of weatheringresistant country rocks that prevented erosion of their weath-ering products. ...
... Apatite is disseminated or interstitial, but it is often concentrated in small aggregates together with fine-grained magnetite at the walls of carbonate pockets forming a border zone between the carbonatite and the host tetraferriphlogopite phoscorite (Fig. 6A, H). Dolomite is interstitial or occurs as abundant centimeterto decimeter-sized, rounded to irregularly shaped dolomite pockets, frequently with comb-layering textures (Fig. 6A) resembling those from equivalent rocks in Catalão I (Cordeiro et al., 2011). The P2 dolomite carbonatite pockets are present throughout the deposit but are larger and more abundant in the upper hypogene zone. ...
Article
The Morro do Padre deposit contains a valuable niobium resource estimated at 14.5 Mt at 1.52 wt % Nb2O5 (at a cut-off grade of 0.5% Nb2O5) hosted in carbonatite-related rocks and their regolith in the southern part of the Catalão II Complex, in central Brazil. Morro do Padre shares numerous geologic features with some of the biggest niobium producers in the world (the Boa Vista mine, also in Catalão II, the Mina II in Catalão I, and the CBMM mine in the Araxá Complex) and can help advance our understanding of the ore formation processes involved. The Morro do Padre hypogene zone is characterized by E-W–trending dike swarms of tetraferriphlogopite phoscorites (magnetite-apatite-carbonate-tetraferriphlogopite-pyrochlore rocks) and carbonatites intrusive within Precambrian rocks. The magmatic origin of these Nb-rich rocks is supported by country rock xenoliths within dikes and ponding into a stratified sill with repetitive cumulus layers. At least two tetraferriphlogopite phoscorite phases (apatite-rich or pegmatoidal P1 and the magnetite-rich P2) and two carbonatite phases (C1 calcite carbonatite and C2 dolomite carbonatite) are present. The bulk of hypogene mineralization is primarily controlled by the emplacement of P2 dikes and secondarily by C1 and C2 dikes where pyrochlore is accessory. Whole-rock and pyrochlore chemistry and textural and spatial relationships suggest that the genesis of P2 (and that of the niobium deposit) is due to the emplacement of a parental dolomite carbonatite magma that crystallized medium- to coarse-grained magnetite, apatite, tetraferriphlogopite, and pyrochlore on dike walls upon cooling, in an elaborate magmatic type of “cumulate dike build-up.” Weathering generated the regolith zone, where the dissolution of barren phases compounded the Nb concentration even further. Morro do Padre showcases the role of carbonatite-phoscorite magmatism in producing Fe-P-Nb–rich rocks and economic niobium mineralization.
... The former two assemblages have historically served as commercial sources of Nb (Chakhmouradian and Mitchell 2002;Mitchell 2015). The Brazilian supergene deposits at Araxá, Catalão I, and Catalão II comprise mineralogically complex zones of lateritic weathering developed at the expense of primary Nb-bearing carbonatite and account for > 91% of the current Nb production (Cordeiro et al. 2011;Mitchell 2015; U.S. Geological Survey, 2021). Niobium mineralization in carbonatite, alkaline, and peralkaline silicate rocks is commonly associated with REE mineralization. ...
... Pyrochloregroup minerals consist of a chemically variable Nb-Ta-Ti oxides having the general formula: A 2-m B 2 X 6-w Y 1-n ·pH 2 O, where A = Na, Ca, Mn, Fe 2+ , Sr, Ba, REE, Pb, Th, and U; B = Nb, Ta, Ti, Al, Fe 3+ , Zr, Sn, and W; X = O, OH; and Y = O, OH, and F (Lumpkin and Ewing 1995). Pyrochlore may form under magmatic or hydrothermal conditions and undergo chemical changes that produce new species during weathering (Wall et al. 1996;Chakhmouradian and Mitchell 1998;Cordeiro et al. 2011;McCreath et al. 2013;Walter et al. 2018). Magmatic pyrochlore commonly shows striking core-rim zonation comprising a U-Ta-rich core and a Na-Ca-Nb-F-rich rim or displays oscillatory or sector zoning arising from variations in Ca, Na, U, REE, and other cations in the A-site Zaitsev et al. 2021). ...
... The altered (either hydrothermal or supergene) pyrochlore is characterized by the removal of Na and Ca from the A site, formation of vacancies, and the incorporation of K, Ba, Sr, Pb, and REE in that site; the charge balance is maintained by F removal from the Y site. Altogether, these processes result in various pyrochlore species with variable A-site occupancies (Nasraoui and Bilal 2000;Cordeiro et al. 2011;Melgarejo et al. 2012;Mitchell et al. 2020). Ferrocolumbite is the second most important Nb-ore mineral after pyrochlore in carbonatite (Simandl et al. 2018). ...
Article
Full-text available
The Miaoya carbonatite complex in the South Qinling Orogen hosts one of the largest REE-Nb deposits in China. The origin and evolution of REE enrichment in this Silurian intrusion have been extensively studied, whereas Nb mineralization remains less well understood. Here, we report detailed mineralogical and geochemical data on diverse Nb-bearing minerals from the Miaoya carbonatite to explain the development of Nb mineralization in these rocks. Ferrocolumbite is the dominant Nb mineral, which occurs principally as an alteration product of the earlier-crystallized Nb phases (uranopyrochlore, betafite, and fersmite). The ferrocolumbite varieties (Clb-1, Clb-2, Clb-3) inherited some compositional characteristics of its precursors, in particular a trend of decreasing Ta2O5 and UO2 from Clb-1 to Clb-3, which mimics the Ta-U depletion trend from uranopyrochlore to betafite and fersmite. Varieties Clb-1 and Clb-2 and associated calcite and altered uranopyrochlore show evidence of hydrothermal overprint such as positive Eu anomaly. Ferrocolumbite Clb-2 shows slightly higher Eu/Eu* and Zr/Hf ratios and contains fewer relicts of its precursor mineral in comparison with Clb-1, possibly indicating local enrichment of F in the hydrothermal system. Calcite associated with Clb-3 and fersmite shows a trace element signature characteristic of igneous carbonates, suggesting that this mineral paragenesis is least affected by metasomatic overprint with no contribution from external fluids. The study of the Miaoya REE-Nb deposit shows that late-stage metasomatism of carbonatites does not significantly enhance Nb grade in contrast to that of REE mineralization and leads to the formation of a secondary Nb paragenesis with specific trace element characteristics.
... The WNW-ESE-trending zone contains Permian-Triassic to Late Cretaceous alkaline and mafic-potassic intrusions emplaced in distinct tectonic settings, including rocks from the Amazonian Craton, in Rondônia and Mato Grosso states and rocks from the São Francisco Craton and the Brasília Belt, in Minas Gerais State. These rocks are related to mineral deposits rich in phosphate, diamond, niobium, titanium and rare earth elements (e.g., Carvalho and Bressan 1981;Cordeiro et al. 2010Cordeiro et al. , 2011. Despite the area's significance, publications about peridotitic, pyroxenitic and/ or eclogitic mantle xenoliths are scarce, primarily those using modern analytical techniques. ...
... The WNW-ESE-trending zone contains Permian-Triassic to Late Cretaceous alkaline and mafic-potassic intrusions emplaced in distinct tectonic settings, including rocks from the Amazonian Craton, in Rondônia and Mato Grosso states and rocks from the São Francisco Craton and the Brasília Belt, in Minas Gerais State. These rocks are related to mineral deposits rich in phosphate, diamond, niobium, titanium and rare earth elements (e.g., Carvalho and Bressan 1981;Cordeiro et al. 2010Cordeiro et al. , 2011. Despite the area's significance, publications about peridotitic, pyroxenitic and/ or eclogitic mantle xenoliths are scarce, primarily those using modern analytical techniques. ...
Article
Full-text available
We present new petrographic and chemical data together with calculated P-T equilibrium conditions of peridotite xenoliths enclosed in kimberlites from Rondônia, Northern Brazil (Cosmos-1 and Carolina-1) and Minas Gerais, Southeastern Brazil (Canastra-1) located in the Azimuth 125º Lineament. The composition of the mantle minerals is distinct in both areas, which can be related to the diversity of the lithospheric mantle beneath the southwestern portion of the Amazonian Craton and the Brasília Belt. New and compiled chemical data indicate that subcalcic G10 garnet occurs in samples from the Canastra-1 kimberlite and other occurrences of the Alto Paranaíba Igneous Province and can be related to the remnants of the Archean lithospheric mantle of the São Francisco Craton beneath the area. The garnets from Rondônia are mostly G5 (pyroxenitic) and G9 (lherzolitic) with a higher abundance of G3 (eclogitic) and G4 (pyroxenitic/eclogitic) relative to the Alto Paranaíba Igneous Province. Higher pressures and temperatures were calculated for the samples from Rondônia (40-60 kbar and 1030-1380 ºC) compared to samples from Minas Gerais (25-40 kbar and 730-1000 ºC). The peridotite xenoliths from Rondônia show P-T equilibrium conditions in the diamond stability field and can be the source of at least part of the diamond from the area. The P-T stability fields of the xenoliths from both locations are aligned close to the 40 mW/m 2 geotherm. The data indicate that the cratonic 40 mW/m 2 geothermal gradient in Rondônia may be related to a process of thermal relaxation of the lithospheric mantle after the Paleoproterozoic to Mesoproterozoic tectonothermal events of the southwestern Amazonian Craton until the sampling of the xenoliths by the magma in the Permian-Triassic.
... The six main alkaline-carbonatite intrusive complexes of the APIP are Catalão II, Catalão I, Serra Negra, Salitre, Araxá, and Tapira, and these encompass the main global resource(s) of niobium and an important source of phosphate (Barbosa et al. 2012;Cordeiro et al. 2010Cordeiro et al. , 2011Conceição et al. 2020). Moreover, the province hosts numerous kimberlite intrusions (e.g. ...
Article
The Late Cretaceous Mata da Corda Formation, located in the eastern part of the Alto Paranaíba Igneous Province (APIP), Central Brazil, is one of the few places on Earth where kamafugite melts reached the surface generating large volumes of lava, pyroclastic rocks and shallow intrusions over an area of 4,500 km 2. The western part of the APIP, however, is dominated by hundreds of diatreme-like kamafugites and shallow kimberlite intrusions and by the occurrence of multi-stage alkaline-carbonatite complexes. These complexes feature silica-undersaturated K-rich alkaline rocks, such as aillikite, that closely resemble the mineralogy and geochemistry of kamafugite, albeit lacking feldspathoids. The spatial and temporal distribution of kamafugite and aillikite within the APIP suggests a connection between them. In addition, on a regional scale, airborne magnetic data show three highly magnetic dipole-like structures to the south of the Mata da Corda Formation of an undisclosed nature, which bear geophysical similar responses to the neighbouring alkaline-carbonatite complexes. Links between kamafugite and aillikite are evaluated by the following chemical and isotopic evidence: (1) kamafugite and aillikite compositions plot in the kamafugite field of Foley's ultrapotassic rock classification; (2) similar CI chondrite-normalized REE distribution, with aillikite enriched up to 2 times in REE compared to kamafugite; (3) both lithologies share almost the same rock-forming minerals; and (4) similar 143 Nd/ 144 Nd (i) and 87 Sr/ 86 Sr (i) ratios for all the APIP alkaline-carbonatite rocks, indicating a common source from an enriched lithospheric mantle. Therefore, silica-undersaturated rocks from alkaline-carbonatite complexes display an evolved ultrapotassic affinity indicative of a genetic link. ARTICLE HISTORY
... At present, the deposits that are mainly being mined for Nb occur in carbonatite complexes, such as the Araxá and Catalão carbonatite complex in Brazil (Cordeiro et al., 2011), the Saint-Honoré carbonatite complex in Canada (Thivierge et al., 1983), and the Bayan Obo deposit in China (Fan et al., 2016), although the origin of the latter is controversial. Pyrochlore is the most common Nb-bearing mineral in these carbonatite complexes; however, columbite may also present as an alteration product (Tremblay et al., 2017). ...
Article
Peralkaline rocks (defined by molar (Na + K)/Al > 1) are typically enriched in Nb and halogens (such as F and Cl). They can further be subdivided into silica-saturated (e.g., alkali granites) and silica-undersaturated (e.g., nepheline syenites). The current study investigates the solubility product (Ksp) of pyrochlore, the most important ore mineral for Nb in peralkaline granites. The Ksp of pyrochlore increases strongly with increasing temperature and with decreasing A/CNK (molar Al2O3/CaO+Na2O+K2O). By contrast, the Ksp of pyrochlore is only weakly dependent on the F content of the melt, if F concentrations are greater than 1 wt %. The Ksp values of pyrochlore from this study are compared to those of columbite from both this study and the literature to evaluate the controls on the crystallization of these two Nb minerals for granites in variable composition. In peralkaline granitic melts with A/CNK < 1, the Ksp values of pyrochlore are lower than those of columbite, but in peraluminous melts with A/CNK > 1, the Ksp values of pyrochlore are higher than those of columbite, and in subaluminous melts, the Ksp values of pyrochlore and columbite are almost the same. Thus, for melts with similar concentrations of essential structural constituents (Ca-Na in the case of pyrochlore and Mn in the case of columbite), the solubility experiments explain why pyrochlore is more common in peralkaline granitic systems, whereas columbite is the main Nb-bearing mineral in peraluminous systems. An expression that describes the dependence of logKsp on temperature and A/CNK was obtained using the experimental results from the F-enriched granitic melts:logKsp=(−5.22±0.50)×(1000⁄T)−(1.91±0.16)×A/CNK+(3.60±0.61)R2=0.97 where temperature (T) is in Kelvin (K). Using this expression, the saturation solubility or the crystallization temperature of pyrochlore can be calculated for the differentiation of peralkaline granitic magmas. This equation was used in conjunction with data from natural melt inclusions to evaluate whether these melts could have been pyrochlore-saturated. In some cases, the melts could not have been pyrochlore-saturated at reasonable temperatures, but in other cases, notably the pegmatite melts at Strange Lake, the concentrations of the essential structural constituents of pyrochlore (i.e., Nb, Ca, Na, F) in the melt inclusions are consistent with magmatic pyrochlore saturation.
Article
Niobium is a critical metal in high demand because of technological advances and the supply risk created by the fact that over 90% of its production is by a single country (Brazil). In this paper, we review the geology of the deposits that are currently being mined and other potentially economic deposits as well as develop models for their genesis. With the exception of the Lovozero deposit (Russia), which is hosted by a layered silica-undersaturated alkaline igneous complex, all the deposits that are currently being mined for niobium are hosted by carbonatites, and most of the deposits with economic potential are also hosted by these rocks. Niobium owes its concentration in carbonatites and alkaline silicate rocks to its highly incompatible nature and the small degree of partial melting of the mantle required to generate the corresponding magmas. The primary control on the concentration of niobium to economic levels in alkaline silicate magmas is fractional crystallization, partly prior to but mainly after emplacement. In the case of silica-undersaturated magmas, the final residue saturates in minerals like eudialyte and loparite to form niobium-rich horizons in the layered complexes that crystallize from these magmas. The final residue, in the case of silica-saturated magmas, crystallizes the pegmatites that are the hosts to the economic niobium mineralization, which commonly takes the form of pyrochlore. In contrast, carbonatitic magmas undergo little to no fractional crystallization prior to emplacement. Moreover, fractional crystallization on emplacement has minimal impact on the concentration of niobium to economic levels. Instead, we propose that the metasomatic interaction of the carbonatitic magmas with their hosts to form rocks like phlogopitite (glimmerite) consumes much of the magma, leaving behind a phoscoritic residue from which pyrochlore crystallizes in amounts sufficient to form economic deposits. Although many niobium deposits display evidence of intense hydrothermal alteration, during which there can be major changes in the niobium mineralogy, the extremely low solubility of niobium in aqueous fluids at elevated temperature precludes significant mobilization and, thus, enrichment of the metal by hydrothermal fluids. However, weathering of carbonatite-hosted niobium deposits leads to supergene enrichment (due largely to the dissolution of the carbonate minerals) that can double the niobium grade and make subeconomic deposits economic. Pyrochlore is the principal niobium mineral in these laterite-hosted deposits, although its composition differs considerably from that in the primary mineralization. This paper evaluates the processes that appear to be responsible for the genesis of niobium ores and provides a framework that we hope will guide future in-depth studies of niobium deposits and lead to more effective strategies for their successful exploration and exploitation.
Article
Pyrochlore [(Ca,Na)2(Nb,Ti)2O6F] is the primary niobium-hosting mineral for the current industrial exploration. The carbothermic reduction behavior of pyrochlore was investigated in this work. Niobium and titanium oxides in the pyrochlore can be reduced to NbC and TiC, respectively, and the carbonization of niobium oxide is prior to that of titanium. The generated NbC and TiC will further form a composite carbide (Nb,Ti)C. Latrappite [(Ca,Na)(Nb,Ti,Fe)O3] and perovskite [CaTiO3] are intermediate products during the reduction, dissociation of fluorine, and reduction of sodium oxide from pyrochlore occur in this process. Most of the sodium oxide is reduced to gaseous sodium [Na(g)] and volatilized above 1300 °C, whereas fluorine retains in the reduced pellets as cuspidine [Ca4Si2O7F2].Graphical Abstract
Article
Rare earth elements (REEs) are considered critical metals globally. About 62% of the global resources of REEs occur associated with carbonatites and alkaline complexes. However, the entire production of REEs in India currently comes from monazite-bearing beach sands, although a variety of REE enriched source rocks, particularly carbonatites and alkaline complexes occur in different parts of the country. There is, therefore, a significant potential in the county for new REE deposit discoveries associated with carbonatites and alkaline complexes. This paper describes a generalised carbonatite-alkaline complex related REE mineral systems model and applies a knowledge-driven model to demarcate REE exploration targets in the Karbi-Meghalaya plateau, NE India. The main components of the mineral systems are (1) pockets of metasomatised subcontinental lithospheric mantle (SCLM) which form fertile source regions for REE-bearing fluids; (2) extensional geodynamics; (3) permeable lithosphere architecture for tapping REE-enriched fluids from SCLM and focusing them to near-surface levels, and (4) a post-emplacement tectonic regime that preserves the deposits. Spatial proxies representing each of these components are mapped and integrated using fuzzy inference system (FIS) to identify prospective targets. Systemic and stochastic uncertainties associated with the model were quantified to aid target selection and further work. Main recommendations of this exercise are the following: (1) project-scale ground exploration for the Sung valley and Jasra complexes; (2) further regional-scale data collection for the Mikir Hills in the areas surrounding Samchampi and Barpung Complexes and around the swarms of dykes in the Garo Hills around Swangkre; (3) follow-up exploration in the areas north of Silchar and south of Nongstoin and (4) detailed geochemical sampling and surface or air-borne radiometric surveys for the Mawpyut Ultramafic Complex. The REE-mineral-systems model and the workflow demonstrated in this article could be used for targeting REE deposits in geologically similar terrains worldwide.
Book
Full-text available
The book 'Rocks for Crops' introduces the applied, goal-oriented, natural resource science of agrogeology. Agrogeology is the study of geological materials and processes that contribute to the maintenance of agro-ecosystems. Agrominerals are naturally occurring geological resources for the production of fertilizers and soil amendments. The inventory of indigenous agrominerals resources from 48 countries in sub-Saharan Africa are reported.