Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach

American Mineralogist (Impact Factor: 1.96). 02/2013; 98(2-3):394-400. DOI: 10.2138/am.2013.4217


An understanding of the interaction mechanisms between exchangeable cations and layered silicates is of interest from both a basic and an applied point of view. Among 2:1 phyllosilicates, a new family of swelling high-charge synthetic micas has been shown to be potentially useful as decontaminant. However, the location of the interlayer cations, their acidity and the water structure in the interlayer space of these silicates are still unknown. The aim of this paper was therefore to study the hydration state of the interlayer cations in the interlayer space of high-charge expandable micas and to evaluate the effect that this hydration has on the swelling and acidity behavior of these new materials. To achieve these objectives, three synthetic micas with different charge density total layer charges (ranging between 2 and 4 per unit cell) and with five interlayer cations (Na+, Li+, K+, Mg2+, and Al3+) were synthesized and their hydration state, interlayer space, and acidity analyzed by DTA/TG, XRD, and 1H MAS NMR spectroscopy. The results showed that the hydration state depends on both the layer charge and the nature of the interlayer cation. A high participation of the inner-sphere complexes in the highly charged confined space has been inferred and proposed to induce Brønsted acidity in the solid.
Keywords: Swelling, synthetic micas, Brønsted acidity, hydration, inner sphere, DTA, XRD, NMR

1 Follower
27 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: High charged swelling micas, with layer charge between 2 and 4, have been found to readily swell with water, and complete cation exchange (CEC) can be achieved. Because of their high CEC, applications like radioactive cation fixation or removal of heavy metal cations from wastewater were proposed. Their applicability can be controlled by the location of the interlayer cation in a confined space with a high electric field. In synthetic brittle micas, the interlayer cation has a low water coordination number; therefore, their coordination sphere would be completed by the basal oxygen of the tetrahedral layer as inner-sphere complexes (ISC). However, no direct evidence of these complexes formation in brittle micas has been reported yet. In this contribution, we mainly focus on the understanding the mechanisms that provoke the formation of ISC in high charge swelling micas, Mica-n. A whole series of cations (X) were used to explore the influence of the charge and size of the interlayer cation. Three brittle swelling micas, Mica-n (n = 4, 3 and 2), were selected in order to analyze the influence of the layer charge in the formation of ISC. The contribution of the ISC has been analyzed thorough the evolution of the 060 reflection and the changes in the short-range order of the tetrahedral cations will be followed 29Si and 27Al MAS NMR. The results showed that ISC was favored in X-Mica-4 and that provoked a high distortion angle between the Si–Al tetrahedra. When the content of aluminum decreases, the electrostatic forces between the layers are relaxed, and the hydrated cations did not interact so strongly with the tetrahedral sheet, having the opportunity to complete their hydration sphere.
    No preview · Article · Jan 2014 · The Journal of Physical Chemistry C
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Na-4-mica, a highly charged swelling mica, has suffered from insufficient understanding of some fundamental features such as partial layer collapse and rearrangement of interlayered cations and layers during exchange reaction. This study focuses on elucidating the changes in chemical environments of divalent cations and in layered structure during the exchange reaction with divalent cations. Cation exchange reaction with a series of alkali earth cations led to significant changes in both XRD pattern and IR spectra. The extent of cation exchange reaction depended highly and systematically on cation size and hydration energy. Exchange reaction with Mg2 + and Ca2 + led to highly hydrated phases whereas that with Sr2 + to anhydrous phase and that with Ba2 + to remarkable degradation of layered structure. The hydrated divalent cations could be quickly stabilized in interlayer space in spite of localized incompatibility of both lattice and charge through formation of interstratified phases having various ratios of Na+/M2 + and Na+/H3O+. Therefore, divalent cations could be stably accommodated either in hydrated or anhydrous state within the cavities, preferably around crystal edges to obstruct their further uptake.
    Full-text · Article · Nov 2014 · Applied Clay Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t The discovery of swelling brittle mica, Na-Mica-4, has been one of the most significant advances in the pursuit for a material with high ion-exchange capacity. For technical applications, the control of the phase evolution during the synthesis is crucial. The main aim of this study was to investigate the effect of Na-Mica-4 synthesis temperature on the crystalline phase evolution, Si–Al distribution in the tetrahe-dral sheet, the Al occupancy between tetrahedral and octahedral sites and their effects on the interlayer space composition. The synthesis temperature range between 600 °C and 900 °C was explored. At low temperature (600 °C), the precursors were transformed in a low-charged swelling 2:1 phyllosilicate, sap-onite type, which was progressively aluminum enriched with temperature. The high-charged swelling mica was completely formed at 700 °C, although a minor anhydrous contribution remained up to 850 °C. Up to 800 °C, silicates and fluorides secondary phases were detected as a minor contribution.
    No preview · Article · Mar 2015 · Microporous and Mesoporous Materials
Show more