Antiherpetic potential of 6-bromoindirubin-3′-acetoxime (BIO-acetoxime) in human oral epithelial cells

Institute of Oral Biology, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei, 11221, Taiwan.
Archives of Virology (Impact Factor: 2.39). 02/2013; 158(6). DOI: 10.1007/s00705-013-1629-3
Source: PubMed


Glycogen synthase kinase 3 (GSK-3) functions in the regulation of glycogen metabolism, in the cell cycle, and in immune responses and is targeted by some viruses to favor the viral life cycle. Inhibition of GSK-3 by 6-bromoindirubin-3'-acetoxime (BIO-acetoxime), a synthetic derivative of a compound from the Mediterranean mollusk Hexaplex trunculus, protects cells from varicella infection. In this study, we examined the effects of BIO-acetoxime against herpes simplex virus-1 (HSV-1) infection in human oral epithelial cells, which represent a natural target cell type. The results revealed that BIO-acetoxime relieves HSV-1-induced cytopathic effects and apoptosis. We also found that BIO-acetoxime reduced viral yields and the expression of different classes of viral proteins. Furthermore, addition of BIO-acetoxime before, simultaneously with or after HSV-1 infection significantly reduced viral yields. Collectively, BIO-acetoxime may suppress viral gene expression and protect oral epithelial cells from HSV-1 infection. These results suggest the possible involvement of GSK-3 in HSV-1 infection.

Download full-text


Available from: Mei-Ju Hsu
    • "Nonetheless, natural products serve as an excellent source of biodiversity for discovering novel antivirals, revealing new structure–activity relationships, and developing effective protective/therapeutic strategies against viral infections. Many natural products and herbal ingredients are observed to possess robust antiviral activity and their discoveries can further help develop derivatives and therapeutic leads (e.g., glycyrrhetinic acid derivatives as novel anti-HBV agents, acetoxime derivative from the Mediterranean mollusk Hexaplex trunculus as inhibitor against HSV-1, and caffeic acid derivatives as a new type of influenza NA antagonist).[155156157] Our discovery of chebulagic acid and punicalagin being capable of inhibiting entry of several viruses due to their GAG-competing properties could help develop broad-spectrum antivirals for prevention and control of these viral pathogens. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines.
    No preview · Article · Mar 2014 · Journal of Traditional and Complementary Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wide range of antiviral drugs is currently available; however, drug-resistant viruses have begun to emerge and represent a potential public health risk. Here, we explored the use of compounds that inhibit or interfere with the action of essential host factors to prevent virus replication. In particular, we focused on the cyclin-dependent kinase 9 (CDK9) inhibitor, FIT-039, which suppressed replication of a broad spectrum of DNA viruses through inhibition of mRNA transcription. Specifically, FIT-039 inhibited replication of herpes simplex virus 1 (HSV-1), HSV-2, human adenovirus, and human cytomegalovirus in cultured cells, and topical application of FIT-039 ointment suppressed skin legion formation in a murine HSV-1 infection model. FIT-039 did not affect cell cycle progression or cellular proliferation in host cells. Compared with the general CDK inhibitor flavopiridol, transcriptome analyses of FIT-039-treated cells revealed that FIT-039 specifically inhibited CDK9. Given at concentrations above the inhibitory concentration, FIT-039 did not have a cytotoxic effect on mammalian cells. Importantly, administration of FIT-039 ameliorated the severity of skin lesion formation in mice infected with an acyclovir-resistant HSV-1, without noticeable adverse effects. Together, these data indicate that FIT-039 has potential as an antiviral agent for clinical therapeutics.
    Preview · Article · Jul 2014 · Journal of Clinical Investigation