Implications of Adipose-Derived Stromal Cells in a 3D Culture System for Osteogenic Differentiation: An in Vitro and in Vivo Investigation

Department of Orthopaedic Surgery, University of Virginia, Box 800159, Charlottesville, VA 22908, USA. Electronic address: .
The Spine Journal (Impact Factor: 2.43). 01/2013; 13(1):32-43. DOI: 10.1016/j.spinee.2013.01.002
Source: PubMed


Healthy mammalian cells in normal tissues are organized in complex three-dimensional (3D) networks that display nutrient and signaling gradients. Conventional techniques that grow cells in a 2D monolayer fail to reproduce the environment that is observed in vivo. In recent years, 3D culture systems have been used to mimic tumor microenvironments in cancer research and to emulate embryogenesis in stem cell cultures. However, there have been no studies exploring the ability for adipose-derived stromal (ADS) cells in a 3D culture system to undergo osteogenic differentiation.

Download full-text


Available from: Adam J Katz
  • Source
    • "Critical size-calvarial defects are widely employed to study bone healing in animal models, mostly rodents, allowing an easy quantification of the amount of newly formed bone within a bidimensional defect [74, 108–127]. An initial proof of principle of the in vivo osteogenic potential of experimental constructs may be achieved using local intramuscular injection to induce ectopic bone formation [75, 121, 128–133]. Also, segmental defects in long bones of large animals are widely used as clinically relevant models, as resembling the fracture healing process [93, 112, 134–147]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.
    Full-text · Article · Nov 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delivery of nucleic acids to tumors has received extensive attention in the past few decades since these molecules are capable of treating disease by modulating the source of abnormalities. Although high efficiency and low toxicity of numerous delivery systems for nucleic acids has been approved frequently with in vitro assays, contradictions have been observed in many cases between these results and what has occurred in the dynamic in vivo situation. Filling this gap seems to be crucial for further preclinical development of such systems. In this paper, we discuss various barriers which polymeric DNA or siRNA nanoparticles encounter upon systemic administration with an aim to assist in designing more relevant in vitro assays. Furthermore, individual considerations concerning delivery of DNA and siRNA have been addressed.
    No preview · Article · Jun 2013 · Journal of Controlled Release
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in protein detection and analysis have lead to multiple in depth studies that analyze the adipose-derived stem cell (ASC) secretome. These studies differ significantly in their methods of secretome preparation and analysis. Most of them use a pro-differentiation or pro-inflammatory stimulus to observe differential expression of secreted proteins. In spite of the variance in methodologies used, 68 proteins are reported to be commonly expressed in a majority of the studies and may serve as potential candidates for conserved secretome proteins. Multiple recent clinical and basic science studies demonstrate the beneficial role played by secreted proteins in augmenting ASC effects in scenarios involving angiogenesis, wound healing, tissue regeneration and immunomodulation. Furthermore, 3-D formulations of ASCs that preserve the niche environment of cells and their secreted proteins have also shown enhanced clinical effects. In light of the lack of uniformity in prior secretome-analysis studies, and the growing clinical importance of the ASC secretome, more in depth studies that use uniform and standardized means of protein detection and analysis are necessary.
    Full-text · Article · Jun 2013 · Biochimie
Show more