Article

Endocrine-Disrupting Chemicals (EDCs): In Vitro Mechanism of Estrogenic Activation and Differential Effects on ER Target Genes

Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.
Environmental Health Perspectives (Impact Factor: 7.98). 02/2013; 121(4). DOI: 10.1289/ehp.1205951
Source: PubMed

ABSTRACT

Background: Endocrine-disrupting chemicals (EDCs) influence the activity of estrogen receptors (ERs) and alter the function of the endocrine system. However, the diversity of EDC effects and mechanisms of action are poorly understood.
Objectives: We examined the agonistic activity of EDCs through ERα and ERβ. We also investigated the effects of EDCs on ER-mediated target genes.
Methods: HepG2 and HeLa cells were used to determine the agonistic activity of EDCs on ERα and ERβ via the luciferase reporter assay. Ishikawa cells stably expressing ERα were used to determine changes in endogenous ER target gene expression by EDCs.
Results: Twelve EDCs were categorized into three groups on the basis of product class and similarity of chemical structure. As shown by luciferase reporter analysis, the EDCs act as ER agonists in a cell type– and promoter-specific manner. Bisphenol A, bisphenol AF, and 2-2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (group 1) strongly activated ERα estrogen responsive element (ERE)-mediated responses. Daidzein, genistein, kaempferol, and coumestrol (group 2) activated both ERα and ERβ ERE-mediated activities. Endosulfan and kepone (group 3) weakly activated ERα. Only a few EDCs significantly activated the “tethered” mechanism via ERα or ERβ. Results of real-time polymerase chain reaction indicated that bisphenol A and bisphenol AF consistently activated endogenous ER target genes, but the activities of other EDCs on changes of ER target gene expression were compound specific.
Conclusion: Although EDCs with similar chemical structures (in the same group) tended to have comparable ERα and ERβ ERE-mediated activities, similar chemical structure did not correlate with previously reported ligand binding affinities of the EDCs. Using ERα-stable cells, we observed that EDCs differentially induced activity of endogenous ER target genes.

Download full-text

Full-text

Available from: Kenneth S Korach
  • Source
    • "Previous studies have shown that alterations in adult stem cells contribute to enhance tumorigenicity and support future studies investigating the interplay between EDCs, adult stem cells and cancer incidence (Strong et al. 2012; Strong et al. 2013b) Numerous studies have demonstrated that DDT and other chlorinated biphenyl pesticides exert estrogenic activity at both the cellular and molecular levels (Bratton et al. 2012; Diel et al. 2002; Li et al. 2013), but few, if any, have studied the biological changes induced by these chemicals in model systems capable of assessing differentiation outcomes and cell fate such as human MSCs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs.
    Full-text · Article · Jul 2014 · Environmental Health Perspectives
  • Source
    • "The rainbowfish M. fluviatilis is endemic to the Murray Darling basin, Australia, and its wild populations are increasingly under climatic and anthropogenic threats, including aquatic pollution (Balcombe et al. 2011). As a consequence, the species is emerging as a sentinel indicator species in aquatic ecology and ecotoxicology for Australian freshwaters (e.g., Pollino et al. 2007; Shanthanagouda et al. 2013a). In conjunction with its ecological relevance, its amenability to husbandry, short reproductive cycle, and transparent embryonic development makes M. fluviatilis an excellent sentinel species, particularly in an Australian context and for comparative ecotoxicology across continental scales. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several endocrine-disrupting chemicals (EDCs) have been attributed to the alteration of reproduction in fish through disrupting endogenous sex steroidogenic pathways including aromatisation of androgens to oestrogen by CYP19 aromatase. Here we investigate this hypothesis in adult male and female Melanotaenia fluviatilis by examining the mRNA expression of cyp19a1 isoforms after exposure for ≤96 h to two EDCs with contrasting modes of action: one a weak oestrogen mimic, bisphenol A [BPA (100 or 500 μg/L)], and the other a nonsteroidal aromatase inhibitor, fadrozole [FAD (10 or 50 µg/L)]. The results suggest that BPA did not affect cyp19a1a expression significantly at both concentrations, whereas 50 µg/L of FAD significantly upregulated its expression in ovary. In contrast, BPA exposures increased expression of cyp19a1b in brain of both males and females, whilst FAD had contrasting effects in brain: It increased in males but decreased in females. Similar contrasting responses of cyp19a1b were induced by BPA in gonads: upregulation in ovary and downregulation in testis. FAD did not have a significant effect on gonadal expression of cyp19a1b. Collectively, the results suggest that BPA and FAD can disrupt cyp19a1b activity more readily than can cyp19a1a, albeit with contrasting effects in either a tissue- or sex-specific context that is conceivably consistent with their (BPA and FAD) opposing modes of action. Enhanced spatial and temporal sensitivity of cyp19a1b compared with cyp19a1a suggests that brain sex of fish is more susceptible to disruption by environmental pollutants such as BPA and FAD. Therefore, we propose that the response of cyp19a1b in brain tissue of M. fluviatilis is a more suitable indicator of oestrogenic pollution in the aquatic environment.
    Full-text · Article · Jun 2014 · Archives of Environmental Contamination and Toxicology
  • Source
    • "BPAF has been shown to induce estrogenic actions via binding to estrogen receptor (ER) [6], [7]. BPAF strongly binds to both ERα and ERβ as detected by radioligand binding assay. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells.
    Full-text · Article · Apr 2014 · PLoS ONE
Show more